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Abstract Personal and ubiquitous healthcare applications

offer new opportunities to prevent long-term health dam-

age due to increased mental workload by continuously

monitoring physiological signs related to prolonged high

workload and providing just-in-time feedback. In order to

achieve a quantification of mental load, different load

levels that occur during a workday have to be discrimi-

nated. In this work, we present how mental workload levels

in everyday life scenarios can be discriminated with data

from a mobile ECG logger by incorporating individual

calibration measures. We present an experiment design to

induce three different levels of mental workload in cali-

bration sessions and to monitor mental workload levels in

everyday life scenarios of seven healthy male subjects.

Besides the recording of ECG data, we collect subjective

ratings of the perceived workload with the NASA Task

Load Index (TLX), whereas objective measures are asses-

sed by collecting salivary cortisol. According to the sub-

jective ratings, we show that all participants perceived the

induced load levels as intended from the experiment

design. The heart rate variability (HRV) features under

investigation can be classified into two distinct groups.

Features in the first group, representing markers associated

with parasympathetic nervous system activity, show a

decrease in their values with increased workload. Features

in the second group, representing markers associated with

sympathetic nervous system activity or predominance,

show an increase in their values with increased workload.

We employ multiple regression analysis to model the

relationship between relevant HRV features and the

subjective ratings of NASA-TLX in order to predict the

mental workload levels during office-work. The resulting

predictions were correct for six out of the seven subjects. In

addition, we compare the performance of three classifica-

tion methods to identify the mental workload level during

office-work. The best results were obtained with linear

discriminant analysis (LDA) that yielded a correct classi-

fication for six out of the seven subjects. The k-nearest

neighbor algorithm (k-NN) and the support vector machine

(SVM) resulted in a correct classification of the mental

workload level during office-work for five out of the seven

subjects.
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Mental workload � Office-work � Heart rate variability �
Stress

1 Introduction and motivation

Recently, the European Foundation for the Improvement of

Living and Working Conditions called the attention on

work-related stress that was associated with an increasing

number of mental disorders [8]. Work-related stress occurs

when there is a mismatch between job load and the capa-

bilities of the worker [23]. Since in the developed coun-

tries, the workplace has changed due to globalization, use

of new information, and communication technology,

mental workload is the dominant element in most jobs. If

high level of mental workload cumulates and recovery

fails, health problems such as chronic stress, depression, or

burnout can occur.

Continuous monitoring of mental workload offers new

opportunities to support preventing mental disorders and

maintaining mental health. Most of the existing studies try
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to discriminate a state of mental load from a resting con-

dition in a laboratory setting. In [1] and [21], two stress

factors were investigated under laboratory conditions: high

cognitive load under time pressure and social-evaluative

threat. In both studies, mild cognitive load was discrimi-

nated from a constant high-stress level. In [22] a mental

arithmetic task was used to induce mental workload and the

recovery patterns of physiological responses as indicators

of stress were investigated. Kim et al. [12, 13] studied heart

rate variability (HRV) features of subjects under chronic

stress. Subjects were divided into a high-stress group and a

low-stress group based on their self-reporting stress scores.

Henelius et al. [10] investigated the ability of short-term

HRV metrics to discriminate between low and high level of

mental workload.

Continuous monitoring of work-related stress or mental

workload is still in an exploratory stage. One example is

the ambitious research project ‘‘Mobile Heart Health,’’

which aims to detect early signs of stress triggered by

physiological or contextual changes [18]. The authors used

HRV as stress indicator and since individuals vary dra-

matically in their HRV values, they addressed the impor-

tance of an individually calibrated and adaptive system. It

was proposed that each subject’s baseline and stress

threshold should be established in a laboratory setting

using a protocol to alternately evoke stress responses that

can then be used to discriminate between stress and non-

stress in everyday life. However, an experimental evalua-

tion about the feasibility of discriminating mental workload

levels in everyday life scenarios by incorporating individ-

ual calibration measures is missing.

