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Abstract Purpose: Diaphrag-
matic electrical activity (EAdi),
reflecting respiratory drive, and its
feedback control might be impaired
in critical illness-associated poly-
neuromyopathy (CIPM). We aimed to
evaluate whether titration and pro-
longed application of neurally
adjusted ventilatory assist (NAVA),
which delivers pressure (Paw) in pro-
portion to EAdi, is feasible in CIPM
patients. Methods: Peripheral and
phrenic nerve electrophysiology
studies were performed in 15 patients
with clinically suspected CIPM and in
14 healthy volunteers. In patients, an
adequate NAVA level (NAVAal) was
titrated daily and was implemented
for a maximum of 72 h. Changes in
tidal volume (Vt) generation per unit
of EAdi (Vt/EAdi) were assessed daily
during standardized tests of neuro-
ventilatory efficiency (NVET).
Results: In patients (median
[range], 66 [44–80] years), peripheral
electrophysiology studies confirmed

CIPM. Phrenic nerve latency (PNL)
was prolonged and diaphragm com-
pound muscle action potential
(CMAP) was reduced compared with
healthy volunteers (p \ 0.05 for
both). NAVAal could be titrated in all
but two patients. During implemen-
tation of NAVAal for 61 (37–64) h,
the EAdi amplitude was 9.0
(4.4–15.2) lV, and the Vt was 6.5
(3.7–14.3) ml/kg predicted body
weight. Vt, respiratory rate, EAdi,
PaCO2, and hemodynamic parameters
remained unchanged, while PaO2/
FiO2 increased from 238 (121–337)
to 282 (150–440) mmHg (p = 0.007)
during NAVAal. Vt/EAdi changed by
-10 (-46; ?31)% during the first
NVET and by -0.1 (-26; ?77)%
during the last NVET (p = 0.048).
Conclusion: In most patients with
CIPM, EAdi and its feedback control
are sufficiently preserved to titrate
and implement NAVA for up to
3 days. Whether monitoring neuro-
ventilatory efficiency helps inform
the weaning process warrants further
evaluation.
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Introduction

Critical illness-associated polyneuromyopathy (CIPM) is
common in long-stay intensive care patients and con-
tributes to ventilator dependency and prolonged
rehabilitation [1–5]. Major alterations of the phrenic
nerve, including axonal degeneration [6], increased
phrenic nerve latency (PNL), and decreased diaphragm
compound muscle action potential (CMAP), have been
described in CIPM, indicating dysfunction of the phrenic
nerve–diaphragm unit [7–10].

Neurally adjusted ventilatory assist (NAVA) delivers
pressure to the airways (Paw) in synchrony and linear
proportionality to the electrical activity of the diaphragm
(EAdi) [11], which is a validated measure of global
respiratory drive [12–15]. A number of features unique to
NAVA may be beneficial in patients with CIPM. For
example, using EAdi to control the ventilator not only
guarantees synchrony with the patient’s respiratory
demand in each neural breath independent of muscular
strength and assist level [16–20], but also allows indi-
vidual determination of an adequate level of respiratory
muscle unloading based on neural feedback control of
EAdi without overly suppressing respiratory drive
[16, 21–27]. Using an assist level titrated to the individ-
ual’s needs could be helpful in preventing both disuse
atrophy and fatigue of respiratory muscles. Furthermore,
monitoring neuro-ventilatory efficiency, i.e., tidal volume
(Vt) per unit of EAdi, provides information on how the
patient’s ability to translate neural drive into Vt generation
progresses over time [24].

NAVA depends on the integrity of complex feedback
systems that control EAdi [12–15]. It is not known to what
extent the function of the phrenic nerve–diaphragm unit is
affected in spontaneously breathing CIPM patients and
whether the EAdi in these patients can be used to control a
ventilator.

We aimed to assess the degree of neuromuscular
impairment in a group of CIPM patients compared to
healthy volunteers and to examine whether titration and
application of NAVA for up to 3 days are feasible in these
patients.

Methods

Patients and study design

The protocol was approved by the Ethics Committee of
the Canton of Bern, Switzerland. Patients were recruited
from February 2008 to October 2008. Written informed
consent was obtained from the next of kin and from an
independent physician. For detailed methods and exclu-
sion criteria see the electronic supplementary material
(ESM).

