Boundary Non-crossings of Brownian Pillow
Hashorva, Enkelejd
In: Journal of Theoretical Probability, 2010, vol. 23, no. 1, p. 193-208
Ajouter à la liste personnelle- Summary
- Let B 0(s,t) be a Brownian pillow with continuous sample paths, and let h,u:[0,1]2→ℝ be two measurable functions. In this paper we derive upper and lower bounds for the boundary non-crossing probability $$\psi(u;h):=\mathbf{P}\big\{B_{0}(s,t)+h(s,t)\leq u(s,t),\forall s,t\in[0,1]\big\}.$$ Further we investigate the asymptotic behaviour of ψ(u;γ h) with γ tending to ∞ and solve a related minimisation problem