In our previous work [4], we already presented our first

steps toward monitoring of mental workload in daily life.

In this work, we present how mental workload levels in

everyday life scenarios can be discriminated by incorpo-

rating individual calibration measures. Since for an

‘‘everyday life application,’’ a minimal sensor setup is

desired for comfort reasons, we employ a single sensor

modality: a mobile system to measure heart rate (HR). The

analysis of the heart rate variability (HRV) was chosen,

because it represents a sensitive stress and mental load

measure by providing information about the activity of the

sympathetic and parasympathetic nervous system. In

addition to the above-mentioned works, numerous studies

reported the reliability of psychophysiological responses

induced by mental workload tasks [15, 19, 24, 25]. In this

work, we investigate HRV features in the time as well as in

the frequency domain.

1.1 Research contribution

The present study enhances the state of the art in two ways.

First, compared to other studies that mostly tried to

discriminate mental stress from a baseline condition, we

are investigating different levels of mental workload

occurring in everyday life. Second, we target the variation

of individual’s response to stress by calibration measures.

The reason behind is that recently the need to address

individual differences was highlighted. Morris et al. [18]

proposed to establish each subject’s baseline and stress

threshold in a laboratory setting by evoking sympathetic

and parasympathetic responses. In the presented study we

have actually implemented this proposal by designing and

performing a calibration procedure to measure each sub-

ject’s sympathetic and parasympathetic responses during

three different levels of mental workload (low, medium,

and high) in a laboratory experiment. By doing so, each

subject’s baseline and workload heart rate features were

established in a controlled laboratory setting. Afterward,

we have investigated whether the data collected in our

calibration session were appropriate to discriminate the

low, medium and high mental workload levels occurred

during a daily life scenario, i.e., office-work. For this, we

used the individual HRV responses of each workload level

to train our models and test the trained models on the data

collected while the subjects performed normal office-work.

In the following we first give an overview about the

measurement system. Then we describe our experiment

design to induce three different levels of mental workload

in calibration sessions and to monitor mental workload

levels in everyday life scenarios. Afterward we introduce

the data processing methods and finally we present and

discuss our results.

2 Data collection

2.1 Mobile ECG measurement

The physiological responses were measured with the

Zephyr BioHarness chest belt as depicted in Fig. 1. The

monitoring belt consists of three smart fabric sensors to

acquire cardiac activity, breathing rate and skin tempera-

ture [27]. The ECG data was sampled with 250 Hz. In

addition to ECG data, the chest belt provides RR intervals

by measuring the duration between two consecutive R

waves of the ECG.

2.2 Experiment

Seven healthy subjects participated in this study (age

between 25 and 34 years). Due to the effects of oral con-

traceptives and menstrual cycle phase on HRV, we decided

to restrict the sample to male subjects as it is common

practice in many biomedical studies related to stress or

cognitive load [14, 20].
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In a first step, a calibration setting was designed to

measure individual responses when confronted with three

levels of mental workload in a laboratory setting. In a

second step, mental workload levels in an everyday life

scenario were investigated. The purpose of the overall

experiment was to estimate each subject’s perceived mental

workload level occurred during a daily office-work by

employing the data obtained in the laboratory calibration

setting. Therefore, the overall experiment consisted of four

sessions: the first three sessions were designed to induce

three levels of mental workload in order to conduct an

individual calibration (the calibration conditions); in the

fourth session, subjects were monitored during 1 h of nor-

mal office-work (the office-work condition) that contained

working activities such as programming, and reading or

writing research papers. Subjects performed each session in

different days. The whole experiment ends up with 4.5 h of

data for each and 31.5 h of data for all subjects (calibration

condition lasts 1 h, and the office-work session takes one

and half hour including questionnaires and cortisol collec-

tion). The experimental procedure can be seen in Fig. 2.

