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Abstract. The type IIa Na+/Pi, cotransporter (NaPi-
IIa) mediates electrogenic transport of three Na+ and
one divalent Pi ion (and one net positive charge)
across the cell membrane. Sequence comparison of
electrogenic NaPi-IIa and IIb isoforms with the
electroneutral NaPi-IIc isoform pointed to the third
transmembrane domain (TMD-3) as a possibly sig-
nificant determinant of substrate binding. To eluci-
date the role of TMD-3 in the topology and
mechanism underlying NaPi-IIa function we sub-
jected it to cysteine scanning mutagenesis. The con-
structs were expressed in Xenopus oocytes and Pi

transport kinetics were assayed by electrophysiology
and radiotracer uptake. Cys substitution resulted in
only marginally altered kinetics of Pi transport in
those mutants providing sufficient current for analy-
sis. Only one site, at the extracellular end of TMD-3,
appeared to be accessible to methanethiosulfonate
reagents. However, additional mutations carried out
at D224 (replaced by E, G or N) and N227 (replaced
by D or Q) resulted in markedly altered voltage and
substrate dependencies of the Pi-dependent currents.
Replacing Asp-224 (highly conserved in electrogenic
a and b isoforms) with Gly (the residue found in the
electroneutral c isoform) resulted in a mutant that
mediated electroneutral Na+-dependent Pi transport.
Since electrogenic NaPi-II transports 3 Na+/trans-
port cycle, whereas electroneutral NaPi-IIc only
transports 2, we speculate that this loss of electroge-
nicity might result from the loss of one of the three
Na+ binding sites in NaPi-IIa.
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clamp

Introduction

The physiological role of type II sodium-phosphate
cotransporters is to facilitate cellular uptake of
inorganic phosphate (Pi) by coupling it to the trans-
membrane Na+ gradient. Three different Na/Pi co-
transporter isoforms are known to date. The type IIa
cotransporter (NaPi-IIa) is predominantly expressed
in brush border membranes of the kidney proximal
tubule and is a major contributor to regulated Pi

reabsorption [17, 18, 23]. The type IIb cotransporter
is expressed in (among other tissues) the intestine,
where it mediates Pi absorption from the gut lumen
[4, 9]. Similar to the IIa isoform, the recently cloned
type IIc cotransporter is expressed in the kidney
proximal tubule and is strongly upregulated in re-
sponse to a low-Pi diet [21, 22]. The main functional
difference between the isoforms is that, whereas type
IIa and IIb cotransporters are electrogenic, type IIc is
electroneutral.

Topology analyses based on hydropathy plots
and hidden-Markov modeling predict at least eight
transmembrane domains (TMDs) for type II Na/Pi,
cotransporters (see Fig. 1). Intracellular orientation
of the N and C termini have been verified using epi-
tope tagging, as has the extracellular location of a
large glycosylated loop between TMDs 3 and 4 [8,
16]. Substituted cysteine accessiblity mutagenesis
(SCAM) studies suggested that the long linking re-
gions between TMDs 2)3 and 5-6 enter the mem-
brane to form part of the transport corridor [6, 10,
11, 15]. Also the short external loops connecting
TMDs 2-3 and 7-8 contain functionally sensitive sites
important with respect to defining the voltage sensi-
tivity of NaPi-IIa [2, 3].

Sequence comparison between the different iso-
forms shows that amino acids in the putative TMDs
and in the two re-entrant loops are highly conserved.
Moreover, a comparison of all currently availableCorrespondence to: L.V. Virkki; email: leilav@physiol.unizh.ch
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sequence data reveals that there are very few non-
conservative substitutions between the electrogenic
and electroneutral isoforms [1]. One prominent sub-
stitution appears in TMD-3, where Asp-224 (num-
bering based on human NaPi-IIa) in the electrogenic
IIa and IIb isoforms is substituted with a glycine in
the electroneutral IIc. Since TMD-3 is also amphi-
pathic and could therefore form part of an aqueous
transport pathway, we hypothesized that this TMD
might be important in substrate recognition and
transport function in Na/Pi cotransporters. In this
study we therefore focussed on TMD-3 by first per-
forming cysteine scanning mutagenesis of 19 consec-
utive amino acids predicted to constitute TMD-3 and
second, investigating the effects of mutagenesis at
sites highlighted from bioinformatic considerations.

Materials and Methods

MOLECULAR BIOLOGY AND OOCYTE EXPRESSION

The cDNA encoding human NaPi-IIa (NPT2a, SLC34A1) was

previously subcloned into a KSM expression vector to improve its

expression in Xenopus laevis oocytes [26]. Mutant transporters were

generated using the Quickchange Site-directed Mutagenesis kit

(Stratagene) according to manufacturer’s directions. Mutants were

verified by sequencing (Microsynth). Before introducing novel Cys

residues in TMD-3, we first replaced the native Cys-225 with Ser

(C225S). All mutants in which we introduced a novel Cys were

constructed on this C225S backbone, all other mutants were con-

structed on the wild-type (WT) backbone. The plasmids were lin-

earized using Xba1 (Promega) and used as a template for the

synthesis of capped cRNA using the Message Machine T3 kit

(Ambion).

Stage V-VI defolliculated oocytes from Xenopus laevis were

isolated and maintained as described previously [27]. Oocytes were

injected with 50 nl of cRNA (0.2 lg/ll) encoding WT or mutant

NaPi-IIa. Control oocytes were injected with 50 nl of water. Oo-

cytes were incubated at +18�C in modified Barth’s solution, con-

taining (in mM) 88 NaCl, 1 KC1, 0.41 CaCl2, 0.82 MgSO4, 2.5

NaHCO3, 2 Ca(NO3)2, 7.5 HEPES, pH 7.5 adjusted with TRIS.

