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Abstract Despite the numerous benefits of hydropower
production, this renewable energy source can have serious
negative consequences on the environment. For example,
dams act as barriers for the longitudinal migration of organ-
isms and transport of particulate matter. Accelerated siltation
processes in the receiving river reduce the vertical connec-
tivity between river and groundwater. Hydropeaks, caused
by short-term changes in hydropower operation, result in a
negative impact on both habitat and organisms, especially
during winter months when natural discharge is low and
almost constant. In this study, we report the current deficits
present in the River Rhone from two different scientific
perspectives – fish ecology and hydrology. Potential reha-
bilitation solutions in synergy with flood protection mea-
sures are discussed. We focus on the effects of hydropeaking
in relation to longitudinal and vertical dimensions and dis-
cuss local river widening as a potential rehabilitation tool.
The fish fauna in the Rhone is characterized by a highly
unnatural structure (low diversity, impaired age distribution).
A high correlation between fish biomass and monotonous
morphology (poor cover availability) was established. Tracer
hydrology provided further details about the reduced
permeability of the riverbank, revealing a high degree of
siltation with K values of about 4.7 × 10−6 m s−1.

Improving the hydrologic situation is therefore essential
for the successful rehabilitation of the Rhone River. To this
end, hydropeaks in the river reaches must be attenuated.
This can be realized by a combination of different hard
technical and soft operational measures such as retention
reservoirs or slower up and down ramping of turbines.
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1 Introduction

For centuries, man has modified running waters [51]. In
alpine rivers, production of hydropower results in a wide
range of environmental disturbances of river systems [66].
To date, two different types of power plants are commonly
in use: (1) run-of-river power plants that continuously pro-
cess the incidental discharge and the impoundment upstream
of such dams provides only marginal storage capacity; and (2)
huge reservoirs that were built in the alpine headwaters of
many streams, storing a significant water volume during times
of snowmelt and rainfall. These seasonal storage plants
produce energy only when there is a demand and are brought
online almost exclusively during periods of peak consumption.

Hydropower is an extremely important energy source in
all alpine countries. With an annual production of 38 TWh,
Switzerland’s hydroelectric power plants provide 58% of
the domestic energy production. Approximately 60% of this
production is generated in the Alps [67, 76]. The two main
Swiss hydropower production stations of the Grande
Dixence hydropower scheme in the catchment of the River
Rhone, for example, turbinated 611 millions m3 of water
in 2003, resulting in a total annual energy production of
2,877 GWh [24]. Peak production from storage reservoirs
plays a key role in stabilizing the European power grid.
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With an export of 7.1 TWh in 2000, Switzerland ranks third
in the European electricity market [53]. Moreover, it has
been suggested that until 2020, electric power consumption
in Europe might rise by 40% [18]. With an increasing share
of renewable energy sources, such as wind power, peak
production by hydropower schemes will be in high demand
to stabilize variable production rates.

Apart from the numerous positive aspects of hydropo-
wer, such as its renewability, it can also create serious
environmental problems. On the one hand, all hydroelectric
power schemes disrupt the river continuum [69]. Dams act
as barriers for the longitudinal migration and drift of organ-
isms [63] and they also trap sediment particles [21, 71].
Additionally, the river stretch between water diversion and
release often has a reduced discharge, the so-called residual
flow. The ecological consequences of this, such as a
reduced persistence of habitat features [74] or a reduction
of fish biomass [5], are well documented in the literature.

Dam operation has several far-ranging impacts on a
river’s natural flow regime [63, 52]. Reservoirs are mainly
filled in summer during the snow and glacier melting period,
whereas the stored water is used for hydropower production
during the winter months. The effect on the tailwaters are
twofold: (1) in comparison to natural conditions, river
discharge increases in winter and decreases in summer; and
(2) amplitude and frequency of large flood events decrease
due to the additional retention volume of the reservoirs [39,
40, 44]. In Switzerland, for example, the 130 or so large
reservoirs used for hydropower production can retain about
25% of the annual discharge of the main alpine watersheds
of the rivers Aare, Reuss, Rhine, Rhone, and Ticino [76].
This impairs the flushing capacity of the connected river
system [45]. Accelerated siltation processes [39] reduce the
vertical connectivity between river and groundwater [57],
affecting the benthic community and the spawning con-
ditions for fish [8].

