
Introduction

It is well known that high-strength ceramics require the
use of particles with sizes in the colloidal domain (0.1–
1 lm), so as to reduce the density and defects and to
perform sintering at lower temperatures. Furthermore,
the particles should have a narrow size distribution, with
equiaxed shape, and be well dispersed (Carlström 1994).
However, the high surface-to-volume ratios character-
istic of such systems will lead to primordial role of
interfacial forces (electrical double layer repulsion, van
der Waals attraction, hydrophobic/hydrophilic interac-
tions) in the overall behavior of the ceramic slurry
(Bergström 1994).

In addition, the high concentration of the suspensions
used in the ceramic technology imparts them a highly

non-Newtonian rheological behavior, with viscoelastic
properties due to strong interactions between the parti-
cles (Buscall et al. 1982; Tadros 1996). The viscoelas-
ticity of the suspensions is hence controlled by such
quantities as the particle size and shape, the interparticle
interactions, and of course, the volume fraction, /, of
solids.

In the present work, such a study will be performed
on suspensions of spherical and quite monodisperse
particles of zirconium oxide (ZrO2), although, for com-
parison, results will also be shown on commercial zir-
conia of high chemical purity but with noncontrolled
geometry. In addition, we will consider all the interac-
tions that, according to the so-called extended DLVO
theory (Israelachvili 1992; van Oss 1994), may exist be-
tween two colloidal particles in suspension, namely: van
der Waals attraction, electrical double layer repulsion
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Abstract In this work, we study the
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and hydrophobic (hydrophilic) attraction (repulsion).
This model was used with some success in explaining the
yield stress of zirconia suspensions in a previous work
(Megias-Alguacil et al. 2000).

The potential energy of interaction between the par-
ticles can be related to experimentally accessible quan-
tities by means of the extended DLVO theory, which
considers three contributions to the interaction between
particles: electrostatic (EL), Lifshitz-van der Waals
(LW) and acid-base (AB) interaction. In this paper we
will follow the treatment developed by van Oss et al.
(1988; Good 1993) for the estimation of the latter type of
interaction and the Hamaker constant.

For spherical particles and low-surface potentials the
electrical interaction reads,

V EL ¼ 2pere0af2 ln 1þ expð�jHÞ½ � ð1Þ

where ere0 is the permittivity of the dispersed medium, a is
the radius of the particles, f the electrokinetic or zeta po-
tential, H is the surface-to-surface distance between parti-
cles and j is the reciprocal Debye length, calculated by:
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where ni is the concentration of type i ions (charge ezi),
kB is the Boltzmann constant and T is the absolute
temperature.

The LW attraction can be written as (Gregory 1981):

V LW ¼ �A
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where A is the Hamaker constant, which depends on the
characteristics of both medium. It has been demon-
strated (Visser 1972; van Oss et al. 1988) experimentally
that LW interactions are responsible of attractive
interaction energy between colloidal particles. For
spheres, the Hamaker constant is,

A ¼ 24 p H2
0 cLW12 ð4Þ

where H0 is the so-called equilibrium separation distance
between interfaces, whose best estimation yields
H0=(1.58±0.08) Å (van Oss et al. 1988), and c12

LW is the
LW contribution to the interfacial tension of the oxide
(material 1)/solution (material 2) system, that can be
written in terms of the LW contribution of the individual
materials to the surface free-energy (Fowkes 1963):

cLW12 ¼
ffiffiffiffiffiffiffiffi
cLW1

q
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Finally, the expression for the AB term is:

V AB ¼ �2p a k cAB
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ð6Þ

where k � 1 nm is the so-called correlation distance
between water molecules (Israelachvili 1992). The
parameter c12

AB, according to the formalism by van Oss et
al. (1988), can be related to the polar (or Lewis AB)
component of the interfacial tension between materials 1
and 2:
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where ci
+ and ci

) are, respectively, the electron-acceptor
and electron-donor components of the surface free-en-
ergy of material i.

Turning back to the rheological properties of a col-
loidal suspension, the dynamic or oscillatory tests are
one of the most important tools in the characterization
of the rheological properties of such systems due to the
capability in determining the elastic and viscous com-
ponents without a total destruction of the system
structure. A useful viscoelastic characterization is pro-
vided by the mechanical spectrum of the system, that is,
the behavior of both the elastic (G¢) and viscous (G¢¢)
moduli respect to the frequency at which the applied
shear-stress oscillates.