The solution was supplemented with 5 mg/l doxycyclin. Electro-

physiology and radiotracer flux experiments were performed 2–5

days after injection. Each data set is obtained from at least two

batches of oocytes from two different donor frogs.

TWO-ELECTRODE VOLTAGE CLAMP

We used a custom-built voltage clamp optimized for fast clamping

speed [5] to make recordings from control oocytes and oocytes

expressing WT NaPi-IIa or mutants. The voltage clamp was con-

trolled and data aquired using a computer running pClamp 8

software (Axon Instruments), which also controlled valves for

solution switching. Solutions were cooled to 20)22�C before

introduction to the oocyte recording chamber at a rate of 5 ml

min)1. The oocyte was initially superfused with ND100 solution,

containing (in mM) 100 NaCl, 2 KCl, 1.8 CaCl2, 1 MgCl2, 10

HEPES, titrated to pH 7.4 using TRIS. We obtained different

concentrations of Pi by adding K2HPO4/KH2PO4 in proportions

giving the desired pH. In some experiments it was necessary to

substitute CaCl2 with BaCl2 to suppress the activation of endoge-

nous Cl) channels at hyperpolarizing voltages. In solutions where

the Na+ concentration was varied (ND0-ND100), NaCl was sub-

stitued equimolarly with choline Cl. In some experiments, we

replaced NaCl with Na glucuronate to reduce the external Cl)

concentration.

MEASUREMENT OF APPARENT Pi AND Na+ AFFINITIES

The oocyte was clamped to a membrane potential of )50 mV and

the holding current was continuously recorded. To measure Pi-

induced currents (IPi), the superfusate was switched to one con-

taining Pi and deflection in the holding current was monitored.

When the current had reached its maximum, the perfusate was

switched back and washout of Pi was monitored by observing the

return of holding current to baseline. When IPi were to be recorded

for another Na+ concentration or pH, the holding current was first

allowed to stabilize in the new baseline solution before switching to

one including Pi. For determining the apparent Km for Pi, Pi-in-

duced current deflections were measured using different Pi con-

centrations while keeping the Na+ concentration constant. For

determining the apparent Km for Na+, the oocyte was first perfused

with a specific concentration of Na+ before switching to a solution

containing Pi in the same solution (the Pi concentration was kept

constant throughout the experiment)

The apparent Km for Pi and Na+ was determined by fitting

data with the modified Hill equation:

IPi ¼ IPi; max ½S�H=ð½S�H þ ðKmÞHÞ ð1Þ

where IPi is the Pi-induced current, IPi,max is the extrapolated

maximal Pi-induced current, [S] is the concentration of substrate

(Na+ or Pi), Km is the concentration of substrate that gives half-

maximum response, and H is the Hill coefficient. For determining

KmPi, H was constrained to 1.

INCUBATION WITH METHANETHIOSULFONATE (MTS)
REAGENTS

Sodium (2-sulfonatoethyl)methane thiosulfonate (MTSEA),

[2-(trimethylammonium) ethyl]methanethiosulfonate bromide

(MTSET) and sodium (2-sulfonatoethyl)methane thiosulfonate

(MTSES) were dissolved in DMSO at a concentration of 1 M and

stored at )20�C. Immediately before use, the MTS reagents were

diluted to a final concentration of 1 mM in ice-cold ND100 solution

and applied using gravity feed through a stainless-steel cannula

placed close to the oocyte. During application, the oocyte was held

at )50 mV and the current tracing monitored continuously. Before

MTS application, IPi was measured using 1 mM Pi in ND100

solution.

MEASURING THE VOLTAGE-DEPENDENCY OF Pi-INDUCED

CURRENTS

The voltage-dependency of Pi- induced currents was measured by

applying holding potentials from )160 or )140 mV to +40 mV

and recording currents in the presence and absence of Pi, as de-

scribed previously [5]. For determining the Pi -dependency of the

current, we varied the Pi concentration while keeping the Na+

concentration constant. For determining the Na+-dependency of

the current, the oocyte was first perfused with a specific concen-

tration of Na+ and subsequent recordings were obtained in the

presence and absence of Pi. In both cases, current records obtained

in the absence of Pi were subtracted from those recorded in the

presence of Pi to obtain the Pi-dependent current. To compensate

for the differences in expression levels between individual oocytes,
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the data obtained from each oocyte were normalized to the Pi-

dependent current recorded at )100 mV with 100 mM Na+ and 1

mM Pi in the bath at pH 7.4 before fitting the data with Eq. 1 plus a

variable offset. The offset is included to account for the leak cur-

rent, which is present in NaPi-IIa-expressing oocytes in the absence

of Pi, but blocked by Pi with an unknown affinity [2, 25].

RADIOTRACER UPTAKE

A group of oocytes (5–9 oocytes/group) was first allowed to

equilibrate in uptake solution without tracer. After aspiration of as

much of this solution as possible, we added 100 ll uptake solution
containing radiotracer (32Pi,

22Na or both). The uptake was al-

lowed to proceed for 15–30 min before it was stopped by washing

the oocytes three times with 4 ml ice-cold ND0 solution containing

2 mM cold Pi. If no Pi was present in the uptake solution, washing

was performed with ice-cold ND0 solution.

Uptake of 32Pi alone was carried out using ND100 solution

and 1 mM cold Pi, to which 32Pi (
32P-orthophosphate, specific

activity 10 mCi/mmol Pi) was added. For dual uptake of both
32Pi

and 22Na, it was necessary to lower the Na+ concentration to

achieve a high enough specific activity for Na+. Therefore these

experiments were carried out using ND40 solution with 2–3 mM

cold Pi, and containing the isotopes 32P-orthophosphate (specific

activity 3 mCi/mmol Pi) and
22Na (specific activity 350 lCi/mmol

Na; Amersham).

