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Abstract Pneumatics is one of the few actuation princi-

ples that can be used in an MR environment, since it can

produce high forces without affecting imaging quality.

However, pneumatic control is challenging, due to the air

high compliance and cylinders non-linearities. Further-

more, the system’s properties may change for each subject.

Here, we present novel control strategies that adapt to the

subject’s individual anatomy and needs while performing

accurate periodic gait-like movements with an MRI com-

patible pneumatically driven robot. In subject-passive

mode, an iterative learning controller (ILC) was imple-

mented to reduce the system’s periodic disturbances. To

allow the subjects to intend the task by themselves, a zero-

force controller minimized the interaction forces between

subject and robot. To assist patients who may be too weak,

an assist-as-needed controller that adapts the assistance

based on online measurement of the subject’s performance

was designed. The controllers were experimentally tested.

The ILC successfully learned to reduce the variability and

tracking errors. The zero-force controller allowed subjects

to step in a transparent environment. The assist-as-needed

controller adapted the assistance based on individual needs,

while still challenged the subjects to perform the task. The

presented controllers can provide accurate pneumatic

control in MR environments to allow assessments of brain

activation.

Keywords Pneumatic actuation � Iterative learning

control � Assist-as-needed � MR compatible robots

1 Introduction

There is increasing interest in using robotic devices to

provide rehabilitation therapy following neurologic injuries

[23]. The most largely administered robotic therapy com-

prises assistive exercises that use physical assistance to

help patients to perform the rehabilitation movements.

Patient’s effort during physical training is thought to be an

important factor in order to provoke motor plasticity [22,

25], hence robotic devices could potentially decrease

recovery if they encourage a decrease in effort, energy

consumption, or attention during training [19]. Previous

research indicates that robotic therapy devices should be

designed to assist as needed: provide just enough assistance

to allow patients to practice the task, while decreasing their

assistance, encouraging individuals to execute the move-

ment on their own [10, 24, 27].

The effect of rehabilitation training on neuronal circuits

in the brain is not fully understood. Further, it is still

unclear how different rehabilitation strategies contribute to

restorative processes of the central nervous system [29].

Knowledge about the effects of rehabilitation on neuro-

plasticity could help to improve the efficiency of
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rehabilitation. Such knowledge can be gained by moni-

toring brain activation during well controlled and repeated

movements. The method of choice to monitor brain acti-

vation is functional magnetic resonance imaging (fMRI), as

it is non-invasive, harmless, and provides a high spatial

resolution [1]. In the scanner, the desired movement should

be guided by a closed-loop controlled robotic device to

both guarantee repeatability of movements in subject-pas-

sive mode, and to enable measurements of movements and

forces performed by the subject in a subject-active mode.

Furthermore, the robot should be able to assist-as-needed,

i.e., the device should be able to adapt the controller

parameters based on online measurements of the partici-

pant’s performance.

Several technical components are available to actuate

devices in the MR environment or to transmit forces into it:

pneumatic cylinders and stepper motors have been

employed [5, 13, 33] as well as hydraulic cylinders with

long tubes, in standard [34, 35] or in master–slave con-

figurations [15, 16]. In addition, forces and movements

have been transmitted via cables [3] or produced by

ultrasonic motors [4, 14], electro-rheological fluids [20,

21], and special electromagnetic principles [28]. These

technical approaches have been applied mostly in the field

of surgery [4, 12, 26], placement of biopsy needles in the

scanner [9, 17], and mapping brain activity during func-

tional movements and rehabilitation [21, 30, 32].

Generation of gait-like movements is particularly chal-

lenging due to the subject’s supine position and the limited

space in the scanner. Therefore, the gait movement needs

to be simplified, but still should take into account the real

displacements in the most relevant joints and the natural

ground reaction forces during real gait foot loading [8, 18].

Foot loading is important to activate the relevant brain and

spinal cord neuronal circuits underlying stepping move-

ments [6, 7], however, it also increases the required actu-

ators’ force range.