Directly after each workload period in the calibration and

the office-work conditions, each subject was asked to indi-

cate his perceived workload by completing the NASA Task

Load Index (TLX) [9]. First, the subject had to rate each

workload phase with 6 items on a scale from 1 to 20 that best

indicate his experience in the task. The rating consists of the

following items: mental demand, physical demand, temporal

demand, own performance, effort, and frustration. Next, the

subject was asked to indicate which of the items represents

the most important contributor to the workload. Based on

these ratings, the total workload was computed as a weighted

average. In addition to subjective workload, saliva samples

were repeatedly collected with salivettes (Sarstedt, Sevelen,

Switzerland), in order to measure cortisol, an important

stress hormone indicating the activity of the hypothalamus–

pituitary–adrenal (HPA) axis [16]. Subjects had to chew the

salivettes for 1 min, immediately before and after each

workload period, during the office-work, and 15 min after

the completion of each condition (Fig. 2). Saliva samples

were stored at -20�C, before biochemical analysis was

conducted (Biochemical Laboratory, Dept. of Clinical Psy-

chology and Psychotherapy, University of Zurich, Zurich,

Switzerland). Saliva samples were centrifuged for 5 min at

3000 rpm and analyzed using an immuno-assay with time-

resolved fluorescence detection [7].

2.2.1 Calibration conditions: investigation of mental

workload levels

Since individual’s response to stress can vary to a huge

extend, Morris et al. [18] proposed to establish each sub-

ject’s baseline and stress threshold in a controlled labora-

tory setting. In this section, we present our implementation

of such a controlled calibration procedure. We have induced

three levels of mental workload and measured the individ-

ual responses with a mobile ECG system, NASA-TLX, and

saliva samples. Three sessions with low, medium, and high

workload were defined, while each session consisted of a

‘‘baseline,’’ ‘‘workload,’’ and ‘‘recovery’’ period. Subjects

performed each session on separate days in the afternoon, in

order to control for circadian rhythms, while the different

sessions were randomly assigned for each subject, in order

to avoid sequence effects and, therefore, to counterbalance

learning effects. Additionally, we recorded the individual

performance during each task. The baseline and recovery

periods were the same for the three sessions: the subjects

watched a relaxing documentary film in order to calm down.

The workload phases differed in the amount of induced

mental workload. We used three variants of the Dual

N-Back Task [2, 11] to induce low, medium, and high

mental workload as outlined in the following:

1. Position 1 Back (Low workload; very easy task with

visual stimuli): A square appears every 4.5 s in one of

eight different positions on a regular grid on the

screen. By using the keyboard, the subject has to

indicate, if the position of the currently shown square

is the same as the one that was presented just before

(1-back task). This kind of workload is comparable to

monotonous monitoring tasks, where the subject has to

sustain his attention at the same level.

2. Arithmetic 1 Back (Medium workload; easy task

with combined visual and auditory stimuli): An

integer number between 0 and 9 appears every 4.5 s on

the screen. For each number, a math operator (add,

subtract, multiply, or divide) is presented via an audio

message. The subject has to apply the math operation

on the currently shown number and the one that was

presented before (1-back task). The result of the

calculation has then to be entered on the keyboard.

This task reflects medium cognitive load, since the

Fig. 1 Zephyr BioHarness monitoring system
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subject has to memorize one number and to perform a

math task in the given time.

3. Dual Arithmetic 2 Back (High workload; demand-

ing task with combined visual and auditory stimuli):

In this mode, the two former position and arithmetic

tasks are combined. An integer number between 0 and 9

appears every 4.5 s in one of eight different positions on

a regular grid. For each number, a math operator (add,

subtract, multiply, or divide) is presented via an audio

message. The subject has to respond if the position of the

currently shown number is the same as the one that was

presented two positions back (2-back task). In addition,

the subject has to apply the math operation on the

currently shown number and the one that appeared 2

positions back. The result of the calculation has then to

be entered on the keyboard. An example of this task is

shown in Fig. 3. This task represents a high cognitive

load, since the subject has to memorize the position of a

prior value, compare it with a current value, and has to

perform a math task under time pressure.