After washing, oocytes were placed individually in a scintil-

lation vial and lysed in 250 ll 10% SDS. 32P and 22Na activities of

individual oocytes were counted using a Packard Tri-Carb 2900TR

scintillation counter. For the dual uptake experiments the counts of

the two isotopes were separated using a Dual DPM assay with

quench curves.

WESTERN BLOTTING

Pools of three oocytes were lysed in 60 ll homogenization buffer

(100 mM NaCl, 200 mM Tris-HCl, 3% pentaethyleneglycol mono-

n-dodecyl ether (Calbiochem), pH 7.6). Yolk proteins were re-

moved by centrifugation (3 min 16,000 · g). 10 ll supernatant was
mixed with 10 ll loading buffer (380 mM Tris-HCl, 8% SDS, 4 mM

EDTA, 40% glycerol, 4 mg/ml bromophenol blue, pH 6.8) and

separated on a 9% SDS-PAGE gel. Separated proteins were

Fig. 1. Topology and sequence alignment. (A) Topology model of human NaPi-IIa contains eight putative transmembrane segments and

intracellular N and C termini. Open squares indicate residues in the extracellular and intracellular linker regions (ECL and ICL, respec-

tively) that were mutated in previous cysteine scanning accessibility studies [2, 3, 10, 15]. Of these, Asn-199, which is postulated to interact

with sites in TMD-3, is indicated with a grey sqare. Residues mutated to cysteines in TMD-3 (this study) are indicated by a letter

corresponding to the amino acid in a white circle. The native Cys-225 (denoted by a diamond) was changed to Ser. (B) Alignment of the

amino acid sequence in TMD-3 of human NaPi-IIa, IIb and IIc. Non-conserved residues are indicated by black lettering on white

background. (C) Helical wheel analysis of TMD-3 in NaPi-IIa. Charged residues are indicated by white lettering in a black oval and polar

residues by black lettering inside a white oval.
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transferred onto a nitrocellulose membrane (Schleicher & Schuell).

The membrane was preincubated in blotting solution (5% nonfat

milk in 100 mM NaCl, 50 mM Tris-HCl, pH 7.4) and then probed

for NaPi-IIa protein using a rabbit polyclonal antibody raised

against a synthetic C-terminal peptide (dilution 1:2000 in blotting

solution). Signal was detected by incubating the blot with a

horseradish peroxidase-conjugated F(ab’)2 fragment (Amersham)

and then exposing it to a solution containing 0.0165% H2O2, 1.25

mM luminol and 0.2 mM p-coumaric acid in 100 mM Tris-HCl, pH

8.5. Chemiluminescence was detected using autoradiography.

REAGENTS

All standard chemicals and reagents were obtained from either

Sigma or Fluka Chemie AG. 32P-orthophosphate was purchased

from New England Nuclear and 22Na was from Amersham. The

Cys-reactive reagents MTSEA, MTSET and MTSES were from

Toronto Research Chemicals.

DATA PRESENTATION AND STATISTICAL ANALYSIS

All data is shown as means ± SEM, where n denotes the number of

experiments. Error bars are not shown when they are smaller than

the symbols. Statistical analysis of the data was carried out using

two-tailed t-test or one-tailed ANOVA with Tukey’s post-test, with

p< 0.05 considered significant. Both statistical analysis and curve

fitting were done using GraphPad Prism 3.0 software (GraphPad

Software).

Results

CYSTEINE SCANNING MUTAGENESIS IN TMD-3

Our first strategy to determine structure-function
relationships in TMD-3 was to perform cysteine
scanning mutagenesis (SCAM). TMD-3 contains one
native Cys (C225), which was removed to avoid
possible interaction between this Cys and newly
introduced residues, or the possibility that the

mutagenesis would change the reactivity of C225S by
making it more exposed. To establish the feasibility
of using this substitution as a backbone for the sub-
sequent cysteine scanning mutagenesis (SCAM), we
first compared the Pi- and Na+- activation kinetics of
WT and C225S-expressing oocytes at a holding po-
tential of )50 mV. The Pi-induced currents (IPi) at
100 mM Na+ were obtained by subtracting the
steady-state current in 0 mM Pi from that at the given
Pi. The data were easily fit with a Michaelis-Menten
function (Eq. 1, H =1) (Fig. 2A). The fitting algo-
rithm reported that the apparent affinity constant for
Pi (KmPi) was significantly reduced for the C225S
mutant (47 ± 16 lM), compared to the WT
(94 ± 22 lM, n = 10 each). Furthermore, the
maximum Pi-dependent current was approximately
halved for C225S, compared to WT.

The corresponding Na+-activation at 1 mM Pi is
shown in Fig. 2B. As we have previously reported for
the human WT NaPi-IIa [25], C225S also displayed a
clear sigmoidicity for IPi with increasing [Na+]. Fit-
ting these data with Eq. 1 (H unconstrained) indi-
cated a small but statistically significant decrease in
KmNa in the C225S mutant (30 ± 7 mM), compared
to the WT (34 ± 5 mM), n = 5. For WT and C225S,
H was 2.8 ± 0.9 and 2.2 ± 1, respectively, consis-
tent with cooperative Na+ interaction with the
protein. Moreover, we observed that the maximum
Pi-dependent current mediated by the C225S mutant
was half that of the WT, consistent with the Pi-acti-
vation data.

To determine if the voltage-dependency of Pi

transport was affected by the C225S mutation, we
measured IPi at different voltages. Figure 2C shows
the current-voltage (I-V) relationship for oocytes
expressing WT or C225S NaPi-IIa. The current at
each voltage was reduced for the C225S mutant, as

Fig. 2. Characterization of the C225S mutant. (A) Pi dose-response. The Pi-induced current was plotted as a function of Pi concentration.