To safely generate high forces, pneumatic actuation is

the optimal choice in the MR-environment: besides an easy

handling of large forces with high dynamics over a wide

range of motion, pneumatic actuators are compliant and can

be switched to a safe moveable state with zero pneumatic

force by connecting the chambers to the atmosphere. Fur-

thermore, disturbing ferromagnetic and electronic compo-

nents such as valves and control units can remain outside of

the scanner room, while only the air tubes are guided to the

pneumatic cylinders [35]. In addition, no hygienic problems

occur in the case of leakage, which is of special relevance in

the clinical environment of MR scanners. However, the

non-linearities in the pneumatic components and the very

long tubes create dead time and delay (i.e. low-pass filter)

effects. Furthermore, MR compatible cylinder and piston

materials may introduce large friction that makes the

control of pneumatic systems very challenging. In addition,

the system’s behavior changes between subjects due to

subject-individual limb masses and lengths, and joint vis-

coelasticity. Therefore, purely model-based controllers

would require extensive model parameter identification to

provide reproducible movements and, thus, reproducible

brain activation for each individual subject.

In this work, we present an iterative learning controller

(ILC) [2] and a performance-based adaptive control [10] to

improve the usability of our magnetic resonance compati-

ble stepper (MARCOS) with pneumatic actuation [18].

2 Methods

2.1 Hardware setup

MARCOS can move the legs of a subject in supine position

in an MRI scanner. The subject is fixed with a pillow at the

back in combination with a stiff hip belt, shoulder belts and

an adapted head bowl [18]. The feet of the subject are each

placed in a shoe and fixed with Velcro� fasteners. The shoe

can slide on a linear guide. A pneumatic cylinder attached to

a knee orthoses can move the knee up and down (Fig. 1). The

resulting movement resembles on-the-spot stepping,

including displacements at the hip, knee and ankle joints. At

each leg, a second pneumatic cylinder is attached to the shoe

on the linear guide. This second cylinder allows the control

of a force at the foot sole, simulating ground reaction forces.

Proportional way valves (MPYE, Festo, Germany) con-

trol the air flow to the knee cylinders. These valves remain

outside of the scanner room. The air is guided via 7 m long

air tubes to the cylinders inside the scanner room. The

cylinders attached to the shoes are controlled with pressure

control valves (VPPM, Festo, Germany). The position of

each cylinder is redundantly measured by potentiometers

and optical encoders. The forces are measured with resistive

strain gauges (Transmetra Gmbh, Switzerland) attached to

aluminum substrate at the end of each cylinder.

The materials used in the design of MARCOS were

limited to PVC, aluminum and brass, as these materials are

characterized by a low magnetic susceptibility. During

fMRI measurements, all force and position signals that are

measured inside the scanner room are collected inside a

shielded aluminum box and guided outside via fiber-optic

cable. The current supply is provided with DC current

inside a shielded cable connected to the shielding of the

scanner room.

2.2 Control

MARCOS can work in three different modes: (i) subject-pas-

sive mode, i.e. the subject remains passive, (ii) subject-active
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mode, i.e. the subject has to move, and (iii) assist-as-nee-

ded mode, i.e. assistance by the robot is provided only

when the subject individual needs require it. In all modes,

the force that acts on each foot is controlled independently

with the foot cylinders (Fig. 1) to impose a specified pro-

file. This independent control is possible due to the

redundancy of the system: the kinematic constraints allow

movement only in one degree of freedom, so that each leg

is over-actuated.

2.3 Subject-passive mode

The subject-passive mode combines feedback position and

force controllers with an iterative learning feed-forward

controller, exploiting the cyclic nature of the task. The

position controller enforces the desired knee trajectory by

controlling the position of the cylinder that is attached to

the knee (y coordinate in Fig. 1) by the cylinder’s pro-

portional flow valves. The controller output ûpos (valve

opening) is proportional to the difference between the

desired knee position yref and the measured position ymeas

with a proportional gain Ppos (m - 1):

ûpos ¼ Ppos yref � ymeasð Þ: ð1Þ

One side effect of proportional valves is their non-linear

behavior. To partially compensate this, the controller

output ûpos is transformed into actuator input upos using a

linear function with dead zone, since there is no noticeable

flow for input values lower than 0.03 (±0.5 corresponds to

a completely open valve, 0 to a closed valve):

upos ¼
0;

ûpos � 0:03;
ûpos þ 0:03;

ûpos ¼ 0

ûpos\0

ûpos [ 0

8
<

:
ð2Þ

The force control at the foot has a cascaded structure

(Fig. 2). An inner pressure control loop is performed

directly by proportional pressure control valves. The

reference pressure ufootCyl is calculated using an outer

proportional force controller with additional feed-forward

terms

ufootCyl ¼ Fref þ Pfoot Fref � Fmeasð Þ þ pFrefxð Þ=A ð3Þ

with desired foot force Fdes, measured force Fmeas, pro-

portional gain Pfoot, piston area A, piston displacement

x (Fig. 1), and a manually tuned constant factor p. The term

pFrefx approximately compensates for the dependency of

pressure build-up on chamber volume, resulting in a sim-

plified version of the control strategy as suggested in [31].