In many systems, it is found that when the oscillating
frequency becomes high enough the system cannot re-
spond to the oscillation and the elastic modulus shows a
plateau in its value. The average value of this plateau is
known as the high-frequency elastic modulus, defined as
(Brady 1993):

G01 � lim
x!1

G0ðxÞ ð8Þ

This elastic modulus at high frequency, G¢¥, can be
related to the interaction potential between particles
considering that if a small force is exerted on the system,
the deformation of the existing structure will also be
small (Tadros 1990, 1996). Variations in the position of
the particles will change as well the potential energy of
the system, and according to the treatment developed by
Zwanzig and Mountain, the high-frequency elastic
modulus expresses as (Zwanzig and Mountain 1965;
Mountain and Zwanzig 1966):

G01 ¼ qkT þ 2p
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where q is the particle density number, k is Boltzmann’s
constant, T is the absolute temperature, g(r) is the ra-
dial distribution function in the radial distance, r, and V
is the potential. This expression was first derived for
monoatomic fluids.
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Buscall et al. (1982), approximated the Zwanzig–
Mountain expression considering a crystalline structure
of the suspension. Under this assumption, the high-fre-
quency elastic modulus depends on the potential of
interaction between the particles as follows:

G01 ¼
3N/max

32R
@2V
@R2

� �

ð10Þ

where N is the coordination number which counts the
number of neighbors particle respect to a fixed one,
considered to be equal to 12 (Buscall et al. 1982; Tadros
1990); and /max=0.64 is the maximum packing fraction
of the particles for a random closing packing (Mewis
and D’Haene 1993; Quemada et al. 2002). R is the
center-to-center distance between particles (R=2
a + H) related to the volume fraction of solid dispersed
in the continuous phase by (Buscall et al. 1982; Tadros
1996; Raynaud et al. 1996):

R ¼ 2a
/max

/

� �1=3

ð11Þ

Special attention must be paid to the calculus of the
interparticle distance,R, at each volume fraction of solids
by means of Eq. 11. This expression is obtained by geo-
metrical considerations with hard spheres, but in our case,
it is necessary to take into account that there are surface
properties which must modify this expression. In fact, the
surface charge of the colloidal particles induces the
apparition of the described ionic double layer, and this
makes us consider as the particle size not the geometrical
but the hydrodynamic radius. Thus, the size of the particle
will depend on the Debye thickness of the double layer,
j)1, resulting in a new effective volume fractionof solids in
the suspension, /eff (Tadros 1996; Weiss et al. 1999;
Quemada et al. 2002; Sethumadhavan et al. 2002):

/eff ¼ / 1þ 1

ja

� �3
ð12Þ

This expression takes into account an effective par-
ticle radius, aeff = a+1/j. It is also possible to obtain
this particle effective size using a Barker–Henderson
approach (Barker and Henderson 1967):

aeff ¼
1
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Some other attempts were made to obtain models
involving a relationship between the high-frequency
modulus and the interparticle energy. Evans and Lips
(1990) proposed the following expression:

G01 ¼ nkBT þ N/max
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where n=3//4p a3 is the particle density number. This
equation was proposed initially for microgel dispersions
and then was used for suspensions of polymerically
stabilized particles at high concentrations (Costello et al.
1992; Berli et al. 2000).

A similar expression was obtained by Wagner (1993),
which neglects the kinetic term—first term on the right
hand side of Eq. 14—arising from the thermal motion of
the particles:

G01 ¼
N/max
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This expression was also obtained by van der Vorst et
al. (1995).

Bergenholtz et al. (1998a, b; Horn et al. 2000) pro-
posed a simplified perturbation model for calculating
the high-frequency modulus from the Zwanzig–Moun-
tain model, Eq. 9, in which was assumed that only
interactions with the nearest neighbor particles in a
disordered noncrystalline dispersion contribute to the
elasticity:

G01
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where aeff is the effective particle radius, and g(/) is the
Carnahan–Starling (1969) expression for the radial dis-
tribution function for /<0.5:

gð/Þ ¼ 1� /=2

1� /ð Þ3
ð17Þ

Materials and methods

Two kinds of ZrO2 have been used in this work: one was
commercially obtained (Aldrich) and the other was
synthesized in our laboratory as monodisperse spheres,
both of high purity.