Filled circles, WT; empty circles, C225S. The data were fitted with Eq. 1, yielding the following fit parameters: for WT,

KmPi = 0.094 ± 0.02 mM, IPi, max = 95 ± 6 nA; for C225S, KmPi = 0.047 ± 0.02, IPi, max = 44 ± 4 nA, n = 10. (B) Na+ dose-

response. The Pi-induced current was plotted as a function of the Na+ concentration. Filled squares, WT; empty squares, C225S. The data

was fitted with Eq. 1, yielding for the WT, KmNa = 34 ± 5 mM,H = 2.8 ± 0.9, IPi, max = 94 ± 11 nA; for C225S, KmNa = 30 ± 7 mM,

H= 2.3 ± 1, IPi, max = 44 ± 7nA, n = 5. (C) Current-voltage relationship. Current recordings were acquired in ND100 solution in the

presence or absence of 1 mM Pi, and subtracted to obtain the Pi-dependent current, which was plotted as a function of voltage. Filled

diamonds, WT; empty diamonds, C225S; filled triangles, control oocytes. n = 5–7.
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compared to WT, but the shapes of the I-V rela-
tionships were similar, which indicated that the
voltage-dependency was not affected by the mutation.
Taken together, these data indicated that the Cys-Ser
substitution at 225 was well tolerated, but with an
approximately 50% decrease in maximum transport
rate.

Using the C225S background, we next substi-
tuted, one by one, 19 residues in TMD-3 with Cys
(from Val-222 to Thr-241). To identify which mutants
were capable of mediating Pi transport we measured
32Pi uptake using 1 mM cold Pi and 100 mM Na+.
Figure 3A shows Pi uptake in oocytes expressing the
various Cys mutants used in this study. The results
show that removing the native Cys in TMD-3 (C225S)
resulted in an �50% decrease in Pi uptake, which was
consistent with the �50% decrease in Pi-induced
currents shown in Fig. 2. Of the 19 novel Cys mutants
engineered on the C225S background, four mutants
(D224C-C225S, N227C-C225S, P236C-C225S and
E238C-C225S) did not mediate significant Pi

transport.
Only onemutant (F226C-C225S) showed the same

level of Pi transport as C225S. Of the remaining mu-
tants, six mediated �50% of the C225S transport
activity with the last eightmutantsmediating even less.

Next, we measured Pi-induced currents in the Cys
mutants at a membrane voltage of )50 mV, to
determine if the basic electrogenicity of Pi transport
had been affected by the mutagenesis. All mutants
that mediated significant 32Pi transport in Fig. 3A
also showed Pi-induced currents. Moreover, to
determine if the voltage dependency of Pi transport
was altered in any of the novel Cys mutants, we
measured Pi-dependent currents at different voltages
in oocytes expressing WT or mutant NaPi-IIa. All the
functional mutants tested (residues 226, 228-232, 234,
235, 237 and 239-241) had I-V relationships similar to
those of C225S shown in Fig. 2C (data not shown).

To assess if the reduction in Pi transport seen in
some mutants was due to reduced protein expression,
we performed Western blotting on whole-oocyte ly-
sates. Figure 3B shows a Western blot of cell lysates
of control oocytes and oocytes expressing WT and
mutant NaPi-IIa protein. The low-molecular weight
band corresponds to the predicted molecular weight
of unglycosylated monomeric NaPi-IIa protein (68.9
kD), whereas the weaker band around 80–100 kD
corresponds to the glycosylated form. No signal was
detectable in the control lane, indicating that the
signal in the other lanes is specific for NaPi-IIa.

A comparison of the 32Pi uptake data in Fig. 3A
with the Western blots shown in Fig. 3B indicates
that only a few mutants expressed at the same level as
the WT. Of these, D224C-C225S did not show sig-
nificant Pi uptake, indicating that although protein
was synthesized, it either did not function correctly or
was not targeted to the membrane. The only mutants

that showed C225S-like expression and at least 50%
of its Pi uptake were F226C-C225S, W228C-C225S,
S230C-C225S, A239C-C225S and A240C-C225S.

For mutants that showed sufficient Pi-induced
currents, we measured KmPi to determine if a change
in this kinetic parameter could account for the re-
duced transport activity (Fig. 3C).

Most mutants with large enough Pi-induced
currents to yield a reliable measurement over the
range of Pi concentrations used (0.01 to 1 mM) had
similar KmPi, compared to C225S. S230C-C225S was
the only mutant with a marked increase in KmPi

(110 ± 10 lM, compared to 47 ± 16 lM for
C225S); however, this value is still well below the
concentration of Pi used in the uptake study (1 mM).
Since S230C-C225S showed an increase in KmPi, we
decided to also determine KmNa for this mutant. Its
KmNa was significantly increased at 55 ± 2 mM,
compared to 30 ± 7 mM for C225S. Taken together,
these results indicated that the reduced Pi transport
activity seen in Fig. 3A could not be explained by a
reduction in Pi affinity.

To perform a cysteine scanning of the novel
TMD-3 mutants, we compared IPi under voltage-
clamp conditions (100 mM Na+, )50 mV) before and
after exposure to the methanethiosulfonate (MTS)
MTSEA at a concentration of 1 mM, which we have
previously used as a benchmark condition to detect
Cys residues at functionally important sites, e.g., [3,
15]. Only one mutant, A240C-C225S, showed a
change in IPi after MTSEA treatment for 5 min. For
this mutant, IPi was reduced by �50%, and no further
change in IPi was obtained even with increasing the
treatment period to 15 min (Fig. 3D). Similar results
were obtained with MTSET (1 mM), which con-
firmed that the site was accessed from the extracel-
lular compartment. In contrast, applying MTSES for
up to 15 min had no effect on Pi-induced currents.
Furthermore, A240C-C225S-expressing oocytes pre-
viously exposed to MTSES retained their MTSEA
sensitivity, indicating that MTSES was unable to re-
act with this novel Cys under these conditions.