The factors p and Pfoot were chosen ad hoc.

The two cylinders at each leg are mechanically coupled

through the human leg. Thus, forces from one cylinder

have an impact on the performance of the other cylinder.

Because limb masses, limb lengths, and joint viscoelas-

ticities differ between subjects, and since the attachment of

the knee orthoses is also variable, the characteristics of this

coupling change between subjects. To compensate for

these model uncertainties in these particular repetitive

movements, the feedback controllers are combined with an

ILC [2]. The ILC compensates not only for the mutual

influence of the two actuators, but also for all repeating

disturbances, e.g. non-linearities at the valves, tubes, cyl-

inders, as well as friction and inertial forces. For each leg,

the ILC outputs a two-dimensional feed-forward control

vector uk(t) ((1, Pa) - 1) for the current cycle k as a

function of time t (at the beginning of each cycle, time t is

reset to zero). The entries of this vector correspond to the

two knee cylinders (for position control) and the two foot

cylinders (for force control). This control output is re-cal-

culated from cycle to cycle, using the control signal uk�1ðtÞ
that was applied during the preceding cycle k - 1 and the

corresponding four-dimensional (two positions, two forces)

error trajectory ek - 1(t) ((m, N)-1). The previous control

output uk�1ðtÞ is pre-multiplied by a two-by-two ‘‘forget-

ting matrix’’ Q, whereas the corresponding error trajectory

ek - 1(t) is shifted in time by Dt and then pre-multiplied by

the diagonal two-by-two ‘‘learning matrix’’ PILC:

knee cylinder

foot cylinder

passive joints

force sensor

orthosis

linear guide

fixed joint

y

x

Fig. 1 Left principle sketch of MARCOS [18]. Cylinders at the knee and the foot guide one degree of freedom leg movement with control of

position and force at the foot. Right MARCOS in the fMRI scanner
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ukðtÞ ¼ Quk�1ðtÞ þ PILCek�1ðt þ DtÞ: ð4Þ

The matrix structure of the ILC allows the coupling of

the system. However, for simplicity, the matrices were

chosen to be diagonal. Still, the cross-coupling of the

actuating variables is taken into account over their time

dependency. The diagonal values of the forgetting matrix Q

were chosen to be 0.9. The learning matrix PILC is also

diagonal, with gains 0.7 for position and 0.2 for force errors.

The time shift Dt was manually adjusted to compensate for

the delay in the reaction time of the system (position

controller: Dt = 0.15 s; force controller Dt = 0.05 s).

The calculated feed-forward control signal uk(t) is added

to the output of the position and force feedback controllers

(Fig. 2).

2.4 Subject-active mode

In subject-active mode, the robot follows the movements of

the subject in such a way that interaction forces between

the legs and the knee orthoses are minimal. Thus, the robot

is compliant and the subject can achieve any physiological

knee position y. To this end, the force at each knee

Fmeas,knee is controlled to be constant, only counteracting

the gravitational force W (N) resulting from the weight of

the orthosis (0.8 kg).

This force control is achieved by a proportional force

feedback with gain P1 The non-linearity resulting from the

varying chamber size is taken into account by adding the

term P2 9 Fmeas,knee. We further added a quadratic term in

the force P3 W � Fmeas;knee

� �2
to increase the control output

as larger the force was:

uknee¼ðP1þP2xÞ ðW�Fmeas;kneeÞþP3ðW�Fmeas;kneeÞ2
� �

:

ð5Þ

The force feedback control for the foot cylinder remains

unchanged. However, no ILC is used because the subject

controls the movement, and thus disturbances are no longer

predictable.

2.5 Assist-as-needed mode

The subject-passive mode does not allow subjects to try the

task by themselves, and thus reduces the subject’s effort.