The zirconia spherical particles were prepared fol-
lowing the homogeneous precipitation method described
by Aiken et al. (1990). The chemical products used in the
synthesis were: Zr(SO4)Æ4H2O (Alfa), polyvinylpyrroli-
dine PVP-40 (Sigma Chem.), urea and nitric acid (both
supplied by Panreac). The deionized water employed in
the preparation of the suspensions was produced in a
Milli-Q academic device.

TEM microphotographs showed that the synthesized
particles are spherical and considerably monodisperse,
with an average diameter of (540±20) nm. The com-
mercial particles had an average diameter of (300±50)
nm and no regular shape.
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Rheological measurements of the suspensions were
performed as a function of ionic strength, ranging in the
interval 10)5–10)1 M in sodium chloride (Fluka), and
volume fraction, up to approximately 20%, for both
kinds of particles in a controlled-stress rheometer Bohlin
CS-10 (England). The chosen measuring geometry to
carry our determinations out was a coaxial cylinders
Bohlin SSC25 device, whose inner and outer radii are,
respectively, (20.50±0.05) mm and (20.60±0.05) mm.
To avoid loss of material through evaporation, a cover
was coupled to the external jacket of the CS-10. Before
measuring, the samples were subjected to a preshear
process in order to establish the same initial conditions
for all the systems. The temperature at which all the
experiments were performed was thermostatically con-
trolled at (25.0±0.1)�C.

Due to the difficulties involved in synthesizing large
amounts of zirconia spherical particles, their rheology
was studied for different volume fractions of solids but
only at one single electrolyte concentration (10)3 M
NaCl).

For electrokinetic and interfacial characterization of
the particles, the electrophoretic mobility, le, was mea-
sured on dilute suspensions (/�10)4) in a Zetasizer 2000
(Malvern Instrum., England) at a constant temperature
of (25.0±0.1)�C. The effect of NaCl concentration on le

was analyzed, and the corresponding zeta potential was
obtained from those data using the theory of O’Brien
and White (1978). The contact angle technique was
employed for obtaining the surface free energy of the
solids. To that aim, glass microscope slides were uni-
formly covered with suspensions of ZrO2 particles (/
�0.1) in the presence of the corresponding electrolyte,
and left dry overnight at room temperature in a dessi-
cator, thus providing a smoothly uniform surface of our
solid. Microdrops of three probe liquids (water, form-
amide and diiodomethane) were placed on the dry solid
layer to measure the corresponding contact angles, h,
with a (Ramé-Hart 100-07-00, USA) goniometer.

The free-energy parameters of the solid were obtained
solving the Young equation (Adamson 1982; van Oss
1994) for three liquids of well-known parameters:

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cLW1 cLW2

q
þ 2

ffiffiffiffiffiffiffiffiffiffi
cþ1 c�2

q
þ 2

ffiffiffiffiffiffiffiffiffiffi
c�1 cþ2

q
¼ c2ð1þ cos hÞ

ð18Þ

where cLW, c+ and c) are, respectively, the LW, elec-
tron-acceptor and electron-donor components. The
subscript 1 corresponds to the solid phase and 2 to the
liquid phase.

The probe liquids used in this work were formamide
(cLW=39.9 mJ/m2 ; c+=2.28 mJ/m2 ; c)=39.6 mJ/m2),
diiodomethane (cLW=50.8 mJ/m2 ; c+ =c) =0 mJ/m2)
and water (cLW=21.8 mJ/m2 ; c+ =c)=25.5 mJ/m2).
The expressed values were taken from van Oss (1994).

Results and discussion

In order to determine the potential of interaction be-
tween particles using the extended DLVO theory, it is
necessary to determine experimentally the electropho-
retic mobility, le, and the contact angles of the probe
liquids on surfaces created with the ZrO2 particles at the
ionic strengths studied in this work. From these quan-
tities, measured as described in the Materials and
methods section, the total potential of interaction be-
tween the particles was calculated by means of Eqs. 1, 2,
3, 4, 5, 6, 7.

Table 1 displays the values of the measured le and
the corresponding data of zeta-potential, f, calculated
using the O’Brien and White theory (1978). Note that
the general behavior of the electrokinetic potential is as
expected for an indifferent electrolyte: f decreases with
the concentration of NaCl due to the double layer
compression (increased screening of the surface charge
due to the raising number of ions in the diffuse atmo-
sphere). Its value is positive, in agreement with the fact
that the isoelectric point (pH of zero zeta-potential) for
zirconia is located between pH=5.6 and pH=6.1 (Ai-
ken et al. 1990; Prica et al. 1996; Megias-Alguacil et al.
2000), and we worked at the natural pH (without further
adjustments) of the suspensions whose value, pH�4.6,
belongs to the positive branch.