Inclusion criteria

Mechanical ventilation for longer than 48 h, presence of
at least one risk factor known to be associated with CIPM,
and clinical suspicion of CIPM indicated by a score less
than 48 in the Medical Research Council (MRC) scale
assessed in 12 muscle groups [28].

NAVA methods

NAVA was used as previously described [11, 16, 22, 24,
25, 29]. Briefly, the EAdi was derived via a modified
nasogastric feeding tube (Maquet, Solna, Sweden), pro-
cessed [11, 15, 30–32], multiplied by an adjustable
proportionality constant (NAVA level), and used to con-
trol Paw delivered by the ventilator (Servoi 3.02.01,
Maquet, Solna, Sweden).

Study protocol

Patients were studied in supine position with their head
elevated by 30�. Sedation targets according to the Rich-
mond agitation sedation scale (RASS) [33] were
prescribed by the clinical team. A schematic study pro-
tocol is provided in Fig. E1 (ESM).

Electrophysiological studies

Peripheral nerve conduction and direct muscle stimulation
studies were performed before initiation and after com-
pletion of the NAVA trial using procedures previously
described [34]. The phrenic nerve was stimulated supra-
maximally with surface electrodes at the posterior edge of
the sternocleidomastoid muscle in expiration [35]. CMAPs
of the diaphragm were recorded using the electrodes of the
nasogastric feeding tube. The most proximally located
electrode served as the reference. The electrode depicting
the largest CMAP was chosen as the active electrode.
Latencies and amplitudes of the maximal CMAP were
analyzed off-line. Normal values using the same equipment
and technique were established in 14 healthy volunteers.

Baseline measurements and implementation of NAVA

Baseline measurements were performed using the ventilator
settings prescribed by the clinical team. NAVA was used for a
maximum of 72 h. Steps 1–3 were performed daily.

Step 1: NAVA level titration

A NAVA level titration was performed as previously
described [22–24]. Briefly, the NAVA level was reduced
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to a minimum of 0 cmH2O/lV (NAVAzero), resulting in
virtually no assist. When EAdi had stabilized at a maxi-
mum, the NAVA level was increased every 20 s in steps
of 0.1 cmH2O/lV. During the entire titration, the trend
graphs for Paw and Vt displayed on the ventilator screen
were observed. Using the same procedure, we previously
described a characteristic two-phased response, i.e., a
transition from an initial steep increase in Paw and Vt (1st
response) to a less steep increase in Paw and Vt (2nd
response) [22–24]. On the basis of the interpretation that
the patients’ response pattern would reflect a transition
from an insufficient assist level (1st response) to an assist
level that meets the subject’s respiratory demand (2nd
response) [23], a NAVA level early after the transition
from the first to the second response was identified by
visual inspection of the Paw and Vt trend graphs and was
termed adequate assist level (NAVAal).

Step 2: standardized test of neuro-ventilatory efficiency
(NVET)

Neuro-ventilatory efficiency refers to the relation between
the patient’s neural inspiratory effort and the resulting tidal
volume (Vt/EAdi). Standardized NVETs were performed
daily while withholding administration of sedative drugs as
part of routine care. Throughout all NVETs an inspiratory
assist of 7 cmH2O (or 3 cmH2O if tracheotomized) was
applied. Each NVET lasted for a maximum of 60 min or
was terminated earlier when discontinuation criteria as
suggested by MacIntyre et al. were fulfilled [36].

Step 3: implementation of NAVAal

NAVAal as identified in step 1 was implemented until re-
titration on the next day. Another mode of ventilation was
only used if administration of neuromuscular blocking
agents was required or if signs of respiratory failure were
detected. Standard procedures, nursing, and physiother-
apy were not restricted during the study.

Measurements

Paw, airflow, and EAdi were recorded continuously during all
NAVA level titrations and during all NVETs, and every 6 h
during application of NAVAal. Arterial blood gases were
measured twice a day. The amount of sedatives administered
was recorded for 48 h prior to and during NAVA.