On the other hand, the subject-active mode requires the

subject to have sufficient motor ability to move the robot,

which is not possible for individuals who have reduced

functional movement.

It would be desirable to include the safety aspects and

the accurate trajectory demonstration of the subject-passive

mode, while still allowing participants to try the movement

by themselves. One strategy is to provide less guidance as

practice progresses based on real-time measures of subject

performance. Several adaptive strategies have been pro-

posed of the form:

Rkþ1 ¼ fRRk � gR xk � xd;k

�
�

�
� ð6Þ

where Rk is the control parameter that is adapted (e.g. the

robot stiffness), k refers to the kth cycle, fR is the robot

forgetting factor, gR is the robot learning gain, xk is the

performance variable (e.g. measured position) and xd,k is

the desired performance variable (e.g. desired position). If

fR is chosen such that 0 \ fR \ 1, then the error-based

learning algorithm reduces the control parameter when the

performance error xkðtÞ � xd;kðtÞ
�
�

�
� is small, with the effect

of always challenging the patient.

Such a controller was modified in [11] to adjust the

impedance gains of a walking assisting robot at different

points of the step trajectory during walking training of

spinal cord injured subjects. However, to adjust the gain

parameters of an impedance-based controller is only viable

when working with a very backdriveable robot [11].

Pneumatically driven robots are intrinsically not back-

driveable, and thus, when the assistance is reduced to zero,

Fig. 2 Control chart for the

subject-passive control mode

802 Med Biol Eng Comput (2013) 51:799–809

123



even healthy subjects still require an excessive amount of

force to influence the robot.

Our goal is to define an adaptive controller able to

provide mechanically compliant assistance during the

movement, while still allowing the subject to be chal-

lenged. Here, we suggest a modification of the Eq. (6)

based on the ILC Eq. (4) introduced above: the desired

assistive force is adapted, instead of a control parameter as

the impedance gain, based on the tracking error:

Fd;kðtÞ ¼ fRFd;k�1ðtÞ þ gR xkðtÞ � xd;kðtÞ
� �

: ð7Þ

This adaptive law adjusts the assisting force at the knee

cylinder Fd, for the current cycle k as a function of time

t (t is reset to zero at the beginning of each cycle), using

the desired force of the previous cycle Fd,k-1(t) and the

tracking error in the current cycle xkðtÞ � xd;kðtÞ
�
�

�
�. The

robot forgetting factor is denoted as fR (fR = 0.98), gR is

the robot learning gain (gR = 50), xk is the current knee

position and xd,k is the desired knee position.

The desired force Fd is re-calculated from cycle to cycle

at each sample time and input to a close-loop force con-

troller similar to the one described in Eq. (5).

uknee ¼ ðP1 þ P2xÞ ðFd þW � Fmeas;kneeÞ
�

þP3ðFd þW � Fmeas;kneeÞ2
�

ð8Þ

3 Experimental protocol

3.1 Subject-passive mode

The controllers for the subject-passive and the subject-

active modes were tested outside of the scanner on seven

healthy subjects (p1–p7 in Table 1). The study was

approved by the local ethical committee and conducted in

compliance with the Declaration of Helsinki. Informed

consent was obtained from each subject before the evalu-

ation session.

For subject-passive mode, sinusoidal trajectories at

0.5 Hz were predefined for both the force on the foot sole

(0–200 N) and the knee position (0.01–0.17 m). First,

MARCOS effected three movement cycles without ILC.

Thereafter, the iterative learning started and lasted over 30

movement cycles. Then, learning was stopped, and the final

feed-forward trajectory continued to be added to the con-

troller signals for ten more cycles. In the end, the feed-

forward signals were set to zero and ten cycles were

performed.

In order to evaluate the benefit of the ILC in the control

performance, the phase shift between the maxima of the

desired and measured trajectories for position and force

was analyzed, as well as the movement variability. The

learning progress in reducing the time shift was analyzed

with a Friedman test followed by a Bonferroni adjustment

(data were not normal distributed, tested with a Kol-

mogorov–Smirnov test). Significance level was set to 0.05.

3.2 Subject-active mode

The controller performance for the subject-active mode

was evaluated by measuring the maximal reaction forces

between the cylinder and the knee orthoses. The subjects

were asked to move freely with a similar amplitude and

frequency as during the passive mode for 15 cycles.