SITE-DIRECTEDMUTAGENESIS AT THREE SITES IN TMD-3

Our second strategy to determine the structure-
function relationships in TMD-3 made use of a
sequence comparison of this region between electro-
genic and electroneutral type II Na/Pi cotransporters
(Fig. 1B) and the position of three oxygen-containing
polar/charged residues on one face of TMD-3
(Fig. 1C), which might be involved in Na+ ion
coordination.

Asp-224

The charged residue Asp-224 is conserved among the
electrogenic type IIa and IIb Na/Pi cotransporters,
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but is substituted by Gly in the electroneutral NaPi-
IIc. To determine if Asp-224 is important for electr-
ogenicity of transport, we made mutations where
Asp-224 was substituted with Gly, Glu, or Asn. All
mutants mediated Pi transport, as shown by the 32Pi

uptake assay in Fig. 4A, albeit at much reduced rates

compared to WT, especially for D224N. Western
blotting of total oocyte lysates showed that abundant
protein was produced for all mutants (Fig. 4B).
However, Pi-induced currents were observed for
D224E, but not for D224G or D224N (Fig. 4C).
KmPi (measured at )50 mV) for D224E was signifi-

Fig. 3. Pi transport and Western analysis. (A) Pi uptake in oocytes expressing WT and mutant NaPi-IIa. Pi uptake was measured using 32Pi

as a tracer. For clarity, WT is denoted with a white bar, C225S with a black bar, and other mutants with grey bars. The dashed line denotes

Pi transport mediated by C225S, and the dotted line, 50% of this. Asterisk * denotes statistically significant difference from control (P <

0.05). (B) Western blot. Whole-cell lysates from oocytes expressing WT or mutant NaPi-IIa were probed with a NaPi-IIa-specific C-terminal

antibody. The sizes of the molecular weight markers are indicated in the figure. The figure is a composition of four separate blots. (C)

Apparent KmPi of WT and mutant NaPi-IIa. WT, empty square; C225S, empty circle; other mutants, filled circles. Grey bar indicates 95%

confidence interval for KmPi of C225S; n = 3–10. (D) Effect of MTSEA. Continuous current tracings are shown for oocytes expressing

C225S (top) or A240C-C225S (bottom) before (left) or after (right) MTSEA treatment (1 mM for 5 min). The recordings were started in

ND100 soution, followed by application of 1 mM Pi (indicated by a black line). The Pi-dependent current was determined before and after

MTSEA application for each oocyte. MTSEA treatment reduced the Pi-induced current by �50% in A240C-C225S-expressing oocytes, but

not in any other mutants tested.
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cantly decreased (0.031 ± 0.007 mM, n = 6), com-
pared to WT (0.089 ± 0.007 mM). Furthermore, the
shape of the I-V curve was altered for D224E, so that
D224E-mediated Pi-induced currents were clearly
voltage dependent only at potentials more negative
than )40 mV, whereas currents mediated by WT are
voltage-dependent throughout the measurable range

(Fig. 4C). Removing Cl) from the bath did not
change the shape of the I-V curves, which indicates
that Cl) ions did not affect the voltage dependency of
Pi transport in this mutant (not shown).

We measured Pi-induced currents at different
voltages in WT and D224E-expressing oocytes at
different concentrations of Pi (at constant 100 mM

Fig. 4. Mutants at Asp-224. (A) Pi uptake. Pi uptake, using
32Pi as a tracer, was measured in control oocytes and oocytes expressing mutant

engineered at D224 in NaPi-IIa. Asterisk * denotes statistically significant difference from control (P< 0.05). (B) Western blot. Whole-cell

lysates from oocytes expressing WT or mutant NaPi-IIa was probed with a NaPi-IIa-specific antibody. The sizes of the molecular weight

markers are indicated in the figure. (C) Current-voltage relationships. Pi-induced currents were plotted against membrane potential in

control oocytes and oocytes expressing WT or mutant NaPi-IIa. Filled circles, WT; empty circles, D224E: empty squares, D224N, empty

triangles, D224G, filled triangles, control.

Fig. 5. Voltage-dependency of Pi-induced currents in D224E. (A) Pi dose-response in oocytes expressing WT NaPi-IIa. Currents were

acquired before and after application of Pi and the Pi-dependent current was plotted as a function of the membrane potential. Circles, 1 mM

Pi; diamonds, 0.3 mM Pi; inverted triangles, 0.1 mM Pi; triangles, 0.03 mM; squares, 0.01 mM Pi. (B) Pi dose-response in oocytes expressing

D224E. Symbols are as in A. (C) Voltage-dependency of KmPi. Data in panels A and B were fitted with Eq. 1 and the resulting Km-values

were plotted as a function of voltage. Filled circles, WT; empty circles, D224E. (D) Na+ dose-response in oocytes expressing WT NaPi-IIa.