These seasonal effects are superposed by rapidly oscillat-
ing floods caused by daily hydropower operation. These so-
called hydropeaks are not powerful enough to compensate
for the lack of natural flood events removing the siltation of
the riverbed [6]. Their regularity and high temporal frequen-
cy produce grave impacts on macroinvertebrates (catastro-
phic drift) [12], fish (stranding) [56] and their habitat [68].
In Switzerland, about 25% of the operating 500 hydropo-
wer plants with an annual production >300 kWh produce
these hydropeaks, which in turn affect approximately 30%
of all the country’s rivers and streams [38].

In order to stabilize the bed of regulated rivers, hard
structural measures like the construction of levees were used
earlier. However, recently, a paradigm shift towards inte-
grated river management has triggered efforts to reconcile
economic, political and ecological interests [75]. In densely
populated and economically intensively exploited river

landscapes, conservation and rehabilitation measures are
therefore facing many difficulties and constraints.

With a large installed capacity of storage reservoirs and
hydropower plants [39], the River Rhone in Switzerland is
presently an object of such conflicting interests. The main
focus of the project for a third Rhone correction (consec-
utively called 3RC) is flood protection, although ecological
and socio-economic improvements are also planned. In this
context, local river widening is discussed. Being primarily
an engineering measure for preventing incision, widening
shows significant morphological and hydraulic potentials
[55], such as gravel bank development and higher variabil-
ity of depth and velocity, leading to increased shoreline
length and a more diverse aquatic habitat. River widening
represents an appropriate rehabilitation measure in formerly
braided systems.

Many lessons can be learned for future flood protection
and rehabilitation efforts by analyzing a large-scale project
such as the 3RC. In Switzerland, approximately 25,600 km
of streams and rivers (43% of the total stream/river length)
are artificially deepened, dammed and straightened, and
require rehabilitation [50]. With 60% of the Swiss river
network lying in the alpine and high alpine region, the
rehabilitation potential is especially pronounced there [49].
Therefore, the 3RC in its initial stages is accompanied by
an interdisciplinary research project, namely the Rhone–
Thur River Rehabilitation Project [50].

In this work, we document an interdisciplinary study
within the framework of this project. Unifying two comple-
mentary perspectives – fish ecology and tracer hydrology –
we analyze the actual distribution of environmental deficits
in the River Rhone and assess their relative influence. Con-
sidering fish fauna in the longitudinal direction and river–
groundwater interactions in the vertical dimension [73]
allows the assessment of potential rehabilitation measures
on a catchment scale [46]. The discussion is focused on the
effects of hydropeaking and on the potential of local river
widening as a rehabilitation tool.

2 Methods

2.1 Study area

The upper River Rhone (Fig. 1a) originates from the Rhone
Glacier (1,763 m asl) and flows through the Rhone Valley
into Lake Geneva (374 m asl). Along this 167.5-km stretch,
it drains a catchment of 5,220 km2 consisting mainly of
forest and pastures (46%), rocks and glaciers (38%) and
agricultural land (16%) [39]. Naturally, the system shows a
nivo-glacial flow regime [39, 44].

Today, the River Rhone is highly channelized and reaches
with a near-natural discharge regime are rare. Along 36 km
(22%), the mean natural annual discharge volume is reduced
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by more than 20%, and over a distance of 109 km (65%)
hydropeaking is present (data from Gruppe fuer Hydrologie
[26]). Areas with intact connectivity are virtually non-
existent, mainly due to extensive use of the Rhone for
hydropower generation [50].

The fish-ecological study sites were selected by means
of stratified random sampling [37]. On the basis of topo-
graphical, hydrological and morphological data, the River
Rhone was divided into 18 segments (strata). Within each
stratum, points accessible with field equipment were deter-
mined randomly. Because of the difficult topography, seven
shorter strata with a total length of 10.7 km (6%) could not
be considered for the sampling. Altogether, 22 sites located
in 11 strata were included into the investigation.