3.3 Assist-as-needed mode

The assist-as-needed mode was tested with three healthy

subjects outside the scanner (a1–a3 in Table 1). In order to

measure subject effort (i.e. subject self-generated force

production), electromyography (EMG) signals were

recorded from four muscles of the dominant leg: rectus

femoris, biceps femoris, tibialis anterior and medial gas-

trocnemius. EMG data were acquired with a wireless sys-

tem (TELEMYOTM 2400T Direct Transmission System,

Noraxon, USA) at 1,500 Hz. Disposable, self-adhesive

dual Ag/AgCl snap electrodes were used. EMG data were

rectified and smoothed in Matlab with a time window of

50 ms. All EMG data were finally normalized with respect

of the maximum voluntary contraction of each muscle.

Subjects were requested to move their dominant leg to

try to match their knee position (represented on a computer

screen by a moving blue bar), to the desired knee position

(green bar). The desired trajectory was defined as a sinu-

soidal trajectory of 0.5 Hz with knee position ranging from

Table 1 Information of healthy subjects

Subject Age Height (cm) Weight (kg) BMI Gender

p1 29 179 72 22.5 Male

p2 29 170 80 27.7 Male

p3 28 182 74 25 Female

p4 31 183 87 26 Male

p5 29 183 68 20.3 Male

p6 27 182 65 19.6 Male

p7 26 179 60 18.7 Female

a1 22 172 73 24.7 Male

a2 25 185 65 19 Male

a3 32 180 68 21 Male

a4 23 182 72 21.7 Male

f1 24 169 63 22.1 Female

f2 23 182 72 22.7 Male

BMI stands for body mass index
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0.01 to 0.17 m. During the EMG test, no load was applied

on the subjects’ foot sole. A foot load facilitates the knee

flexion, and thus the effect of reducing the assistance could

have been masked by an increase of load on the foot.

All the three control modes were tested. In each mode,

nine trials were recorded. Each trial consisted of 30 s of

moving followed by a rest phase of 10 s. All subjects

started in subject-passive mode in order to allow the sub-

ject to understand the task. They were requested to relax

their legs. The order of the two other modes was ran-

domized. Before the assist-as-needed mode started, the

controller learned the force profile needed to track the

desired knee position while subjects were completely

passive (during 40–70 cycles, depending on the subject).

Then, the assist-as-needed mode started and subjects were

instructed to be always active. Subjects were not informed

about the fading of the assistance.

After the desired force profile was successfully learned

for ten cycles, the absolute tracking error, the mean

assisting force, and mean EMG of the four muscles per trial

were measured. To test the correlation between assisting

force and EMG activation, a Pearson’s correlation test for

each subject was performed. EMG activation levels were

further compared between modes.

One subject was tested outside the scanner (a4 in

Table 1) to evaluate the performance of the assist-as-nee-

ded controller when a sinusoidal load was applied on the

foot sole (0–200 N).

3.4 fMRI pilot study

A pilot study with two healthy subjects (f1 and f2 in

Table 1) was performed in the MR-Center of University of

Zurich, on a Philips Achieva 1.5T MR system equipped

with an 8 channel SENSETM head coil. Subjects per-

formed the same protocol as described above for the EMG

experiment under all three different control modes.

The functional acquisitions used a T2* weighted, single

shot, field echo, echo-planar-imaging (EPI) sequence of the

whole brain (TR = 3 s, TE = 50 ms, flip angle = 82�,

FOV = 220 9 220 mm2, acquisition matrix = 128 9 128,

inplane resolution = 1.7 9 1.7 mm2, slice thickness =

3.8 mm, SENSE factor 1.6, 35 slices). Image processing

and analysis were performed using SPM8. Functional

images were normalized into standard stereotactic space

using the Montreal Neurological Institute template (MNI).

The data analysis (t test, p \ 0.001) was performed on a

subject-by-subject basis to identify the activated neuronal

network involved in each training mode, compared to the

rest periods.