2.2.2 Office-work condition: monitoring of mental

workload during office-work

During the office-work condition, the subjects performed

their daily office tasks for 1 h. In the baseline and recovery

periods, the subjects watched a relaxing documentary film

in order to calm down. After 20 min of workload and

directly after the completing the workload period, subjects

were asked to indicate their perceived workload by com-

pleting the NASA Task Load Index.

3 Data analysis

This section describes the employed data analysis methods.

In a first step, we preprocessed the ECG data and extracted

relevant time and frequency features from the RR interval

data. Afterward, we evaluated subjective and objective

measurements of mental workload and applied statistical

methods on the extracted features. Figure 4 illustrates

the complete data processing chain comprising the steps

of preprocessing, feature extraction, and application of

methods.

3.1 Preprocessing and feature extraction

For the analysis of the cardiac data, we first removed RR

intervals that differed more than 20% from their prede-

cessors in order to remove artifacts. Due to the high data

quality, for each subject less than 1% of the RR intervals

were removed. In the next step, we extracted time and

frequency domain features that were recommended by the

Task Force of the European Society of Cardiology and

North American Society of Pacing and Electrophysiology

[17]. In the present work, we calculated the following time

and frequency domain features following the guidelines of

the European Task Force:

Time Domain Features: The following eight com-

monly used time domain features were calculated: mean

value of the heart rate (Mean HR), standard deviation of the

heart rate (STD HR), mean value of the RR intervals (Mean

RR), standard deviation of the RR intervals (SDNN), root

mean square of successive difference of the RR intervals

Fig. 2 Experiment procedure

for calibration and office-work

sessions. A total of three

calibration sessions were

conducted which differed in the

level of induced workload: low,

medium, and high. The office-

work condition consisted of 1 h

of normal office working

activities. The subjective rating

of perceived workload was

assessed with the NASA-TLX,

whereas an objective

measurement was assessed by

collecting salivary cortisol at

particular points in time
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(RMSSD), the percentage of the number of successive RR

intervals varying more than 50 ms from the previous

interval (pNN50), the total number of RR intervals divi-

ded by the height of the histogram of all RR intervals

measured on a scale with bins of 1/128 s (HRV triangular

index), and triangular interpolation of RR interval histo-

gram (TINN).

Frequency Domain Features: The extraction of HRV

features in the frequency domain was done using the Lomb

periodogram since it does not require resampling of

unevenly sampled signals such as RR data [5]. We used

two frequency bands defined as follows: low frequency

(LF): 0.04–0.15 Hz and high frequency (HF): 0.15–0.4 Hz.

Next, we calculated the normalized values of LF, HF, and

LF/HF, which represents the relative value of each power

component in proportion to the total power minus the very

low frequency (VLF) component. In this work, we used the

ratio of LF and HF (LF/HF) as the frequency domain

feature of the HRV signal. The LF/HF ratio is known to be

an indicator for sympathovagal balance. High values

indicate the dominance of sympathetic activity, whereas

low values indicate a switch toward a dominance of para-

sympathetic activity.

3.2 Methods

In a first step, we investigated the subjective ratings of the

total workload obtained with the NASA Task Load Index

(subjective measure). We compared the individual ratings

of each calibration period to see, if the participants per-

ceived the induced workload levels as intended from the

experiment design. Next, we examined the relation

between each calibration period and the salivary cortisol

measures (objective measure). In addition, we analyzed the

individual task performance.

After evaluating the subjective and objective measures,

we divided the recordings of each subject and each experi-

ment condition (calibration and office-work) into the

experiment phases ‘‘baseline,’’ ‘‘workload,’’ and ‘‘recov-

ery.’’ Next, we calculated all HRV features for each phase of

the experiment. In order to test whether different workload

conditions (i.e., low, medium, and high) had any effects on

the outcome of HRV parameters, we compared extracted

features by using the analysis of variance (ANOVA) test. As

significance level, p \ 0.05 was considered.