Data analysis and calculated variables

Breath-by-breath analysis was performed off-line using
custom-made software (Neurovent Research Inc., Toronto,

Canada) as previously described [24]. For interindividual
comparison, EAdi is expressed for each patient as a per-
centage of the maximum inspiratory EAdi at the lowest
NAVA level during the titration (%NAVAzero).

Statistical analysis

Statistical analysis was performed with SigmaStatTM

(version 3.11, Systat Software Inc., San Jose, CA). Data
are presented as mean ± SD or median (range) as indi-
cated by assessment of normal distribution (Kolmogorov–
Smirnov test). Repeated measurements were analyzed
using one- or two-way analysis of variance (ANOVA) or
ANOVA on ranks. For two-way ANOVA a between-
group factor was chosen as indicated and time was the
repeated-measures factor. Tukey’s method was used for
post-test, pairwise multiple-comparison procedures.
Groups with paired data were compared with the t test or
Wilcoxon signed-rank test. A p value less than 0.05 was
considered significant.

Results

Fifteen patients (age 66 [44–80] years; 7 females;
APACHE II 19 [10–45]) with clinically suspected CIPM
(Table 1) and 14 healthy volunteers who reported no
neuromuscular disease were studied. Patients stayed in
the intensive care unit for 29 (10–188) days, and were
ventilated for 6 (2–25) days prior to enrolment and for 25
(7–185) days in total.

NAVAal was identified and successfully implemented
in 13 patients. In patient no. 10 NAVA was terminated
after 6.5 h because of high respiratory drive that could not
be sufficiently suppressed by increasing the NAVA level,
resulting in excessively high Paw and progressive respi-
ratory distress. In patient no. 15 NAVA was terminated
after 16 h because of diaphragm myocloni that repeatedly
triggered the ventilator’s backup mode. These two
patients are not included in the analysis of repeated
measurements. One patient was transferred to another
hospital after 37 h on NAVAal and was lost to follow-up
(data included in the analysis).

Electrophysiological studies

At both examinations, motor nerve studies from the
median and peroneal nerves showed CMAP amplitudes
lower than normal, whereas nerve conduction velocities
were within normal limits. Sensory nerve action poten-
tials from the median and sural nerves were severely
abnormal or even absent in all patients. Screening for
neuromuscular transmission defects by repetitive

1953



T
a

b
le

1
P

at
ie

n
t

ch
ar

ac
te

ri
st

ic
s

P
at

ie
n

t
n

o
.

G
en

d
er

A
g

e
(y

ea
rs

)
A

P
A

C
H

E
II

P
B

W
(k

g
)

D
O

IV
(d

ay
s)

M
ai

n
d

ia
g

n
o

si
s

M
R

C
b

ef
o

re
N

A
V

A

M
R

C
la

st
d

ay
o

n
N

A
V

A

P
re

ss
u

re
su

p
p

o
rt

(c
m

H
2
O

)

P
E

E
P

(c
m

H
2
O

)
P

aO
2
/

F
iO

2

P
aC

O
2

(m
m

H
g

)
V

t

(m
l/

k
g

P
B

W
)

R
R

(b
p

m
)