To investigate the water exchange in the vertical
dimension (river–groundwater), the research focuses on
the Rhone River near Martigny (Fig. 1a). The flood
protection dike on both sides of the Rhone forms a clear
interface between the groundwater and the river itself.

2.2 Fish ecology

2.2.1 Biotic parameters

The upstream part of every randomly determined point was
electrofished via a semiquantitative approach along at least

100 m in length. The survey took place in February and
March 2003. Generally, a stationary unit was used (EFKO,
8 kW, 150–300/300–600 V). Stretches difficult to access
were fished with a backpack gear (EFKO, 1.5 kW, 150–
300/300–600 V).

Fishing was conducted on strips of the riverbed: in the lower
reaches, it was restricted to the bank strips; in stretches with
minor discharge, a strip in themiddle of the stream bedwas also
included. Narrow reaches in the headwaters were fished over
the whole width. Over the 22 sites, 36 strips were fished in total.

Fishes were handled according to a standardized proto-
col [controlled conditioning, anesthesia with clove oil
(0.5 ml diluted in 9.5 ml alcohol added to 20 L water)].
Wet weight (±0.1 g), body length (±1 mm), and presence
and type of anomalies were determined. After recovery, all
fishes were released along the fished stretch.

2.2.2 Environmental factors

For the survey of environmental factors, stretches were
divided into 10 intervals of equal length. At four transects,
substratum composition was estimated [3]. Substratum was
assigned to one of nine classes using a modified Wentworth
scale [14].

Between every two transects, hydraulic habitats [30] were
mapped and their percentages visually estimated. Habitat

Fig. 1 (a) Area of investigation
in the Valais (Rhone valley,
Switzerland). The sampling
points of the longitudinal
approach are indicated in the
schematic map of the river
reach. (b) A schematic sketch of
the groundwater–well transect
within the levee near Martigny.
The observation wells G1
(filtered between −5.5 and
−6.5 m) and G2 (filtered
between −2.5 and −3.5 m) are
equipped with probes recording
water level and temperature at
2-h intervals. (c) Graph showing
a common hydropeaking regime
in water level of the Rhone:
daily water level variations up to
1.5 m from Monday to Friday
are alternating with nearly
constant water level during the
weekend
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diversity was determined using Shannon’s index of diver-
sity and evenness [2, 41]. In each interval, presence and type
of suitable fish cover were determined visually, i.e., the area
providing shelter from predators and high current velocities
was identified. As according to Peter [48], overhead cover as
well as slow water areas behind submerged objects were
considered. For every interval, the shoreline composition
regarding particle type and size was recorded.

Directly after fishing, water samples were taken at each
site and immediately deep frozen in dry ice. Back in the
laboratory, the samples were defrosted and analyzed for total
phosphorous (T-P), NO3-N, NO2-N, NH4-N, pH, alkalinity,
dissolved organic carbon (DOC), total organic carbon (TOC)
and suspended solids.

The remaining percentage of the mean natural annual
discharge volume was determined on the basis of the
hydrological atlas of Switzerland [26]. Based on this
source, the impact of hydropeaking on the seasonal
discharge regime was also quantified as a percentage
increase in the natural winter flow.

2.2.3 Statistical analysis

To identify the environmental factors varying most between
the stretches, abiotic factors were analyzed by means of
principal components analysis (PCA). In this procedure,
uncorrelated groups of intercorrelated variables are created,
referred to as principal components. To determine the
relationship between environmental factors and biotic
parameters, all principal components with an eigenvalue
>1 were compared with the fish-biological parameters in a
mixed model procedure. This method allows us to consider
the hierarchical structure of the data set given by the
sampling of multiple strips at several sites. The analysis
was conducted by the software package SPSS 11.0.1 for
Windows. Before the analysis, all data were transformed
using standard transformations (arcsin, log, square root).

2.3 Tracer hydrology

Based on transect measurements within the dam structure
(Fig. 1b), the effects of hydropeaking across the dam were
determined in the river and in two groundwater wells at a
distance of 2.5 and 44.2 m from the river. The water levels
and temperature were monitored over a period of 4 years
using standard piezo-resistive pressure gauges and PT-100
thermometers, respectively.