In Table 2 are shown the surface free-energy com-
ponents of ZrO2, calculated with Eq. 18, after pretreat-
ment with the NaCl concentrations studied in this work.
The LW component is constant to within the experi-

Table 1 Electrophoretic mobility, le, and f-potential of both
synthetic and commercial ZrO2 particles for the different ionic
strengths

[NaCl]
(M)

Spheres Commercial powder

le
(lm s)1/V m)1)

f
(mV)

le
(lm s)1/V m)1)

f
(mV)

10)5 0.51±0.04 29.8 1.10±0.03 43.1
10)3 2.25±0.02 32.1 4.45±0.02 35.7
10)2 1.97±0.03 24.8 3.7±0.1 33.4
10)1 1.94±0.05 6.5 2.0±0.1 11.8

Table 2 Surface free-energy and AB components of zirconia for
the different NaCl concentrations

[NaCl]
(M)

c1
+ (mJ/m2) c1

) (mJ/m2) c1
LW (mJ/m2) c1

AB (mJ/m2)

10)5 0.26±0.01 50.6±0.6 49.2±0.2 )18.7±0.3
10)3 0.26±0.02 51.7±0.3 49.1±0.2 )19.4±0.3
10)2 0.15±0.04 55.2±0.2 49.0±0.2 )22.2±0.4
10)1 0.09±0.01 57.3±0.3 49.1±0.2 )23.9±0.4
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mental uncertainty; considering its average value, the
Hamaker constant, A, is obtained using Eq. 4 having a
value of (9.245±0.014)Æ10)20 J, which agrees with the
corresponding values for diverse inorganic compounds
(Prica et al. 1996). The electron-acceptor component,
c1
+, is close to zero in all conditions studied, and so,
zirconia is like most other inorganic materials (e.g., silica
and alumina) a monopolar electron-donor solid (Chi-
bowski 1992; Plaza et al. 1998). The treatment of the
solid with NaCl provokes changes only in c1

) : this
quantity increases in about 7 mJ/m2 when [NaCl] is
raised between 10)5 and 10)1 M. This behavior has been
ascribed to a particular ordering of water dipoles in the
vicinity of the surfaces when ionic concentration is high
enough (Chibowski et al. 1993).

Figure 1 shows the curves of the total potential en-
ergy of interaction, V(H), for the different ionic
strengths and both kinds of particles employed in this
work. It can be observed that: (1) curves corresponding
to spheres and commercial powder with the same elec-
trolyte concentration, 10)3 M, are quite close (the sep-
aration of the curves comes from the different particle
size) and follow the same trend, as expected; (2) the
arrangement of the curves as a function of NaCl con-
centration, at a fixed distance H, shows less positive V
values as the ionic strength becomes higher, as a con-
sequence of a decreasing zeta-potential with [NaCl]
(Table 1) which leads to smaller repulsive electrical
components of the potentials; (3) the curve corre-
sponding to the smallest electrolyte concentration,
[NaCl]=10)5 M, shows a minimum of positive value at
a short distance between the surfaces of neighbor par-

ticles which is a consequence of the overlapping of the
electrical double layers.

In order to measure the mechanical spectra of the
suspensions, previous determinations of the viscoelastic
linear region were carried out (Megias-Alguacil 2004).
These tests let us to choose the value of shear-stress
(belonging to this linear region) to apply in the oscillo-
gram, which ensures a nondestructive measurement of
the structure of the system as well as a shear-indepen-
dence of the dynamical functions. Under this consider-
ation, frequency sweeps were carried out with the
suspensions considered, applying the whole range in
frequency, f, available for our rheometer, 10)2–102 Hz.
Figures 2 and 3 show the elastic, G¢, and viscous, G¢¢,
moduli for zirconia suspensions (spheres and commer-
cial powder, respectively) as a function of the solid
concentration, /, at an electrolyte concentration
[NaCl]=10)3 M. In all the cases, the suspensions ini-
tially show a frequency-dependant response to the
oscillating shear-stress. At low frequencies the structure
of the suspension is able to relax during the oscillation
period and dissipates most of the energy supplied during
the cycle (G¢¢>G¢); but as the frequency increases, the
dissipation of the energy is less and less effective, until
the oscillation is so fast that the structure of the system is
not able to relax because it can not react to the oscilla-
tion, consequently, most of the energy delivered by the
stress is stored and the system response is predominantly
elastic (G¢>G¢¢). In terms of the dynamical function G¢,
this means that after a continuous increasing of its val-
ues, the elastic modulus reaches a steady frequency-
independent plateau, the so-called high-frequency
modulus, G¢¥.