R
A

S
S

T
o

ta
l

h
o

u
rs

o
n

N
A

V
A

al

1
M

7
2

1
9

7
8

1
3

S
ep

ti
c

sh
o

ck
4

1
3

1
2

1
0

1
7

7
3

0
1

0
.1

2
5

–
4

5
1

.2
a

2
F

7
3

1
3

4
7

6
S

ep
ti

c
sh

o
ck

3
8

3
6

2
2

1
0

3
2

0
3

7
7

.5
2

6
0

6
1

.7
c

3
F

6
0

1
0

5
6

8
P

o
st

ca
rd

ia
c

su
rg

er
y

4
2

2
6

2
4

5
2

8
5

3
4

6
.3

3
0

0
5

7
.3

b

4
M

4
5

2
0

6
5

9
H

ea
rt

fa
il

u
re

3
8

5
6

2
0

1
0

1
6

4
5

8
8

.1
1

1
0

6
4

.3
a

5
M

7
4

2
4

6
5

3
S

ep
ti

c
sh

o
ck

3
6

3
6

1
6

5
2

2
7

5
4

5
.4

3
2

0
6

1
.3

a

6
F

6
3

1
0

4
2

6
P

o
st

ca
rd

ia
c

su
rg

er
y

1
8

3
2

1
8

1
0

1
4

0
3

6
6

.2
3

3
–

1
3

8
.6

b

7
M

6
6

1
6

6
5

3
D

el
ir

iu
m

1
2

3
6

1
5

1
5

1
0

6
2

9
1

1
.0

1
8

-
2

6
0

.9
c

8
F

5
7

2
7

5
1

5
S

ep
ti

c
sh

o
ck

2
4

3
6

1
4

5
3

0
0

3
6

1
3

.5
1

4
-

2
3

6
.8

d

9
M

7
1

1
9

7
4

4
S

ep
ti

c
sh

o
ck

4
3

2
1

5
7

2
3

3
2

9
9

.6
2

4
-

3
6

2
.4

c

1
0

F
5

1
1

7
6

5
2

S
ep

ti
c

sh
o

ck
1

8
4

8
2

4
1

0
1

5
4

3
7

8
.3

2
1

0
1

0
.3

e

1
1

M
4

4
3

6
6

3
1

3
P

an
cr

ea
ti

ti
s

2
8

3
4

2
8

1
0

2
8

9
2

8
1

2
.1

1
3

-
1

6
0

.5
c

1
2

M
6

2
2

3
7

4
1

4
S

ep
ti

c
sh

o
ck

3
2

3
8

2
0

5
2

6
5

4
2

7
.2

1
8

0
6

1
.5

c

1
3

F
6

6
2

3
6

0
4

A
b

d
o

m
in

al
ab

sc
es

s
3

6
0

1
8

8
1

8
5

3
6

7
.3

1
7

-
1

5
3

.8
c

1
4

F
7

7
1

8
6

0
6

P
an

cr
ea

ti
ti

s
3

6
3

6
2

8
1

0
1

3
0

6
2

6
.2

1
6

-
1

6
1

.0
c

1
5

M
8

0
4

5
6

9
2

5
B

il
at

er
al

p
n

eu
m

o
n

ia
0

0
2

4
5

1
6

2
3

7
7

.1
2

5
-

5
1

6
.0

e

B
ef

o
re

im
p

le
m

en
ti

n
g

N
A

V
A

,
v

en
ti

la
to

r
se

tt
in

g
s

fo
r

p
re

ss
u

re
su

p
p

o
rt

(P
S

V
)

an
d

fo
r

p
o

si
ti

v
e

en
d

-e
x

p
ir

at
o

ry
p

re
ss

u
re

(P
E

E
P

)
w

er
e

u
se

d
as

d
efi

n
ed

b
y

th
e

tr
ea

ti
n

g
p

h
y

si
ci

an
A

P
A

C
H

E
II

ac
u

te
p

h
y

si
o

lo
g

y
an

d
ch

ro
n

ic
h

ea
lt

h
ev

al
u

at
io

n
sc

o
re

,
P

B
W

p
re

d
ic

te
d

b
o

d
y

w
ei

g
h

t,
D

O
IV

d
ay

s
o

n
in

v
as

iv
e

m
ec

h
an

ic
al

v
en

ti
la

ti
o

n
b

ef
o

re
en

ro
lm

en
t,

M
R

C
M

ed
ic

al
R

es
ea

rc
h

C
o

u
n

ci
l

(M
R

C
)