2.3.1 Acquisition and evaluation of data

The data were taken in intervals of 2 h producing time series
of data in the River Rhone itself and the adjacent ground-

water. The analyzed data covered a period from October
1998 to September 2003, with about 21,200 values for each
unit. The data set has been analyzed by using time series
models to obtain an understanding of the basic processes. A
common method for estimating the association between
events in two time series is cross-correlation. The correlation
coefficient obtained quantifies the match between the two
quantitative time series [13, 29].

2.3.2 Interpretation of data

Water level and temperature signals provide different in-
formation: While water level may indicate the connection
between wells, the temperature signal indicates heat trans-
port in the groundwater. Old groundwater does not reflect
significantly the sinusoidal seasonal temperature of the
atmosphere. Young infiltrating groundwater, however,
reflects these changes. The amplitude and the retardation of
temperature minima or maxima with respect to the river are
used to characterize the infiltration process [32, 62].

In infiltration flow systems, temperature variations are
caused by heat transport (convection and thermal conduc-
tion) [7, 15, 58]. The temperature signal is retarded during
transport in the groundwater due to heat transfer to the soil
matrix. This means that the temperature signal as a tracer
for water transport, as derived from the cross-correlations,
must be corrected by a thermal retardation factor (R), which
is a function of the porosity (n) of the soil matrix:

R ¼ 1þ "
1� nð Þ
n

ð1Þ

where the nondimensional coefficient β describes the
distribution of thermal energy between the fluid and the
solid phase [15] and n reflects the porosity factor [–].

This simply means that the temperature signal will
migrate through an aquifer in the same manner as a water
parcel, but with a 1/R times slower velocity. The value for R
for porosities between 0.1 and 0.2 lies in a range between
about 3 and 5 [15].

3 Results

3.1 Fish ecology

3.1.1 Biotic parameters

The catches in the present study are highly dominated by
the brown trout (Salmo trutta fario), amounting to 99.6%
(714 individuals) of the total catch (717 individuals) (Weber
et al., in preparation). In addition, three bullheads (Cottus
gobio) were caught. Most brown trout were of medium
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body size (median length 136 mm), and both large-size and
young individuals were largely missing. Because of the
dominance of the brown trout, the analysis was restricted to
trout biomass.

Generally, low biomasses of brown trout were found,
varying between 0 kg/100 m2 (in four strips) and 1.54 kg/
100 m2, with a median of 0.06 kg/100 m2. Between the
different strips, the median weight of brown trout ranges
from 6.2 to 191.6 g (median = 25.9 g).

3.1.2 Environmental factors

Values of all chemical parameters were within the tolerable
range for brown trout [1]. In the PCA, the 28 original
variables were reduced to nine principal components, ac-
counting for 85.6% of the total variation. Every original
variable showed a high loading only in a single principal
component, therewith enabling a clear interpretation.

Based on this grouping of the original variables, the
extracted components could be labeled. Component 6, for
instance, could be referred to as presence of cover with
variables like availability of cover, bigger-sized substratum
and pools being the most important (Table 1). Additionally,
the percentage of glides was negatively correlated with
component 6.

3.1.3 Comparison between environmental
and biotic factors

The mixed model procedure revealed a significant positive
relationship between component 6 (cover availability) and
total trout biomass per 100 m2 (Table 1). Elevated

biomasses of brown trout were found in stretches with a
high amount of cover, a high percentage of pools, small
amounts of glides and substratum bigger than 25 cm in
diameter. No other components showed a significant
relationship with the total trout biomass (Table 1).

Concerning the median weight of individual brown trout,
no relationship with the investigated environmental factors
could be found (Table 1). The plot of the individual weight
against the impact of hydropower production (Fig. 2),
however, showed a trend towards smaller weights in
stretches with higher intensity of hydropeaking.

3.2 Tracer hydrology

Water temperature variations in rivers and streams are natu-
rally mainly influenced by energy exchange with the atmo-
sphere and the sediment as well as frictional heat [42]. Before
construction of the main hydropower schemes, Uetrecht [16]
measured average winter temperatures of 4.3°C and summer
temperatures of 9.8°C in the Rhone River at Porte du Scex
near Lake Geneva [43].