Fig. 1 DLVO potential energies of interaction (dimensionless by
factor kB T) as a function of the surface-to-surface distance
between particles, H, for both commercial and spherical particles at
the ionic strengths indicated

Fig. 2 Elastic (solid symbols) and viscous (open symbols) moduli of
commercial zirconia suspensions as a function of the frequency, f,
of the applied shear-stress at an ionic strength of 1 mM NaCl, for
the different volume fractions

178



Figure 4 shows the experimental data of the high-
frequency modulus (obtained as the averaged values of
the high-frequency plateaus like those shown in Figs. 2
and 3) as a function of the volume fraction, /, for the
different suspensions and both kinds of particles. As
expected, G¢¥ increases rapidly with / displaying a high
increment of the elasticity of the suspensions with the
concentration of solids; the presence of more and more
particles in the system leads to a closing arrangement of
them, thus featuring an increasing solid-like behavior.
On the other hand, not a clear impact of the electrolyte
concentration can be observed on G¢¥ in despite of the
more repulsive trend of V vs. H with the decreasing ionic
strength shown in Fig. 1. Also shown in Fig. 4 is the
corresponding power-law scalings of the high-frequency
modulus with respect to the volume fraction, which have
the form (Sonntag and Russel 1987; Patel and Russel
1989; Pons et al. 1995):

G0 ¼ k /m ð19Þ

where k is a constant and exponent m can be related to
flocculation processes (Liang et al. 1993). The values of
parameter m�4 (for all the cases studied here) are in
agreement with results for other inorganic colloids (Shih
et al. 1990: Rueb and Zukoski 1997); this value has been
related to a flocculated state of the suspension (Tadros et
al. 1993; Miano and Rabaioli 1994). The rheology of the
suspensions also suggests a partly flocculated state of the
suspensions. As seen from the frequency sweeps, like
those shown in Figs. 2 and 3, the crossover frequency
for G¢=G¢¢ is found to be around fc � 0.1 Hz, which
corresponds to a characteristic time of the order of 10 s.
On the other hand, the structural relaxation time � a2/
D0 (being D0 the Stokes-Einstein diffusion coefficient)
(Bergenholtz et al. 1998a, b) for both kinds of particles,
commercial and synthesized spheres, is in the order of
10)2 s. A simple calculation indicates that a floc size of
around 27 commercial particles and 11 spheres should
be necessary to match both times. This could explain the
high experimental values shown in Fig. 4.

After carrying out all the experimental determina-
tions explained above, the predicted values of the high-
frequency modulus can be calculated using the models
(named here ‘‘theoretical’’). For this purpose, the first
and second derivatives of the total potential of interac-
tion between the particles with respect to the distance
were calculated.

Let us notice that originally, the models expressed
above—Eqs. 10, 11, 12, 13, 14, 15—were developed
considering as the potential energy of interaction only
the repulsive electrical interaction, neglecting any other
contribution like the van der Waals attraction. Never-
theless, we try to consider a more realistic potential in
describing the interactions of colloidal particles by
means of the extended DLVO theory. The theoretical
values of the high-frequency modulus were calculated
with Eqs. 10, 15 and 16. Since the data obtained with the
model by Evans and Lips, Eq. 14, are numerically very
close to those calculated with the model by Wagner,
Eq. 15, we will not distinguish them in further discus-
sions for the sake of clarity.

Figure 5 shows the results of G¢¥ vs H for the dif-
ferent ionic strengths. Notice that the values from the
Bergenholtz model are also displayed as a function of H
for sake of comparison with the other models and the
experimental data, even when the interparticle distance
does not explicitly appear in Eq. 16.

