On the equation $${{\rm det}\,\nabla{u}=f}$$ with no sign hypothesis
Cupini, G. ; Dacorogna, Bernard ; Kneuss, O.
In: Calculus of Variations and Partial Differential Equations, 2009, vol. 36, no. 2, p. 251-283
Add to personal list- Summary
- We prove existence of $${u\in C^{k}(\overline{\Omega};\mathbb{R}^{n})}$$ satisfying $$\left\{\begin{array}{ll} det\nabla u(x) =f(x) \, x\in \Omega\\ u(x) =x \quad\quad\quad\quad x\in\partial\Omega\end{array}\right.$$ where k≥1 is an integer, $${\Omega}$$ is a bounded smooth domain and $${f\in C^{k}(\overline{\Omega}) }$$ satisfies $$\int\limits_{\Omega}f(x) dx={\rm meas} \Omega$$ with no sign hypothesis on f