sc
al

e
as

se
ss

ed
in

1
2

m
u

sc
le

g
ro

u
p

s
(m

ax
im

u
m

6
0

p
o

in
ts

;
C

IP
M

is
li

k
el

y
w

it
h

a
M

R
C

sc
o

re
\

4
8

;
an

M
R

C
o

f
ze

ro
in

d
ic

at
es

th
at

n
o

m
u

sc
le

m
o

v
em

en
ts

w
er

e
o

b
se

rv
ed

)
[2

8
],

D
a

y
0

d
ay

b
ef

o
re

im
p

le
m

en
ti

n
g

N
A

V
A

,
L

a
st

d
a

y
la

st
d

ay
o

n
N

A
V

A
,

P
a

O
2

ar
te

ri
al

o
x

y
g

en
te

n
si

o
n

,
F

iO
2

fr
ac

ti
o

n
o

f
in

sp
ir

ed
o

x
y

g
en

,
P

a
C

O
2

ar
te

ri
al

ca
rb

o
n

d
io

x
id

e
te

n
si

o
n

,
V

t
ti

d
al

v
o

lu
m

e,
R

R
re

sp
ir

at
o

ry
ra

te
,
R

A
S

S
R

ic
h

m
o

n
d

ag
it

at
io

n
se

d
at

io
n

sc
al

e
sc

o
re

[3
3
],

N
A

V
A

a
l

ad
eq

u
at

e
le

v
el

o
f

n
eu

ra
ll

y
ad

ju
st

ed
v

en
ti

la
to

ry
as

si
st

a
S

u
cc

es
sf

u
l

ex
tu

b
at

io
n

d
u

ri
n

g
N

A
V

A
b

F
ai

le
d

ex
tu

b
at

io
n

d
u

ri
n

g
N

A
V

A
c

R
et

u
rn

to
P

S
V

af
te

r
co

m
p

le
ti

n
g

N
A

V
A

d
L

o
st

to
fo

ll
o

w
-u

p
e

T
er

m
in

at
io

n
o

f
N

A
V

A
an

d
re

tu
rn

to
P

S
V

w
it

h
in

th
e

fi
rs

t
2

4
h

d
u

e
to

ex
ce

ss
iv

e
re

sp
ir

at
o

ry
d

ri
v

e
(p

at
ie

n
t

1
0

)
an

d
d

ia
p

h
ra

g
m

m
y

o
cl

o
n

i
(p

at
ie

n
t

1
5

)

1954



stimulation at 3 Hz of the median nerve with recording
from the abductor pollicis brevis muscle was normal in all
patients. Electromyography of the brachioradialis and
tibialis anterior muscle revealed fibrillation potentials and
positive sharp waves in 3 patients at baseline and in 10
patients at follow-up. Additionally, for the brachioradialis
muscle direct muscle stimulation and calculation of the
ratio of the nerve and muscle evoked CMAP were per-
formed [34]. In all patients ratios were between 0.7 and
1.0 in both examinations. The electrophysiology findings
indicate that CIPM was present in all patients.

Latencies and amplitudes of diaphragm CMAP in
healthy volunteers and in patients are given in Fig. 1.
CMAP latency was 5.2 ms (4.4–7.0, right side) and
6.2 ms (5.1–7.4, left side) in healthy volunteers and
7.6 ms (5.5–10.0) in CIPM patients at baseline (p \ 0.001
vs. both sides in volunteers). CMAP amplitude was
0.9 mV (0.4–1.6, right side) and 0.7 mV (0.4–1.6, left
side) in healthy volunteers and 0.2 mV (0.1–0.5) in CIPM
patients at baseline (p \ 0.001 vs. both sides in volun-
teers). Both parameters remained unchanged at follow-up
in patients.

Changes observed during NAVAal

In 13 patients NAVAal was implemented for a total of 61
(37–64) h. Changes in cardio-respiratory parameters and

clinical scores observed during NAVAal are given in
Table 2, and Figs. 2 and E2 (ESM).

NAVA level titrations

Figure 3 depicts a typical example of a NAVA level
titration. Such a titration was performed in 15, 13, 11, and
10 patients at 0, 24, 48, and 72 h, respectively (Fig. E3,
ESM). Vt and Paw did not change whereas EAdi further
decreased after reaching NAVAal despite substantial
increases in the NAVA level (Table E1, ESM). In those
11 patients who had a NAVA level titration procedure at
the beginning of each of the three study days, NAVAal
was 1.4 (1.2–2.2) cmH2O/lV at 0 h, 1.7 (1.4–2.3)
cmH2O/lV at 24 h, and 1.6 (1.4–2.5) cmH2O/lV at 48 h
(p = 0.332).

Implementation of NAVAal

From the first to the last measurement on NAVA, PaO2/
FiO2 increased (p = 0.007), while Vt, RR, mean inspira-
tory EAdi, mean inspiratory Paw above PEEP, Vt/EAdi,
PaCO2, heart rate, and mean arterial pressure remained
unchanged (p [ 0.05 for all) (Table 2).