4 Results

4.1 Subject-passive mode

Both the median value and the variability of the phase shift

during position control with ILC were smaller than during

position feedback control only (Fig. 3). After 30 learning

cycles, the median of the phase shift of one cycle was

significantly reduced from 0.283 s (10/90 percentile:

0.0775 s) to 0.054 s (10/90 percentile: 0.016 s, Wilcoxon

test, p = 0.015). From the eighth cycle onwards, the time

shift no longer differs significantly from any following

time shifts. This corresponds to 38 s for movements per-

formed with a frequency of 0.5 Hz. The inclusion of the

ILC reduced the maximal positioning error to 6.5 mm. The

maximal variability (10/90 percentile) of the movement

was reduced by 84 % from 0.0415 m without the ILC to

0.0065 m with the ILC.

The force controller with the ILC also reached a smaller

maximal variability (maximal 10/90 percentile: 15 N,

without ILC: 44 N) than the feedback-controller alone

(Fig. 4).

4.2 Subject-active mode

The controller for subject-active mode kept the interaction

forces between knee orthosis and leg smaller than 20 N

(desired: 0 N) (Fig. 5) at an operating force range of

Fig. 3 Left knee position (y):

mean and 10/90 percentile of 10

cycles from the left leg of seven

subjects. 0.2 m corresponds to a

knee angle of approx. 50�. Right
the time shift and 10/90

percentile of the upper turning

point plotted over the learning

iterations
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0–200 N. For comparison, in the uncontrolled case (valves

open), the reaction forces are around 100 N (reduction of

80 %).

The force control in subject-active mode has the same

performance as during subject-passive mode, as it is

independent from the knee movements.

4.3 Assist-as-needed mode

The median and 10/90 percentile range of the absolute

value of the tracking error was calculated after the force

profile to move the leg in passive form was successfully

learned for 10 cycles for the three subjects (Fig. 6, left).

The mean tracking error was 0.0163 m (10/90 percentile:

0.0296 m). The mean phase shift was 0.0688 s (10/90

percentile: 0.1563 s), in the order of the phase shifts

observed in the subject-passive mode. The values of the

median tracking error and phase shift during 10 cycles of

the subject performing with the sinusoidal load on the foot

were in the same order of magnitude (median tracking

error: 0.0095 m, 10/90 percentile: 0.0429 m; phase shift

median: 0 s, 10/90 percentile: 0.0438 s).

During the assist-as-needed test, the mean assistance

force provided by the robot systematically decreased as the

subjects performed the task without experiencing large

tracking errors (Fig. 6, right). Each subject showed a dif-

ferent faded assistance curve, dependent on the tracking

errors created during the test and the initial value of the

assistive force. The final assistance level in the plateau was

also different for each subject and never identical to zero.

In all subjects, the mean EMG activity of the biceps

femoris significantly correlated with the assistance force

(Fig. 7 up, Pearson’s correlation test: a1 R = -0.886,

p = 0.002; a2 R = -0.741, p = 0.026; a3 R = -0.691,

p = 0.039). Even if subjects were instructed to actively try

to follow the desired knee position from the first trial, the

EMG activity increased as less assistance was provided to

the subject. Besides the biceps femoris, no other muscle

consistently correlated with the assistance force.

The EMG activation levels of the biceps femoris were

further compared between modes. The mean EMG acti-

vation increased at each trial, starting at a level close to the

mean EMG recorded during subject-passive mode, towards

more activation as recorded during the subject-active mode

(Fig. 7, down).

4.4 fMRI pilot study

Over all modes and subjects, maximal translational head

motion was within an acceptable range (\2.5 mm) in the

inferior/superior direction. A conjunction analysis from the

two healthy subjects showed significant neuronal activation

in all three experimental conditions. Active stepping of the

right leg elicited significant activation in an extensive

sensorimotor network including medial primary motor

areas and premotor areas in the left cerebral hemisphere as

well as activation in the Vermis and the right hemisphere of

the Cerebellum. Passive stepping elicited activation in

medial primary motor areas and premotor areas in the left

cerebral hemisphere but not the cerebellum. Stepping with

assist-as-needed led to significant activations in the left

primary sensorimotor areas and bilaterally in the superior

parietal lobe. Furthermore, the Vermis and the right cere-

bellar hemisphere were significantly activated (Fig. 8).

5 Discussion

An iterative learning controller was implemented to guar-

antee high repeatability of movements. The ILC learning

time of eight cycles is short, and thus the controller setup

time prior to the intended fMRI measurements will not be

Fig. 4 The median (and 10/90 percentile) of the force at the foot.