Currents were acquired before and after application of 1 mM Pi at each Na+ concentration and the Pi-dependent current was plotted as a

function of the membrane potential. Empty squares, 100 mM Na+; circles, 75 mM Na+; diamonds, 50 mM Na+; inverted triangles, 25 mM

Na+; triangles, 10 mM Na+; squares, 0 mM Na+. (E) Na+ dose-response in oocytes expressing D224E. Symbols are as in D. (F) Voltage-

dependency of KmNa. Data in panels D and E were fitted with Eq. 1 and the resulting Km-values were plotted as a function of voltage. Filled

squares, WT; empty squares, D224E.
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Na+) or Na+ (at constant 1 mM Pi), and calculated
the voltage-dependency of KmPi and KmNa from this
data. A comparison of the I-V curves in Fig. 5A
(WT) and B (D224E) shows that at low Pi (0.01 mM)
they are similar. The upward deflection with
increasing hyperpolarization results from a block of
Pi-sensitive leak current in oocytes expressing NaPi-
IIa [2, 25]. When the Pi-concentration was increased
D224E-mediated currents acquired a more prominent
curvature than the WT. A similar pattern was seen
when Pi was kept constant and Na+ was varied
(Fig. 5D and E). Extracting KmPi from the data of
Fig. 5A and B using Eq. 1 and plotting it against Vm

in Fig. 5C shows that KmPi for D224E was strongly
voltage-dependent. KmPi was also significantly re-
duced, compared to WT, throughout the measurable
range. Extracting the KmNa values from the data in
Fig. 5D and E using Eq. 1 (H constrained to 2.0) and
plotting it against Vm in Figure 5F revealed that for
D224E, KmNa was strongly voltage-dependent,
increasing over four-fold between )40 mV and )140
mV. For the WT, KmNa was largely voltage-inde-
pendent.

To see if Pi transport mediated by the D224G
mutant was Na+ dependent, we measured 32Pi up-
take in the presence and absence of external Na+. As
shown in Fig. 6A, Pi uptake in oocytes expressing
WT and D224G was abolished in the absence of
Na+. To ascertain if Na+ is also transported by
D224G and to establish the Na:Pi stoichiometry, we
performed simultaneous uptake of 22Na and 32Pi

(Fig. 6B). Na+ uptake measured in the absence of Pi

shows that Na+ uptake was low compared to the Pi-
induced Na+ uptake (Fig. 6B inset). For the WT, a
linear regression line was fitted to the data with a
slope of 2.7 ± 0.04, in agreement with a Na:Pi stoi-
chiometry of 3:1, as previously reported [7, 25]. For
D224G, the slope of the regression line was 10 ± 0.8,
implying that 10 Na+ ions were transported with
each Pi. In the absence of detectable Pi-induced cur-
rents, the results indicated that D224G mediated
significant Pi-dependent non-stoichiometric Na+

transport, possibly Na+-Na+ exchange.

Asn-227

Given that oxygen-containing residues may play a
role in coordinating Na+ ions, as has been proposed
for the Na-K-ATPase [20], we decided to carry out
additional mutagenesis at Asn-227, a residue located
one turn away from Asp-224 in the putative a-helical
TMD-3. Replacing Asn with the negatively charged
Asp (N227D) led to a poorly expressed construct that
was unable to mediate significant Pi uptake (Fig. 7A
and B). However, when Asn was replaced with Gln
(N227Q), the construct expressed well and mediated
significant Pi uptake (Fig. 7A and B) and Pi-induced
currents (Fig. 7C). The apparent Pi and Na+ affini-
ties determined at )50 mV were markedly decreased
compared to WT. Figure 7D shows a plot of the Pi-
induced current as a function of the Pi concentration,
normalized to IPi, max. The data were fitted with Eq. 1
(H = 1). KmPi for N227Q was 4.2 ± 1.7 mM,
compared to 0.096 ± 0.011 mM for WT. We then

Fig. 6. Transport characteristics by D224G. (A) Na+-dependency of Pi uptake. Pi uptake was measured using 32Pi as a tracer, in the

presence or absence of Na+ in control oocytes and oocytes expressing WT or the D224G mutant. Asterisk * denotes statistically significant

difference from control (P < 0.05). (B) Dual uptake of Na+ and Pi. Simultaneous uptake of Na+ and Pi (measured using Na+ and Pi as

tracers) in control oocytes (filled circles) and in oocytes expressing WT (filled triangles) or D224G (empty circles) NaPi-IIa. Inset shows Na+

uptake data for oocytes in the same batch in the absence of Pi. The data were fitted with a regression line (straight lines in graph) with a slope

of 2.7 ± 0.04 for WT and 10 ± 0.8 for D224G. The lines were forced to go through the mean values obtained for control oocytes.
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attempted to estimate KmNa for N227Q with 3 mM

Pi, however, lack of saturation precluded a reliable
estimate. The fit shown in Fig. 7E suggests for
N227Q a KmNa > 100 mM.

The Pi-induced current response in N227Q dif-
fered from that of the WT with a current reversal
potential observed at around +40 mV (Fig. 7C).
Removal of external Cl) (replaced by glucuronate)
had no effect on the outward current, indicating that
it is not carried by inward movement of Cl) ions
(data not shown).

Glu-238

In the helical wheel TMD-3 representation (Fig. 1C),
Glu-238 lies on the same face of a putative a-helix as
Asp-224 and Asn-227. It is the only other charged
residue in TMD-3 besides Asp-224 and highly con-
served, and replacing it with a Cys resulted in a very
poorly expressed construct for which we could mea-
sure neither 32Pi transport nor Pi-induced currents
(Fig. 3A). We therefore decided to explore this site
further by mutating it to an Asp or a Gln. Both
E238D and E238Q mediated Pi-induced currents that

were �50% of WT (data not shown). However, the
substrate affinities were reduced. For E238D, KmPi

was 0.24 ± 0.06 and KmNa was 69 ± 4 mM,
whereas for E238Q KmPi was 0.15 ± 0.03 and KmNa
75 ± 5 (n = 4). This compares to a KmPi of
0.091 ± 0.022 andKmNa of 34 ± 5 mM for theWT.