The average Vt during the entire NAVA period was
6.5 (3.7–14.3) ml/kg predicted body weight (PBW) and

Pat 1, left

Pat 2, left

Pat 3, left 

Pat 4, right

Pat 5, left
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Fig. 1 Compound muscle action potentials (CMAP) of the dia-
phragm were recorded using the electrodes of a modified
nasogastric feeding tube after transcutaneous, cervical stimulation
of the phrenic nerve. Phrenic nerve latency (PNL) and CMAP
amplitude were determined off-line. Each data point represents the
average of three measurements. For each patient, the side of

cervical stimulation is indicated in the symbol legend (left or right).
Normal values were established in 14 healthy volunteers. PNL was
higher and CMAP was lower in our group of 15 patients with
established critical illness-associated polyneuromyopathy (CIPM)
compared with healthy volunteers. There was no change over time
for both parameters in CIPM patients
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was positively correlated with both CMAP latency (r2 =
0.305; p = 0.033) and CMAP amplitude (r2 = 0.715;
p = 0.002) at baseline (Fig. 4). The electrical energy

expenditure, a parameter reflecting the respiratory drive
spent to generate minute ventilation, did not change
during implementing NAVAal. PEEP was 9.7 (4.8–
14.7) cmH2O when starting NAVAal and remained
unchanged at 9.0 (5.7–16.0) cmH2O during the last
measurements on NAVAal (p = 0.25).

During NAVA the MRC score increased, while the
SOFA score decreased, and RASS, GCS, and CAM–ICU
remained unchanged (Table 2).

In those patients that received fentanyl, propofol, or
midazolam during the 48 h preceding and/or during
NAVA the amounts were less during NAVA for fentanyl
(n = 13; 163 [0–437] lg/patient per day before NAVA
and 92 [0–229] lg/patient per day during NAVA) and for
midazolam (n = 7; 5 [0–15] mg/patient per day before
NAVA and 0 [0–4] mg/patient per day during NAVA),
and were equal for propofol (n = 13, 125 [0–8,640] mg/
patient per day before NAVA and 133 [0–4,800] mg/
patient per day during NAVA).

Neuro-ventilatory efficiency tests

NVETs were performed daily in all patients. Vt/EAdi

decreased during the first NVET, from 1.1 ± 0.6 to
0.9 ± 0.4 ml/kg PBW/lV, while it increased from
0.9 ± 0.6 to 1.0 ± 0.8 ml/kg PBW/lV during the last
NVET performed (p = 0.048; ANOVA time–group
interaction) (Table 3). Changes in Vt, RR, and Paw above
PEEP were not different between the first and last NVET.
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Fig. 2 Changes in tidal volume
(Vt), respiratory rate, mean
inspiratory airway pressure
(Paw) on top of positive end-
expiratory pressure (PEEP), and
maximal inspiratory electrical
activity of the diaphragm (EAdi)
when implementing NAVA for
72 h. Vt and mean inspiratory
Paw on top of PEEP decreased,
while respiratory rate and EAdi

increased when switching from
PSV to NAVA. All parameters
remained unchanged when
NAVA was implemented for a
maximum of three consecutive
days

Fig. 3 NAVA level titration in patient no. 11 at baseline. The
method used to identify an adequate NAVA level (NAVAal) during
systematic increases in the NAVA level has been described
previously [22–24]. Briefly, the NAVA level was first reduced to
a minimal level of 0 cmH2O/lV (NAVAzero), resulting in virtually
no assist and in an increase in the EAdi. When EAdi had stabilized
at a maximum, the NAVA level was increased every 20 s in steps
of 0.1 cmH2O/lV. A NAVA level early after the transition from an
initial steep increase in Paw and Vt (1st response) to a less steep
increase in Paw and Vt (2nd response) was identified by visual
inspection of Paw and Vt trend graphs displayed on the ventilator
screen, and was termed adequate assist level (NAVAal)
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The proportion of unsuccessful NVETs was 4/15 at
0 h, 5/13 at 24 h, 3/10 at 48 h, and 1/8 at 72 h. Seven
patients were not extubated despite successful NVETs
due to an impaired level of consciousness (GCS \ 9;
n = 3) or due to a high level of PEEP (n = 4). Five
patients were liberated from mechanical ventilation dur-
ing the study, two of whom required re-intubation within
48 h due to progressive respiratory failure.