When considering the models by Buscall, Eq. 10, and
Wagner, Eq. 15, it is found that quantitatively, the
experimental data are 2–3 orders of magnitude higher
than both sets of theoretical ones. Other authors also
found discrepancies in theory-experiment of at least one
order of magnitude (Costello et al. 1992; Weiss et al.
1999). In our case, the main reason for this disagreement

Fig. 3 Same as Fig. 2, but for synthesized spheres suspensions

Fig. 4 High-frequency values of the elastic modulus, G ¢¥ as a
function of the volume fraction of solids and the electrolyte
concentrations indicated

179



must be attributed to the low-volume fractions of the
suspensions, which leads to very long distances between
neighbor particles, and thus the magnitude of the po-
tential is small (Fig. 1).

As a general feature, we find that the values calcu-
lated with the model of Wagner are sensibly smaller than
the ones obtained with the model of Buscall and co-
workers. It is clear that this diminution in the numerical
values comes from the fact that the first derivative of the
potential of interaction between particles is negative for
all the experimental conditions considered in this work.
When considering the extended DLVO theory we find
that, for suspensions of spheres, the high-frequency
modulus values calculated with the models by Buscall
and Wagner do not follow a uniform decreasing trend
with respect toH as expected. This effect comes from the
fact that at the long distances between the particles
considered, the contribution of the LW component to
the potential is significative with respect to the repulsive
contributions, thus lowering the potentials.

Analogous behavior is found for the suspensions of
commercial zirconia particles for the case of electrolyte
concentrations 10)5 M and 10)3 M, although a better
agreement between the theoretical and experimental
data is found especially for the more concentrated sus-
pensions at 1 mM in NaCl, in which the values differs
just one order or magnitude.

For the other two ionic strengths, 10)2 M and
10)1 M in sodium chloride, the values of G¢¥ from the
models by Buscall and Wagner are always negative (not
plotted in the graph) since, in these cases, the potential is
decreasing faster with the distance between particles
because the smaller electrical repulsion and compression
of the double layer thickness (first derivative negative)
and convex (second derivative negative) after the mini-
mum induced by the LW component shown in Fig. 1.

This is not the case of the data calculated with the
model of Bergenholtz, which is able to offer a good
qualitative agreement with respect to the experimental
data (monotonic trend for the whole range of volume
fraction considered), and also quantitative for the most
concentrated suspensions, being these theoretical values
of the same order of magnitude than the experimental
data. The good description of the experiments with this
model may relay in the fact that for this model it is not
necessary to calculate an interparticle distance according
to a certain structure of the suspensions, but to the solid
concentration which is less susceptible to a particular
lattice selection. Unfortunately, a full matching between
Bergenholtz model values and experimental ones is not
observed due to possible flocculated states of the systems
which increase the rheometrical measurements.

Regarding the geometry of the particles, the Ber-
genholtz model is able to capture the more repulsive
potential, V(H), (Fig. 1) experienced by the spheres
with respect to the commercial particles at the same

electrolyte concentration (1 mM); indeed, the values
calculated from this model for the spheres (half-filled
diamonds in Fig. 5) are higher than those for the irreg-
ular commercial powder (half-filled circles).

The attractive component of the interparticle poten-
tial induces a poor agreement between the experimental
and theoretical data of G¢¥, and even more, makes
impossible to calculate them via the models of Buscall
and Wagner for the ionic strengths 10)2 M and 10)1 M
(which potentials are more influenced by this compo-
nent). These results support the idea that the elastic
behavior of the suspensions is mainly governed by
repulsive forces between the particles. Consequently, we
reconsider our first approach of using the total inter-
particle potential, and so, we restrict it to the repulsive
components of the potential V(H), taking into account
the electrical repulsion and the AB component which is
also repulsive for our ZrO2 (see Table 2), and neglecting
the van der Waals attractive component.

When recalculating the values with the models of
Buscall and Wagner in such a case, no negative values
for the theoretical G¢¥ are found in any conditions, as
well as a monotonic decreasing respect to the distance
between particles of solid for all the ionic strengths. The
values obtained with the models of Buscall and Wagner
are practically the same for [NaCl] £ 10)3 M. Figure 6
displays the data from the model of Buscall when con-
sidering just the repulsive components of the potential
together with the experimental ones, for comparison.