Today, this natural behavior is superposed by the influ-
ence of hydropeaks. In our area of investigation, the two
hydropower plants, Grande Dixence and Mauvoisin, located
with their outflow at ∼11.5 and ∼6 km upstream of the
location of S1 (Fig. 1b), respectively, start normally in the
early morning hours with the production of energy and the
release of reservoir water to the river. This water release has
a constant temperature of between 4 and 6.5°C [43], and leads
to a significant increase in water level in the river (Fig. 1c).
This hydropeaking modifies the seasonal temperature regime
to an average of 5.5°C in winter and 9.1°C in summer at the

Table 1 Results of mixed model analysis (p values), testing the relationship between the nine principal components (PC) and the fish-biological
factors

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

Mean weight, Brown trout (median) 0.546 0.764 0.698 0.256 0.164 0.416 0.420 0.851 0.531
Fish biomass/100 m2 0.181 0.487 0.247 0.258 0.251 p = 0.002

F = 21.48 (+)
0.815 0.291 0.210

Brown trout biomass/100 m2 0.179 0.490 0.247 0.255 0.256 p = 0.002
F = 21.50 (+)

0.814 0.281 0.209

Significant p values are in bold. (+) indicates a significant positive relationship.
Composition of the principal components (variables with loadings > 10.51):

PC1 [NO3] −, Residual flow +, Runs +, [Tot-P] +, Increased winter flow + , pH −, Alkalinity −,
PC2 Shannon index of diversity +, Evenness +, Number of habitat types +,
PC3 [NO2] +, [NH4] +,
PC4 DOC +, TOC +,
PC5 Substratum <8 mm +, Shoreline fine +,
PC6 Pools and deep edgewaters +, Substratum >256 mm +, Cover availability +, Glides −,
PC7 Substratum 8–64 mm +, Substratum 64–256 mm −,
PC8 Shoreline mixed −, Shoreline organic −,
PC9 Edgewaters shallow +, Shoreline coarse or rock +.
+ and − indicate the sign of the loadings on the PC.
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monitoring station of Porte du Scex upstream of Lake Geneva
[65]. This means that the construction of the hydropower plants
generally led to winter warming and summer cooling of the
river water. Raw temperature measurements at location S1 are
shown in Fig. 3a.

Temperature records at the observation wells G1 and G2
(Fig. 3a) show comparable patterns. While the maximum

water temperatures in the Rhone River are observed in
August, the temperature in the groundwater reached its
maximum with significant delay. This time lag can be
determined more precisely by cross-correlation (Fig. 3b).
The temperature signal is retarded by 732 h (∼1 month)
between the wells S1 and G1 and by 2,042 h (∼3 months)
between G1 and G2.

Fig. 3 (a) Raw data of temper-
ature measurements in observa-
tion wells G1 and G2 (position
is indicated in Fig. 1b). The
three hydrographs show differ-
ent time lags. (b) Quantification
of the time lag by cross-corre-
lating the data sets of S1/G1 and
G1/G2

Fig. 2 Individual biomasses of
brown trout in stretches differ-
ently affected by hydropower
production. (a) Natural flow
(<80% mean natural annual
discharge, MNAD); (b) residual
flow, moderate (41–80%
MNAD); (c) residual flow, pro-
nounced (0–40% MNAD);
(d) hydropeaking, moderate
(1–35% increase in natural win-
ter flow); (e) hydropeaking,
pronounced (>35% increase in
natural winter flow). Circles and
stars indicate outliers and
extremes, respectively
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4 Discussion

4.1 Fish ecology

The fish fauna in the River Rhone showed a low species
diversity. The assemblage was highly dominated by the
brown trout, whose population structure clearly differed from
that of undisturbed populations (Weber et al., in preparation).

Brown trout biomass varied considerably along the River
Rhone. The highest values were found next to structured
banks as those fixed by riprap. In the interstitial spaces
between the large angular rocks, lower current velocities
prevail and overhead cover is given. In exchange, in
reaches with limited cover availability, like groyne fields
with a high amount of fine sediments or unstructured
instream strips, small biomasses were observed. The
present data indicate a significant positive reaction of
brown trout biomass to cover variables, and therefore,
correspond well with results from previous studies (see
Heggenes [31] for a review).