Discussion

The present study demonstrates for the first time that
central respiratory response is adequate such that NAVA
can be safely applied for up to 3 days in critically ill
patients with established CIPM including phrenic nerve
neuropathy.

CIPM was present in all our patients as evidenced by
reduced MRC scores and the electrophysiology studies.
Our results for both PNL and CMAP in healthy subjects
and critically ill patients are comparable to those of

previous studies [6–10, 35, 37–40]. Although group mean
values in our patients were higher for PNL and lower for
CMAP compared with healthy volunteers, the data over-
lapped between the groups, supporting previous findings
that the phrenic nerve–diaphragm unit might be affected
to a variable degree in patients with CIPM [41, 42].

Vagally mediated, lung-protective reflexes play a
major role in modulating respiratory drive [43–46].
Despite impaired neural function in our patients, the EAdi

was progressively downregulated via neural feedback
control when the NAVA level was increased, resulting in
a characteristic two-phase response in Vt and Paw that
allows for identification of NAVAal, as previously
described in animals and humans [22–25]. At NAVAal,
the EAdi amplitude averaged about 10 lV and was
reduced to approximately 70% of the values observed
when only minimal assist was applied (i.e., at
NAVAzero).

The positive correlation between Vt and parameters of
phrenic nerve function, i.e., PNL and CMAP amplitude,
may provide indirect evidence that the neural feedback
system is progressively impaired in relation to the degree

r2 = 0.305
p = 0.033
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Fig. 4 Relationship between
individual average tidal volume
(Vt) during NAVA and the
phrenic nerve compound
muscle action potential
(CMAP) latency (PNL) and
amplitude. The average Vt

during NAVA ranged from
roughly 4 to 9 ml/kg PBW
(except in one patient), and was
correlated to both PNL and
CMAP amplitude. This may
indicate that feedback control of
Vt during NAVA is, to a limited
extent, influenced by the degree
of phrenic neuropathy

Table 3 Changes in neuro-ventilatory parameters during standardized tests of neuro-ventilatory efficiency (NVET)

n = 12 Start of NVET End of NVET MANOVA time–group interaction

Vt/EAdi (ml/kg PBW/lV) First NVET 1.1 ± 0.6 0.9 ± 0.4 p = 0.048
Last NVET 0.9 ± 0.6 1.0 ± 0.8

Tidal volume (ml/kg PBW) First NVET 6.2 ± 2.6 6.6 ± 2.4 p = 0.749
Last NVET 5.6 ± 1.3 6.0 ± 1.5

Respiratory rate (breaths/min) First NVET 33 ± 18 30 ± 11 p = 0.345
Last NVET 30 ± 10 31 ± 10

Mean insp. Paw above PEEP (cmH2O) First NVET 4.8 ± 1.8 4.7 ± 1.9 p = 0.244
Last NVET 4.9 ± 1.8 4.6 ± 2.6

Changes observed during the first and the last available standard-
ized tests of neuro-ventilatory efficiency (NVET) on pressure
support ventilation (PSV). Throughout the NVETs an inspiratory
assist of 7 cmH2O (or 3 cmH2O if tracheotomized) was applied

Vt tidal volume, PBW predicted body weight, Paw airway pressure,
EAdi electrical activity of the diaphragm, PEEP positive end-
expiratory pressure, MANOVA multivariate analysis of variance
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of severity of polyneuropathy. However, the fact that
during NAVAal our patients chose a Vt within boundaries
that are conventionally regarded as lung protective (i.e.,
4–9 ml/kg PBW, except for one patient), displayed high
Vt variability, kept their RR(neural) stable, controlled
PaCO2 levels, improved oxygenation, and maintained the
EAdi at the titrated level, indicates that vagally mediated
feedback to the respiratory centers was sufficiently pre-
served to use NAVA.