The values from those models show now a better
agreement with the experimental data for the suspen-
sions of spheres and commercial powder at 10)5 and

Fig. 5 High-frequency modulus as a function of the surface-to-
surface distance between particles at the different [NaCl]. Solid
symbols rheological data; open symbols Buscall and co-workers
model; cross symbolsWagner model; half-solid symbols Bergenholtz
and co-workers model
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10)3 M in NaCl. In addition, the models are able to give
positive values of G¢¥ for the highest ionic strengths (0.1
and 0.01 M), although with a considerable underesti-
mation of these data with respect to the experimental
ones for the less concentrated suspensions whose values
tend very fast to zero (not plotted in Fig. 6) when the
distance between particles increases. In such cases, the
explanation of this numerical disagreement comes from
the fact that the repulsive components of the interpar-
ticle potential decays very fast with the distance between
particles—due to the negative exponential in Eqs. 1 and
6—and so, when the concentration of solids is low this
repulsive potential is practically negligible, being this
effect more pronounced when the ionic strength in-
creases, due to the smaller values of the zeta potential
(Table 1). In addition, it must be mentioned that the
theoretical models from Buscall and Wagner were
developed for the case of high concentration of sterically
stabilized particles. In our case, the systems are not very
concentrated and thus the distance between the particles
is essentially high; moreover, the interactions between
our particles are mainly governed by electric interactions
in nature and some flocculation processes can occur
during the experimental time, producing an increase of
the values of the elastic modulus.

The model of Bergenholtz is less sensitive to reducing
the interparticle potential to the repulsive component
because the first derivative of the potential was already
evaluated at short distances, where the repulsive com-
ponent predominates. Nevertheless, the qualitative
agreement with the experimental values is also improved
(310–12%) in this case. The comparison with the values
obtained with the three models, Fig. 6, indicates that the

Bergenholtz one approaches much more to the experi-
mental data than the other two (Buscall and Wagner),
specially in the case of less-concentrated suspensions, in
which the later models show considerable disagreements
with respect to the experiments.

Conclusions

The high-frequency modulus of colloidal aqueous sus-
pensions of ZrO2 is experimentally measured as a
function of electrolyte concentration and volume of
fraction of particles. These data are compared to those
calculated using the models of Buscall and co-workers,
Wagner, and Bergenholtz and co-workers.

For the theoretical calculations, the extended DLVO
theory is considered for calculating the total potential of
interaction between particles in an attempt at applying
the most complete description on colloidal interactions.
In order to build the curves of potential, a full charac-
terization of the particles, both electrokinetic and sur-
face thermodynamics, is carried out, finding out that the
solid surface is positively charged and that the oxide is a
monopolar electron-donor material.

When using the extended DLVO in the theoretical
calculations, it is found that the model of Wagner gives
values smaller than the model of Buscall in all the cases.
Quantitatively, these theoretical values are 2–3 orders of
magnitude lower than the experimental ones, and in
addition, the inclusion of the attractive term of V(H) in
the calculations induces negative values of G¢¥ for the
highest electrolyte concentrations. On the other hand,
the model by Bergenholtz offers qualitatively acceptable
results in the whole range of volume fractions consid-
ered, and the quantitative agreement is found to be very
good for the most concentrated suspensions.

Restricting the interparticle potential to the repulsive
components, the new theoretical values calculated with
the models of Buscall and Wagner, improve the quali-
tative and quantitative agreement with respect to the
experimental data at the lowest ionic strength; but in the
cases of higher electrolyte concentrations, the divergence
with respect to the experimental data is still very pro-
nounced.

The main reason for such a quantitative disagreement
is the low solid concentrations involved, which leads to
high interparticle distances, and thus to small values of
the potential of interaction between them, and also to
partly flocculated states of the suspensions which in-
creases the experimental values and make their micro-
structure to be different from that assumed by the
models: ordered (Wagner and Buscall and co-workers
models) and fluid ordering (Bergenholtz and co-workers
model). Hence, we expect good correlations theory-
experiment in case of concentrated suspensions with

Fig. 6 G ¢¥ vs H considering only the repulsive component of the
potential in the models calculations. Solid symbols experimental
data; open symbols Buscall and co-workers model; half-solid
symbols Bergenholtz and co-workers model
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strong repulsive interactions (low ionic strengths or
steric repulsions in colloids coated with polymers).
When neglecting the attractive van der Waals compo-
nent, the Bergenholtz and co-workers model slightly
improves its agreement with the experiments, also indi-
cating that the main factor responsible of the elasticity

of the systems is the repulsive component of the poten-
tial of interaction between the particles.
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