Displayed are the median of 10 cycles before and 10 cycles after 30

learning cycles of all seven subjects

Fig. 5 Reaction force at the knee for the active mode for the

voluntary movement of one subject over 10 cycles plotted over the

position
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considerably extended, while the control performance is

significantly improved. The maximal positioning error after

the inclusion of the ILC does not affect the fMRI results, as

it is relatively small (6.5 mm) compared to the human

movement range. In addition, the movement variability

between subjects was also significantly reduced. The per-

formance of the classic feedback force controller was

already satisfactory, and thus no further improvement was

observed with the inclusion of the ILC (although we found

that the variability between subjects was reduced). The

performance differences between the classic force and

position feedback controllers might be due to the different

control strategies that aim at controlling the pressure in

force feedback, and the air flow in position control.

Proving passivity of a system like MARCOS is chal-

lenging: approaches using linear models are not sufficient

to capture the non-linear nature of an MR-compatible

pneumatic system such as MARCOS. Formulating a suit-

able non-linear model is also not possible due to the

excessive parameter uncertainties and time invariances,

Fig. 6 Left mean and SD of the

knee position of 10 cycles from

the right leg. Right fading of the

assisting force provided by the

robot as the subjects performed

the task
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Subject 3

R = −0.8862
p = 0.0015

R = −0.7407
p = 0.0225

R = −0.6910
p = 0.0393

Fig. 7 Up correlation between mean biceps femoris EMG activity and the mean assistive force from the robot. Down mean biceps femoris EMG

evolution during the experiment
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which are a consequence of the chosen mechanical con-

cept. Due to varying biomechanical properties between

subjects, also the set-up of the robot varies between sub-

jects. Robust control strategies have been proposed to

account for high uncertainties affecting dynamical systems.

However, robust control is associated with performance

degradation as a higher level of robustness is required.

These challenges in modeling and the cyclic nature of the

task were the main reasons for applying an ILC.

The robustness and stability were empirically tested

disturbing the robot and checking its satisfactory robust

response. To guarantee safety, the actuator outputs were

limited, as well as their rate of change over time. In

addition, all position sensor signals are measured redun-

dantly to detect sensor failure. Forces that exceed the safety

limits would immediately trigger an emergency stop:

chambers are then connected to the atmosphere, and thus,

the robot is set into a moveable state.

In subject-active mode, subjects had to overcome max-

imal reaction forces of up to 20 N at the knee. This force is

low in comparison to the leg weight of about 150 N. The

assist-as-needed algorithm was able to adapt the robot

assistance step by step while subjects were passively

moved by the robot. We note that although the mean phase

shift was in the order of the values observed in the subject-

passive mode, the tracking was not perfect. This is due to

the forgetting factor (fR = 0.98): the assistance force

converged into a steady state that corresponded with an

amount of assistance slightly lower than the least amount

the subject needed to achieve the movement. When the

subjects were instructed to actively perform the task, the

assistance systematically decreased as the subjects per-

formed without experiencing large tracking errors till an

unperceived amount. However, it was never equal to zero,

due to the subjects’ natural variability. The assist-as-nee-

ded controller performed as expected to encourage sub-

ject’s effort: EMG activation in the biceps femoris

increased as the assistance force was systematically

reduced, even if the subjects were instructed to be always

active. A consistent correlation between muscle activity

and assistance in any other leg muscles was not found. This

was expected, as only the biceps femoris is involved in

Fig. 8 Clusters of significant neuronal activation during active, passive and assist-as-needed stepping of the right leg. All images are p B 0.001,

uncorrected k = 42 voxels, coordinates are in MNI space
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knee flexion, while most subjects use the help from the

gravity force to extent the leg.

Results from the fMRI pilot study indicate that the

controllers are suitable to evoke substantial neural activa-

tion in a network of the brain known to be involved in

sensorimotor control of the legs without introducing arti-

facts at cerebral level. Further experiments with a larger

number of subjects are necessary to examine the underly-

ing mechanisms in further detail.

In conclusion, we recommend using pneumatics in

combination with the controllers presented here to provide

a safe actuation principle and a good control performance.
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Breitwieser H, Gutmann B, Durke J, Bock M, Melzer A (2003)

An MRI-compatible surgical robot for precise radiological

interventions. Comput Aided Surg 8(4):180–191
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