Despite this positive reaction on cover availability, the
biomasses found in River Rhone are quite small. Compa-
rable investigations in near-natural alpine rivers revealed
biomasses between 12 and 100 kg ha−1, ranging up to
270 kg ha−1 [49]. In two studies on Ontario trout streams,
biomasses <12.5 [64] or 4 kg ha−1 [9] are considered to be
low, whereas values above 50 [64] or 16 kg ha−1 [9],
respectively, indicate high to very high biomasses.

Concerning the bank strips fished in this study, one
reason for the low biomasses certainly is that riprap
structures – although they offer cover – represent poor
substitutes for the structural richness of a natural river shore
(see Schmetterling et al. [60] for a review). Accordingly,
results by Schiemer and Zalewski [59] indicate that in a
reach with natural bank morphology, higher fish biomasses
can be found than along artificially fixed shorelines. Habitat
conditions in riprap banks are relatively monotonous, and
current protected sections are limited to the immediate
shoreline zone (embankment). Shallow areas with suitable
habitats for young trout (and other fish species) are largely
missing. As reported by Schmetterling et al. [60], riprap
does not meet the habitat conditions required for different
age classes of trout, explaining the low abundances of
young-of-the-years and the dominance of medium-size
animals. Moreover, spawning and rearing conditions in the
River Rhone are highly unsuitable (Weber et al., in
preparation). The observed medium-size fish therefore de-
rived from tributaries or from stocking. Finally, in the
instream sections of the River Rhone, the reduction in habitat
heterogeneity is especially obvious. High current velocities
dominate, and pool-riffle sequences are largely missing.

The question then becomes: Would rehabilitation efforts
aimed at improving the shoreline and instream structures

result in higher biomasses of brown trout and other fish-
biological parameters? In the literature, most examples of
river rehabilitation deal with measures like restructuring of
banks, construction of instream structures or local widening
offering a more diverse habitat situation. Not only struc-
ture-dependent species like the brown trout benefit in such
rehabilitated river reaches, but also other taxa with more
specialized habitat, spawning or trophic requirements. In
many cases, positive effects on fish communities like higher
species diversity [36] and the return of natural reproduction
[27] are reported. Similarly, structural measures along the
shoreline are of great importance for terrestrial organisms
[19].

The central question in the case of a hydrologically
impaired river like the Rhone is whether structural
measures alone will be effective. Doubts are legitimate as
low biomass values were also found in several riprap
stretches, with the best available habitat structure. Some
trends are obvious among the many possible explanations
for this observation. As shown in Fig. 2, the individual trout
biomasses in reaches strongly affected by hydropeaking are
generally smaller than in residual flow stretches or
hydrologically unaltered sections of the River Rhone.

Among the several impacts of hydropeaking on fish
reported in the literature [5, 74], the discussion of habitat
persistence is of special importance for the River Rhone,
especially in its lower part. With rapid fluctuations of the
water level of up to 1 m, riprap structures are not perma-
nently covered by water. Because the cover is not con-
stantly available, the structure-dependent brown trout are
facing a serious reduction of habitat quality. Field [4, 61] as
well as habitat modeling [20, 77] studies showed an
increased habitat instability in hydropeaking reaches,
especially affecting the availability of juvenile habitat.

The reaction of other aquatic organisms to hydropeaking
is similar. Benthic organisms, for example, are massively
disturbed by the scouring effects due to the higher flow
velocities [12]. The aquatic invertebrate fauna living in the
shoreline zone of hydropeaking-affected rivers is highly
impaired compared with stretches of natural discharge
regime [19]. Forming the nutritional basis for many species,
such effects on the invertebrate community can also have
an indirect feedback on the fish assemblage.

Due to the slow exchange between river and groundwa-
ter, the quality of the aquatic habitat is additionally de-
graded. In the highly clogged substrate of the River Rhone,
natural reproduction of the lithophil brown trout is faced
with additional problems such as impaired oxygen supply.