After statistical analysis, we created data segments each

containing 2 min of data with 50% overlapping for

Fig. 3 Dual Arithmetic 2 Back Task was used to induce high mental

workload on subjects. An integer number between 0 and 9 appears

every 4.5 s in one of eight different positions on a regular grid. In

each step, a math operator (add, subtract, multiply, or divide) is

presented via an audio message. The subject has to respond if the

position of the currently shown number is the same as the one that

was presented two positions back. In addition, the subject has to apply

the math operation on the currently shown number and the one that

appeared 2 positions back

Fig. 4 Block diagram showing

the preprocessing, feature

extraction, subjective and

objective measurements, and

mental workload evaluation

steps
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‘‘baseline’’ and ‘‘workload’’ phases. In all segments, the

above-mentioned HRV features were computed. Since

each subject performed each experiment condition on four

different days (i.e., 3 days for low-, medium-, and high-

workload calibration, and 1 day for office-work), we

divided the features obtained during the workload periods

by the corresponding mean value of the baseline feature in

order to control for daily variations. In the following, we

denote these features as ‘‘relative features.’’

Our next goal was to develop a model based on the

calibration data that for a given 2-min RR signal (a) pre-

dicts the corresponding subjective workload score by using

relevant HRV features and (b) identifies the mental work-

load class (low, medium, or high) to which the new

observation belongs. For the first problem, we employed

multiple regression analysis to model the relationship

between HRV features and the subjective ratings of NASA-

TLX. In this work, the predictor variables are non-corre-

lated HRV features and the response variable is NASA-

TLX score. For the second problem, we employed and

compared the performance of three classification methods:

linear discriminant analysis (LDA), k-nearest neighbor

algorithm (k-NN), and SVM (with linear kernel). LDA and

k-NN algorithms were applied using MATLAB. The

classification results of the support vector machines (SVM)

were obtained using MATLAB Arsenal toolbox [26] that

encapsulates various classification algorithms and machine

learning packages such as WEKA or libSVM [3]. For the

SVM classification, we used the libSVM implementation

of the MATLAB Arsenal package with a linear kernel and

the default cost factor 1. For the multiple regression and all

three classification models, we used the entire ‘‘calibra-

tion’’ data as training set and ‘‘office-work’’ data as test set.

This means, the model parameters were estimated using the

‘‘calibration’’ data as observed data, and the predictions of

the ‘‘office-work’’ session has been done using these model

parameters for each subject.

4 Results

In the following, we first present the results of subjective

and objective measurement of mental workload. Then, we

present the achieved results of analysis of variance, mul-

tiple linear regression, and classification methods.

4.1 Subjective measurement of mental workload

Figure 5 shows subjective workload scores for each sub-

ject. It can be seen that all subjects perceived the induced

load levels by the three variants of the N-Back as intended

from the experiment design (ANOVA, p \ 0.001). Com-

pared to the calibration sessions, subjective workload

scores of the office-work session were ranked either

between low and medium (subjects 1, 3, 5, and 6) or

between medium and high (subjects 2, 4, and 7). A mul-

tiple comparison test between each group of workload

sessions revealed that subjective workload of the office-

work session differ significantly from low and high work-

load (p \ 0.001) but not from the medium workload

session (p = 0.88). The visualization of differences

between each group can be seen in Fig. 5 (right).

In order to see the variation of the perceived subjective

workload over time, we actually have asked the subjects to

fill out the self-assessment NASA questionnaire twice

(after 20 min and at the end) during one-hour office-work.

However, we applied the methods described in the previous

section using the NASA results obtained at the end of the

working session since the subjective assessments after

20 min were nearly the same like the ones obtained at the

end of the working session. This can be seen in Fig. 6.