The physiological response during the titration proce-
dures that was similar to what we found in a general
population of critically ill patients [22] and the stability
during prolonged implementation of NAVAal without
evidence of progression to respiratory failure, indicate that
NAVA can be safely applied in patients with CIPM.
Indeed, individual titration of the assist to a level that
maintains muscular function at a comfortable level at all
times without inducing fatigue may portend the potential to
condition respiratory muscles and hence prevent or atten-
uate ventilator-induced respiratory muscle dysfunction.

Similar to our previous work [22–25], increasing the
NAVA level above NAVAal reduced, but did not abolish,
EAdi, while the Vt (and hence the transpulmonary pres-
sure) remained constant over a wide range of NAVA
levels. Thus, the patient-controlled limitation of Vt with
NAVA may also help in reducing the propensity for
ventilator-induced lung injury, as recently shown in ani-
mals and patients with acute respiratory distress syndrome
(ARDS) [20, 47].

Although the majority of our patients were given
lower doses of analgesic and sedative drugs during
NAVA compared with the preceding PSV period, this
might be due to improvement in the patients’ condition
and not necessarily to the mode of mechanical ventilation.
Additional work is required to determine how improved
patient–ventilator interaction impacts other aspects of
treatment.

NAVA was prematurely terminated in two patients
because of suspected uncoupling between respiratory
motor output and respiratory demand and because of
diaphragm myocloni, illustrating that NAVA might not be
suitable for all patients at all times. Conditions associated
with excessively high CO2 production or with disturbed
function of breathing centers may result in overexertion of
the sensomotor feedback system that controls EAdi, and
may temporarily require an alternative approach [48] or
more controlled modes of ventilation until resolution.

Standardized neuro-ventilatory efficiency tests

The ratio between Vt and EAdi during NAVA reflects the
conversion of respiratory drive into tidal ventilation [24].
In the present study, Vt/EAdi decreased during the first
NVET, whereas it slightly increased during the last NVET.

The clinical relevance of the neuro-ventilatory effi-
ciency index is that an increase of the index over time
indicates that a patient is able to generate more Vt for a
given respiratory drive whereas a decrease in the index
over time suggests the opposite. Both components of the
index are easily available: Vt is calculated by all mechan-
ical ventilators and the EAdi can be reliably acquired using
a modified nasogastric feeding tube [22, 49]. In contrast,
continuous monitoring of the various components of
respiratory system mechanics and respiratory muscle load
is not straightforward. Clearly, our index simply indicates
that a patient improved or worsened the efficiency in
converting electrical neuromuscular activity into tidal
ventilation, but does not discriminate between contributing
factors such as changes in respiratory muscle force or load,
in respiratory system mechanics, in chest wall configura-
tion, in intrinsic PEEP, and in gas tension. Thus, without
additional information, changes of the index alone do not
allow one to draw conclusions about which combination of
factors has been affected and caused the change.

Since a constant level of assist was delivered during all
NVETs, our results reflect either an improvement of the
respiratory neuromuscular function or a decrease in the
respiratory load over time. We did not assess respiratory
system mechanics, but a relevant change in the respiratory
load during the NVET seems unlikely. Although the
changes of Vt/EAdi over time during the first and last
NVET differed statistically significantly, the magnitude of
the changes was small. Further work is required to confirm
our results and to evaluate NVET as a weaning predictor.

Limitations

We did not assess inspiratory pressure generation in our
patients and are hence unable to determine the extent of
respiratory muscle weakness and its eventual association
with increased PNL and reduced CMAP amplitude. Luo
et al. [39] found a positive correlation between twitch Pdi

and CMAP amplitude (but no relationship between twitch
Pdi and PNL). In another study, CMAP has been suggested
to reflect the number of diaphragmatic muscle fibers that
can be activated by phrenic nerve stimulation [50].

Conclusions

Our results suggest that the respiratory center’s output is
accurate and vagally mediated reflexes are sufficient in
most critically ill patients with established CIPM, such
that implementation of NAVA for up to 3 days results in
stable cardiopulmonary function while preserving respi-
ratory drive. Our study confirms that NAVA efficiently
limits the risk of excessive assist delivery and patient–
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ventilator asynchrony, both frequently observed during
pneumatically controlled modes such as PSV. Whether
assessment of neuro-ventilatory efficiency helps inform
the weaning process requires further evaluation.
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