Discussion

In this study we have employed two approaches
(SCAM and site-directed mutagenesis) to elucidate
novel structure-function relationships of the pre-
dicted 3rd trasnsmembrane domain (TMD-3) of the
human NaPi-IIa transporter. Previous studies in
which we have applied SCAM to the rat NaPi-IIa,
have focussed on the predicted linker regions (see
Fig. 1A) ECL-1, ECL-4 [2, 3], ECL-3 [15] and ICL-1
[10]. The choice of TMD-3, as the first TMD to be
investigated, was based on its proximity to ICL-1,
which we propose has re-entrant properties and may
form part of the substrate translocation pathway [10]
and the presence of sites of potential importance in
coordinating Na+ ions [19, 20].

Fig. 7. Mutants at Asn-227. (A) Pi uptake. Pi uptake, using
32Pi as a tracer, was measured in control oocytes and oocytes expressing mutant

engineered at N227 in NaPi-IIa. Asterisk * denotes statistically significant difference from control (P< 0.05). (B) Western blot. Whole-cell

lysates from oocytes expressing WT or mutant NaPi-IIa were probed with a NaPi-IIa-specific antibody. The size of the molecular weight

markers is indicated in the figure. (C) Current-voltage relationships. Pi-induced currents were plotted against membrane potential in control

oocytes and oocytes expressing WT or mutant NaPi-IIa. Filled circles, WT; empty circles, N227Q; empty triangles, N227Q; filled triangles,

control. (D) KmPi of N227Q. Currents were acquired continuously at a holding potential of )50 mV. The current deflections induced by Pi

application were plotted as a function of the Pi concentration as fitted with Eq. 1. The data were normalized to IPi, max. KmPi for WT was

0.096 ± 0.011 mM, for N227Q 4.2 ± 1.7 mM; n = 6. (E) KmNa of N227Q. The current deflections induced by 3 mM Pi at different Na+

concentrations were plotted as a function of the Na+ concentration as fitted with Eq 1. For the WT, KmNa = 37 ± 14, IPi, max 100 ± 20,

H = 1.6 ± 0.6. For N227Q, a reliable fit of Eq 1 to the data was prevented by the lack of saturation, but indicates a KmNa of >100 mM;

n = 4–5.
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SCAM SUGGESTS THAT TMD-3 IS NOT READILY

ACCESSIBLE FROM THE EXTRACELLULAR AQUEOUS

MILIEU

Ideally, when carrying out cysteine accessibility
studies, it would be advantageous to remove all (13)
native Cys, which otherwise might react with SH-
reactive reagents. However, work on the rat NaPi-IIa
isoform has shown that removing a number of the
native Cys markedly reduces functional Pi cotrans-
port expressed in Xenopus oocytes [12], making these
constructs problematic to work with. Fortunately,
none of the native Cys in WT NaPi-IIa are accessible
to membrane-impermeant MTS reagents [12, 13]. We
therefore decided to remove only Cys-225, the one
native cysteine in putative TMD-3, before proceeding
with SCAM, both as a precaution against possible
disulfide bridge formation within the TMD-3 stretch
or that mutagenesis in TMD-3 might cause Cys-225
to become MTS-reactive. The C225S mutant showed
a �50% decrease in Pi transport activity compared to
WT, a reduction similar to that previously observed
for the rat isoform [13]. Otherwise, this mutant
exhibited transport characteristics similar to WT
NaPi-IIa, which confirmed its suitability as a SCAM
backbone.

Introducing novel Cys residues on a C225S
background resulted in reduced or completely abol-
ished Pi transport activity for all mutants except
F226C-C225S. The Western blots shown in Fig. 3B
indicate that in most cases this correlated with re-
duced protein expression in the oocyte. The notable
exception is D224C-C225S, where the signal on the
Western blot was as strong as for the WT, but neither
Pi-induced currents nor Pi transport were detected.
Also Cys substitution at polar/charged Asn-227 and
Glu-238, lying on the same face of the putative a-
helix (Fig. 1C), resulted in lack of Pi transport
activity in spite of detectable protein expression.
Interestingly, the only mutant with an increased
KmPi, namely S230C-C225S, is found on the same
side of a putative a-helix as D224, Asn-227 and
E-238. The implications of these findings are dis-
cussed further below.

Unlike our previous SCAM studies on linker
regions, where accessibility was readily determined
experimentally in terms of altered transport function,
only one double mutant in the present study (A240C-
C225S) was functionally modified by MTS reagents.
For this mutant, MTSEA or MTSET treatment re-
duced Pi-induced currents by �50%. It is not clear
why MTS reagents only partially blocked IPi in this
mutant. Unfortunately the currents were too low
after MTS modification to allow us to determine
whether the Pi or Na+ affinities or the turnover rate
of the transporter had been altered by the modifica-
tion. Nevertheless, its modified behavior indicated
that the top of TMD-3 is accessible from the extra-

cellular milieu, which confirmed the topological pre-
dictions for this motif. The negative findings for the
other mutants suggest that the remainder of TMD-3
is buried within the protein, at least under the label-
ling conditions we employed (100 mM Na+, )50 mV
holding potential). Alternatively, the residues were
indeed labelled without detectable change of func-
tion, however, this seems unlikely, given that muta-
genesis at several of these sites (see below) resulted in
dramatic changes in their electrogenic characteristics.
Unfortunately, the low expression levels of most Cys
mutants precluded a biochemical confirmation of
labelling by using MTS-biotin, as we have previously
reported for Cys mutants engineered in the loop re-
gions of the rat NaPi-IIa isoform [3, 14].