Afterward, in order to assign the workload score of the

office-work into one of three classes (low, medium, and

high), we first defined individual boundaries for low-,

medium-, and high-workload levels according to the sub-

jective workload scores collected during the N-Back cali-

bration sessions. The workload score of the office-work

session for each subject was assigned according to the

following equations,

low\ðlowc þmediumcÞ=2

ðlowc þmediumcÞ=2�medium�ðmediumc þ highcÞ=2

high [ ðmediumc þ highcÞ=2

where lowc; mediumc; highc represent the subjective

scores of low-, medium-, and high-workload periods of the

calibration session for a particular subject. Individual

boundaries for low-, medium-, and high-workload classes

and the subjective rating for the office-work session are

depicted in Fig. 7.

4.2 Objective measurement of mental workload

For the analysis of salivary cortisol measurement, we

normalized the workload cortisol levels by dividing the last

measured cortisol value obtained directly after the recovery

phase with the cortisol value obtained after the baseline

phase. This enabled us to compare cortisol measurements

taken at different days, since we considered baseline dif-

ferences. Figure 8 shows the normalized salivary cortisol

levels of each subject for the different workload periods. It

can be seen that with increasing workload levels, four

subjects (2, 4, 5, and 7) show increasing levels of cortisol,

while two subjects (1 and 6) show decreasing levels of

cortisol. In contrast, subject 3 shows the highest cortisol

value for the office-work session. ANOVA revealed that no
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groups have means significantly differ from each other

(p = 0.47). Varying effects of cortisol responses might be

explained by the findings that both uncontrollable and

social-evaluative stressors are associated with the largest

cortisol changes [6]. In our case, the stressor was a

continuous performance task that was controlled and not

characterized by social-evaluative threat. By adding social-

evaluative threat such as judging the subject about his

performance by others during the experiment might

increase cortisol levels.

Fig. 5 Subjective workload

scores obtained from the NASA

Task Load Index for each

session and each subject (left).
Comparison of the workload

sessions for all subjects using

boxplots (right)

Fig. 6 Comparison of the

NASA results from two

particular points in time (after

20 min and at the end of the

working session)

Fig. 7 Individual boundaries

for low-, medium-, and high-

workload classes and subjective

rating for the office-work

session

Pers Ubiquit Comput (2013) 17:229–239 235

123



4.3 Performance results

In each calibration session, the individual task performance

was recorded. In Fig. 9, it is shown that the individual

performance reflects the three different workload levels. As

can be seen from the figure, there is a significant difference

between workload sessions (ANOVA, p \ 0.001).

4.4 Analysis of variance

We compared the HRV features obtained from the three

workload periods in the calibration condition by applying

ANOVA tests. The mean values including standard errors

of all HRV features extracted for the workload phases are

listed in Table 1. It can be observed that the HRV features

can be classified into two distinct groups. Features in the

first group show consistently a decrease in their values with

increased workload. A statistically significant decrease

can be observed for the features RMSSD and pNN50

(p \ 0.05), while STD HR, Mean RR, SDNN, HRV Index,

and TINN show a consistent but non-significant decrease.

In contrast, features in the second group show an increase

in their values with increased workload. A statistically

significant increase can be observed for the LF/HF ratio

(p \ 0.05).

4.5 Correlation-based feature selection

Before applying regression and classification, we employed

a feature selection using a filter approach: since some of the

features are expected to be correlated, we investigated

the correlation coefficients of the relative HRV features in

the 2-min segments of all workload phases. Mean HR, STD

HR, and TINN were excluded from the analysis, because of

the high correlations between Mean HR with Mean RR,

STD HR with SDNN, and TINN with SDNN (r [ 0.9).

4.6 Multiple linear regression

We examined the relationship between subjective work-

load scores and HRV features. Multiple linear regression

analysis was performed with NASA-TLX as the response

variable. For each subject, the multiple linear regression

coefficients are shown in Table 2. Please note that the

regression coefficients in the table were computed by fit-

ting the linear regression using the calibration data. The

NASA-TLX scores of the office-work session were then

predicted based on this model. Figure 10 shows the pre-

dicted workload scores of the individual office-work

sessions.