Probably, the rehabilitation of the fish community in the
River Rhone can only be successful when structural im-
provements are linked with measures addressing the
hydrological deficits such as hydropeaking and residual
flow.
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4.2 Tracer hydrology

The water causing the hydropeaks originates from the deep,
temperature-constant sections of the high alpine reservoir. It
is piped directly to the power stations in the Rhone Valley
where it is discharged into the river. Hydropeaks strongly
modify the seasonal, weekly and daily temperature regime
in the Rhone. In winter, the river water is warmed up during
hydropower production, while in summer it is cooled down.
This results in an average water temperature in January 2000
of 2.64°C between Monday and Friday, but only 1.92°C
during the weekend.

These temperature changes have an impact on, e.g., the
invertebrate community [12]. However, it is unlikely that
temperature is the only factor affecting size variation and
the geographic distribution of aquatic insects [22, 70]. The
frequent and intermittent variations in temperature [23] may
act as an additional factor for lower density and biomass of
invertebrates in hydropower-affected river reaches in
comparison to unaffected sites [12].

These frequent temperature variations are transferred to
the adjacent aquifer where they interact with the geological
properties of the soil matrix of the levee structure. Egli [17]
determined the hydraulic conductivity within the levees
with two pumping tests. He studied two well transects
about 1 km downstream of S1 (Fig. 1b). The pumping tests
revealed high and varying values for the hydraulic
conductivity K between 2.5 × 10−4 and 5.9 × 10−3 m s−1,
which can be classified between “permeable” and “very
permeable” [33]. Calculations using Darcy’s law, which are
based on the displacement of seasonal temperature signals
[Fig. 3b and equation (1)], between G1 and G2 confirm
Egli’s findings as the values for K range between 7.0 × 10−4

and 1.7 × 10−3 m s−1 (Table 2).
K values were determined by formulating Darcy’s law

as:

K ¼ van

J
ð2Þ

where K stands for the hydraulic conductivity [m s−1], va
represents the average flow velocity [m s−1], J denotes the
slope of the groundwater surface and n reflects the porosity
factor [–].

The flow velocity of the groundwater was calculated by
the time shift of the seasonal temperature between probes
S1, G1 and G2, and the rectangular distance in between
(Figs. 1b and 3b). The resulting velocity value must be
corrected by a retardation factor that is calculated according
to equation (1). Parameters for calculation of the average
flow velocities and the K values between S1 and G1 as well
as G1 and G2 are summarized in Table 2.

The pumping test performed by Egli [17] can give infor-
mation about the hydraulic conductivity of the material

inside the levee, but not for the material of the riverbed.
However, Table 2 shows that the hydraulic conductivity
between S1 and G1 (riverbed material) is much smaller
than that between G1 and G2.

To corroborate the small values of hydraulic conduc-
tivity of the riverbed, the value for the groundwater flow
velocity va in [m s−1] in Darcy’s Law was transformed to
the infiltration rate per unit area of riverbed q [m3 m−2

day−1] by multiplying va by the effective porosity n [32]:

q ¼ van ð3Þ

Hoehn [32] found specific infiltration rates for various
rivers in Switzerland to be between q = 0.05 m3 m−2 day−1

(Töss) and q = 3 m3 m−2 day−1 (Rhine). The specific
infiltration rates between S1 and G1 in the River Rhone of
0.02 m3 m−2 day−1< q < 0.1 m3 m−2 day−1 (Table 2) are
hence very low. The specific infiltration rates of 0.15 m3

m−2 day−1< q < 0.6 m3 m−2 day−1 range near the lower end
of the known infiltration rates of Swiss rivers.

The widening of the riverbed requires the dislocation of
the current levee in order to secure the valley bottom against
flood events. The rehabilitation will change the permeability
of the reconstructed levee, and hence, the infiltration rate of
river water into the groundwater. Additional sealing of new
levees might be necessary to prevent rising water tables in
the Rhone floodplain and to protect drinking water supplies.