SITES ON THE HYDROPHILIC FACE OF TMD-3 ARE

CRITICAL DETERMINANTS OF ELECTROGENICITY AND

SUBSTRATE INTERACTION

Oxygen atoms are important in coordinating metal
ions in proteins [19, 20, 24], which suggests that they
could also be important in forming a binding site for
Na+ ions in NaPi-IIa. Moreover, it is significant that
TMD-3 contains three oxygen-containing residues all
located on the same hydrophilic face of the helical
wheel representation of TMD-3. Mutagenesis at Asp-
224 had profound effects on the Pi transport function
of NaPi-IIa. The most notable mutation was D224G
where we replaced Asp, a residue conserved in all
electrogenic type IIa and IIb transporters, with Gly
that appears at the equivalent position in electro-
neutral NaPi-IIc. D224G mediated low, but signifi-
cant Na+-dependent Pi uptake. The amount of Na+-
dependent Pi uptake in Fig. 6A corresponded to �10
nA of current (assuming that one charge is trans-
ported per Pi), which is well above the detection limit
of our system. Since we were unable to detect any Pi-
induced currents in D224G-expressing oocytes, the
result showed that this single point mutation was able
to convert an electrogenic transporter into an elec-
troneutral one. This suggests that the carboxylic acid
side chain of Asp-224 may participate in forming a
binding site for one of the three Na+ ions transported
by NaPi-IIa per transport cycle, and its removal
compromised this binding site. This hypothesis is
strengthened by the observation that a triple-muta-
tion of electroneutral NaPi-IIc (S187A-S191A-
G195D), in which the Gly of NaPi-IIc at the position
equivalent to Asp-224 in NaPi-IIa was changed to
Asp, is electrogenic and operates with a 3:1 Na:Pi

stoichiometry, in contrast to the 2:1 stoichiometry of
the WT NaPi-IIc [1]. However, the D224G mutation
alone was not sufficient to recreate the full kinetic
profile of the NaPi-IIc WT, as shown by the large Pi-
induced Na+ leak (Fig. 6B).

The importance of the length of the carboxylic
side chain of Asp-224 for NaPi-IIa electrogenicity
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was further underscored by the altered voltage
dependency of Pi-induced currents by D224E, and the
dramatically altered voltage dependency of KmNa
(Fig. 5F). For D224E the apparent Na+ affinity was
larger than that of the WT at Vm more positive than
)60 mV, but decreased and became lower than that
of the WT at potentials more negative than )80 mV.
Additionally the apparent Pi affinity was strongly
decreased at hyperpolarizing potentials, but as KmNa
was measured at saturating Pi (1 mM) throughout the
voltage range, whereas KmPi was not (100 mM Na+;
oocytes did not tolerate prolonged exposure to hyp-
erosmotic solutions); the effect of voltage on KmPi

could, at least partially, be secondary to its effect on
KmNa.

Asn-227, which is located one turn further along
the a-helical TMD-3, may also play a significant role
in the transport function of NaPi-IIa. Substitution
with Cys (N227C-C225S) resulted in a construct un-
able to mediate functional Pi uptake in oocytes.
However, protein expression was also low, so the
absence of Pi transport may have been due to im-
paired expression. This was also most likely the case
for N227D, where the polar amine group of Asn was
substituted with the charged carboxyl of Asp. How-
ever, when we replaced Asn with the polar, but
slightly longer Gln, the resulting construct expressed
well and mediated electrogenic Pi transport, albeit
with considerably reduced Na+ and Pi affinities.
Interestingly, a similar phenotype was reported for
mutagenesis at Asn-199 in the predicted ICL-1
(marked with a grey circle in Fig. 1A). At this site,
substitution with Cys as well as shorter polar (Thr) or
non-polar (Ala) side chains resulted in reduced
apparent substrate affinities, whereas substitution of
larger or charged residues (Asp, His, Gln, Arg) re-
sulted in fully suppressed cotransport function [10].
Taken together, our present findings suggest that
Asn-227 also contributes to the substrate binding site
and may be in close proximity to Asn-199 in ICL-1.

Ser-230 lies a further turn along TMD-3. Inter-
estingly, S230C-C225S expressed well but this was the
only mutant to show a significantly reduced apparent
Pi and Na+ affinity compared to the C225S alone.
One explanation for this behavior is that substitution
of polar Ser with less polar Cys may impede the
movement of Na+ towards its putative binding site
further down this amphipathic helix. Finally, Glu-
238, lying a further two turns along the a-helix, is the
only other charged residue of TMD-3. Cys substitu-
tion at this site was not tolerated, but substitution
with the charged Asp or polar Gln resulted in func-
tional mutants that mediated electrogenic Pi trans-
port with reduced substrate affinities.

Taken together, the results of the Cys scanning
mutagenesis and the additional mutagenesis of Asp-
224, Asn-227, Ser-230 and Glu-238 are consistent

with TMD-3 forming an amphipathic helix that
contains important elements for substrate binding.

Conclusions

This is the first study describing cysteine scanning
mutagenesis in a NaPi-IIa protein TMD. An intro-
duced Cys located at the predicted top (extracellular)
end of TMD-3 could be functionally modified using
MTS reagents, confirming the predicted topology and
suggesting that the remainder of TMD-3 is largely
buried in the membrane. Additional mutagenesis at
Asp-224 identified this residue to be critical for elec-
trogenic Pi transport in NaPi-IIa, and this has been
recently confirmed by mutagenesis at the equivalent
site in the electroneutral mouse NaPi-IIc [1]. The
amphipathic nature of the a-helical segment of TMD-3
and the effect of mutagenesis on polar or charged
amino acids clustering on one side of the helix indicate
that this region participates in forming a binding site
for a sodium ion and is critical for establishing the 3:1
Na+:Pi stoichiometry required for electrogenic Na+-
coupled Pi cotransport.
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