In order to evaluate the regression results, we considered

the following evaluation metrics:

(a) Predicted class: The class to which the majority of

predicted values falls into.

(b) Accuracy: The percentage of predicted values that

falls into the correct class.

By using these metrics, we can transform the regression

problem into a classification problem using the majority

rule.

Table 3 shows the actual workload scores of the office-

work session, their actual class, and the results of the

proposed metric. As seen in the table, the assigned class of

the office-work session was correct for all but the third

subject.

4.7 Classification

Table 4 shows the classification results for each subject. As

in multiple linear regression, the class to which the

majority of predicted values fall into is considered as

classification result. It can be observed that the maximum

accuracy is achieved by LDA (correct classification for 6

Fig. 8 Normalized salivary

cortisol levels of each subject

for different workload periods

(left). Comparison of the

workload sessions for all

subjects using boxplots (right)
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subjects), whereas KNN and SVM worked successfully for

5 subjects.

5 Conclusion and future work

In this work, we have presented how mental workload

levels in everyday life scenarios can be discriminated with

data from a mobile ECG logger by incorporating individual

calibration measures. We have presented an experiment

design to induce three different levels of mental workload

in a calibration session and to monitor mental workload

levels in everyday life scenarios. Seven healthy male

subjects participated in this study. Besides the recording of

ECG data, subjective rating of the perceived workload was

collected with the NASA Task Load Index, whereas an

objective measurement was assessed by collecting salivary

cortisol. According to the subjective ratings and the per-

formance of the participants in the calibration conditions,

we could show that all participants perceived the induced

load levels as intended from the experiment design. In

accordance, the performance decreased with increasing

workload. Compared to the calibration conditions, sub-

jective workload scores of the office-work session were

ranked either between low and medium or between med-

ium and high. In order to assign the workload score of the

office-work into one of three classes (low, medium, and

high), individual boundaries according to the subjective

Fig. 9 Performance scores of

each subject for each N-Back

session (left). Comparison of the

workload sessions of the

calibration condition for all

subjects using boxplots (right)

Table 1 Comparison of mean

HRV features ± standard error

during low, medium, and high

workload in the calibration

condition

Mean ± standard error

* p \ 0.05

HRV features Low workload Medium workload High workload F; p

Mean HR (1/min) 69.6 ± 2.5 76.1 ± 3.9 80.2 ± 5.5 1.62; 0.22

STD HR (1/min) 5.8 ± 0.7 5.4 ± 0.5 5.2 ± 0.4 0.29; 0.75

Mean RR (ms) 875.3 ± 32.2 803.2 ± 36.5 769.1 ± 43.0 2.09; 0.15

SDNN (ms) 72.2 ± 8.4 58.7 ± 7.8 51.5 ± 6.4 1.89; 0.18

RMSSD (ms)* 51.6 ± 5.2 38.7 ± 4.4 31.2 ± 4.6 4.65; 0.02

pNN50 (%)* 30.7 ± 4.8 19.3 ± 3.6 12.4 ± 3.2 5.48; 0.01

HRV index 19.5 ± 2.4 14.9 ± 1.8 13.0 ± 1.5 2.86; 0.08

TINN (ms) 462.8 ± 45.7 385.7 ± 53.1 385.1 ± 53.7 0.77; 0.48

LF/HF (n.u)* 1.9 ± 0.2 2.5 ± 0.3 4.6 ± 1.0 4.59; 0.02

Table 2 Summary of multiple

regression coefficients: NASA-

TLX as dependent variable and

HRV features as independent

variables

* p \ 0.05, ** p \ 0.01,

*** p \ 0.001

Features Subj1 Subj2 Subj3 Subj4 Subj5 Subj6 Subj7

Mean RR 11.57*** 15.048*** 5.983 52.794*** 5.863* 6.13 3.893

SDNN -4.512 -3.758 3.064 18.052* 7.385*** -2.839 -12.15*

RMSSD 5.023 -2.957 5.131 -61.16*** -9.768* -4.292 -3.887

pNN50 6.067 -0.033 -2.964 -4.399 8.444** 12.731* 23.013***

HRV index 5.018* 15.285** 9.713** 1.544 6.062** 7.315 5.885

LF/HF 15.04*** 6.697 4.251 24.966*** 3.947* 11.499*** 8.238***
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workload scores collected during the calibration conditions