4.3 Problem analysis and possible solutions

Currently, the performance of the River Rhone shows
massive deficits. For example, the fish fauna is character-
ized by a highly unnatural structure. Furthermore, a high
correlation between fish biomass and monotonous shoreline
and instreammorphology was established. Tracing the river–
groundwater interaction revealed further evidence of the
reduced habitat quality of the riverbank. A high degree of

Table 2 Results from cross-correlation between the observation wells
S1, G1, and G2 (Fig. 1b)

S1–G1 G1–G2

Time shift [h] 732 2042
Porosity, n [–] 0.1–0.2 0.1–0.2
Coefficient, β [–] 0.45–0.54 0.45–0.54
Retardation factor,
R [–]

2.8–5.86 2.8–5.86

Slope, J [‰] 95–192 2–5
va [m day−1] 0.2–0.5 1.5–3.0
K [m s−1] 3.5 × 10−6–5.8 × 10−6 7 × 10−4–1.7 × 10−3

q [m3 m−2 day−1] 0.02–0.1 0.15–0.6

For an explanation of the parameters, see text. The values for va and K
represent minimum and maximum values calculated with the extrema
of the retardation factor R and porosity n, respectively.

264 Environ Model Assess (2007) 12:257–267



siltation was found to strongly impede surface water–ground-
water exchange.

Additionally, hydrological deficits were evident in both
studies. In a longitudinal, system-wide view, the stability of
fish habitat is massively affected due to poor cover avail-
ability and changing water levels. In a vertical and lateral
perspective, the transient changes in water level are not
limited to the river itself, but also measurable in the near-
river aquifer. This type of disturbance is likely to produce
more serious ecological effects if the lateral connectivity is
improved by rehabilitation measures such as river widening.

Rehabilitation scenarios are therefore facing conflicting
boundary conditions. The fishes’ ecological situation can be
significantly improved by effective rehabilitation of the
longitudinal habitat structure. This success generally
achieved by widening is also positive in terms of removing
the siltation of the riverbank. River–groundwater interac-
tions are reestablished, resulting in benefits for the epigean
fauna [11, 72], spawning conditions for fish [35] as well
as the replenishment of the adjacent aquifer for flood con-
trol [34]. In the river Rhone, as a formerly braided system
widening is a rehabilitation measure that deserves special
consideration.

Improving vertical connectivity, however, cannot be
achieved without serious tradeoffs. During the summer
months, the groundwater table in the Rhone Valley lies
typically 0.5 m below the average water level in the Rhone
River. If restoration measures increase the permeability, the
water level in the river-near aquifer could rise and poten-
tially damage the valley’s agriculture, infrastructure [25]
and public drinking water supply [54].

The boundary conditions are obvious: the River Rhone
is heavily impacted by morphologic structures and inten-
sively used for hydropower production. While the morpho-
logic structures can be restored by widening the river, the
status quo of the hydropower schemes is generally accepted
because of the following reasons:

& The licenses for the operation of most of the hydro-
power plants in Switzerland are valid for 80 years.

& Hydropower plants play an important role in terms of
regulating the European power grid.

& Hydropower is considered as a renewable energy with a
favorable CO2 balance in comparison with widespread
fossil fuel electricity production.

Normalization of the hydrologic situation though is es-
sential for the success of the 3RC. It will therefore depend on
the effective attenuation of hydropeaks in the river reaches
being subject to rehabilitation measures. This can be realized
by a combination of different hard technical and soft oper-
ational measures:

& River widening should be planned as large, as long and
as networked as appropriate [55]. The reconstructed

levee constraining the wider riverbed should be sealed
to prevent rising water tables in the urbanized valley
ground [25].

& In order to attenuate the hydropeaks in the connected
river, the turbinated water should be stored in retention
basins or underground reservoirs before being continu-
ously discharged into the river [47].

& Slower, more consistent powering up and down of the
turbines could result in a more moderate hydropeaking
rate [28]. Such “soft” methods are effective only in
combination with the “hard” approaches outlined above
[38].

Activities such as restoring a river while improving flood
protection measures and adapting hydropower schemes for
a more ecological operation require an integrated approach
and considerable financial effort. The costs, however, will
be acceptable if alpine hydropower is considered a “green
energy” [10] requiring ecological investments instead of
subsidizing other more expensive sources of electricity.
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