were defined. By applying ANOVA tests, the HRV features

from the calibration conditions could be classified into two

distinct groups with respect to their response: with

increasing workload, features in the first group showed a

decrease in their values, while features in the second group

showed an increase in their values. The features RMSSD

and pNN50 showed a statistically significant decrease

while LF/HF ratio showed a statistically significant

increase with increased workload. The remaining features

showed a consistent but non-significant increase or

decrease, what might be explained by the limited number

of subjects. We employed multiple regression analysis to

model the relationship between relevant HRV features and

the subjective ratings of NASA-TLX. Thereby the model

parameters were estimated using the calibration data in

order to predict the mental workload levels during office-

work. The resulting predictions were correct for six out of

the seven subjects. In only one subject, there was a con-

fusion between low and medium workload. In addition, we

employed and compared the performance of three classi-

fication methods to identify the mental workload class

(low, medium, or high) to which a new observation

belongs. As in multiple regression analysis, the classifica-

tion models were trained using the calibration data in order

to predict the mental workload levels during office-work.

The best results were obtained with linear discriminant

analysis (LDA) that yielded a correct classification for six

out of the seven subjects. The only confusion between low

and medium workload occurred for the same subject as in

multiple regression analysis. The k-nearest neighbor algo-

rithm and the support vector machine (SVM) resulted in a

Fig. 10 Predicted workload

scores of the office-work session

based on linear regression

model

Table 3 Workload score,

actual workload class, and

estimated class with

corresponding accuracy

False identified classes are

indicated in bold

Subjects NASA score (office-work) (%) Actual class Predicted class Accuracy (%)

1 50.33 Medium Medium 69.8

2 45 Medium Medium 59.4

3 45.33 Low Medium 34.9

4 52.66 High High 38.1

5 69.33 Medium Medium 51.5

6 46.33 Medium Medium 66.7

7 70.66 Medium Medium 61.3

Table 4 Classification results

for each subject

False identified classes are

indicated in bold

Predicted class (Accuracy %)

L low, M medium, H high

Method Subj1 Subj2 Subj3 Subj4 Subj5 Subj6 Subj7

True class M M L H M M M

LDA M (55.55) M (37.50) M (33.33) H (49.20) M (54.54) M (50.79) M (37.09)

KNN M (57.14) M (46.87) M (30.15) L (23.80) M (51.51) M (44.44) M (48.38)

SVM M (47.61) L (32.81) L (41.26) M (19.04) M (43. 93) M (53.96) M (43.54)
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correct classification of the mental workload level during

office-work for five out of the seven subjects. In conclu-

sion, we were able to discriminate the perceived mental

workload level during an office-work scenario by modeling

the relationship between relevant HRV features and the

subjective ratings in calibration settings.

In future work, we are going to extend the amount of

monitoring periods in daily life to several days or weeks. In

addition, we have to increase the number of subjects to

obtain a more balanced collective, e.g., regarding subject’s

age. In order to minimize the disturbance of the partici-

pants, we will restrict ourselves to mobile ECG logging and

3–5 questionnaires for self-assessment per day. Such a data

basis would allow investigating daily variations of per-

ceived and objectively measured mental workload. In

addition, we are going to target a broader variety of

everyday life scenarios. Up to now, we have investigated

office-work in front of a computer. In future work, we will

target other activities like giving lectures. In particular, we

will investigate whether the presented calibrations method

(3 levels of N-Back tasks) is appropriate or which modi-

fications are necessary to model different kinds of real

world workload.
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