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Abstract. An input–output technology with intermediate inputs is said to be productive or viable if
it allows for positive net amounts of every commodity. Each division or sector will then contribute
less than one unit of direct and indirect intermediate inputs to the making of one unit of its own
output. Equivalently, the leading principal minors of the technology’s associated Leontief matrix are
all positive (Hawkins–Simon condition). We demonstrate that the minors can be checked efficiently
in the course of a triangular decomposition of this matrix.
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1. Introduction

Consider an input–output technology with linear activities where n divisions or
sectors (n ≥ 2) are linked by an n × n matrix A = (ai j ) of physical production
coefficients for intermediate inputs. We assume that all matrix elements are non-
negative real numbers. Furthermore, denote as I the n × n identity matrix such
that B := I − A represents the technology’s associated Leontief matrix. Then,
how can we identify a technology which is productive or viable (cf. Dorfman et al.
1958, pp. 210–215)? Intuitively, each division or sector i should contribute less
than one unit of direct and indirect intermediate inputs to the making of one unit of
its own output. (The term ‘indirect’ refers to commodities i which are incorporated
in inputs from other sectors j .) Hence, certain restrictions must be placed on A and
B, respectively, in order to permit positive net outputs of every good, provided that
there are enough primary resources.

A major literature result states that an input–output technology is productive or
viable if and only if all leading principal minors det(B(1: k, 1: k)) of B are positive
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(e.g. Nikaido (1975, Chapters 1 & 3), Takayama (1985, Chapter 4), Mas-Colell et al.
(1995, pp. 155–157)). We will show that this so-called Hawkins–Simon condition
(Hawkins/Simon (1949)) can be checked efficiently with a triangular decomposition
or factorization algorithm.

2. A Technology Parser

Our technology parser benefits from the following result of advanced matrix alge-
bra:

THEOREM. If B is a real-valued, regular n×n matrix and det(B(1 : k, 1 : k)) �=
0 for all k = 1, . . . , n − 1, then there exists a unique pair of real-valued n × n
matrices L = (li j ) and U = (ui j ) which are lower and upper triangular, respectively,
such that B = LU, while lii = 1 for all i.

Proof. See Golub/Van Loan (1996, pp. 97–98).

For the purpose of illustration, consider the following example of an input–
output technology and associated Leontief matrix B for n = 3 divisions or sectors:




0.30 −0.20 −0.20

−0.06 0.84 −0.46

−0.09 −0.10 0.56




︸ ︷︷ ︸
=B

=




1 0 0

l21 1 0

l31 l32 1




︸ ︷︷ ︸
=L




u11 u12 u13

0 u22 u23

0 0 u33




︸ ︷︷ ︸
=U

=




u11 u12 u13

l21u11 l21u12 + u22 l21u13 + u23

l31u11 l31u12 + l32u22 l31u13 + l32u23 + u33


 (1)

Note that B is regular, as det(B) = 0.096 �= 0. Also note that det(B (1 : 1, 1 : 1)) =
0.30 �= 0 and det(B(1 : 2, 1 : 2)) = 0.24 �= 0. Hence, L and U exist and are unique.
In particular, we can employ a straightforward procedure to solve (1) for the nine
(=n2) unknown l’s and u’s. This procedure is known as the Crout LU algorithm. It
operates along the main diagonal of B from the top-left to the bottom-right corner:

• Step 1: u11 = 0.30, u12 = −0.20, u13 = −0.20,

l21 = −0.06/u11 = −0.20, l31 = −0.09/u11 = −0.30.
• Step 2: u22 = 0.84 − l21u12 = 0.80, u23 = −0.46 − l21u13 = −0.50,

l32 = (−0.10 − l31u12)/u22 = −0.20.
• Step 3: u33 = 0.56 − l31u13 − l32u23 = 0.40.

We thereby find that all elements of B are needed to calculate the entire set of
unknowns. However, the subset u11, u12, u22, and l21 turns out to be independent
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of the entries to the third row and column of B. This subset effectively comes from
the LU decomposition of B(1 : 2, 1 : 2). In the same way, u11 also does not depend
on the second row and column of B and constitutes the (trivial) LU decomposition
of B(1 : 1, 1 : 1).

Altogether, the factorization of a general n × n Leontief matrix B implicitly
incorporates the factorization of all leading principal submatrices of B in one turn
(the last submatrix being identical to B). Consequently, since L and U are triangular:

det(B(1 : k, 1 : k)) = det(L(1 : k, 1 : k)) det(U(1 : k, 1 : k))

=
k∏

i=1

lii

k∏
i=1

uii

=
k∏

i=1

uii for all k = 1, . . . , n. (2)

The leading principal minors det(B(1 : k, 1 : k)) of B can thus be checked one
after another as the factorization of B proceeds: The first occurrence of a zero or
negative coefficient ukk in step k of Crout’s algorithm

uki = bki −
k−1∑
j=1

lk j u ji for all i = k, . . . , n,

(3)
lik = 1

ukk

(
bik −

k−1∑
j=1

li j u jk

)
for all i = k + 1, . . . , n,

would indicate that B represents a non-viable production plan. The factorization
could then already be halted. Otherwise, it terminates conformably with all ukk > 0.
At the same time, uki , lik ≤ 0 for all i > k. In particular, once an element bi j of
B has been evaluated for its associated l-value or u-value, this element will never
be used again. As a consequence, the factorization of B can be done in situ, e.g.,
replacing the above 3 × 3 Leontief matrix by




u11 u12 u13

l21 u22 u23

l31 l32 u33


 =




0.30 −0.20 −0.20

−0.20 0.80 −0.50

−0.30 −0.20 0.40


 . (4)

We suggest to perform pivot search as a measure to reduce roundoff. Partial
pivoting (row interchanges) will, in general, do. Consequently, if P stands for an
appropriate n × n permutation matrix, we operate on PB rather than on B. An
algorithm, which checks the leading principal minors of B has to be modified
accordingly:
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LEMMA. If the LU decomposition of the Leontief matrix B of a viable or pro-
ductive technology is implemented with partial pivoting (row interchanges), then
each pivot choice bik < 0 (i > k) will result in a negative diagonal element ukk

of U.

Proof. Suppose that in the course of the factorization we swap two successive
matrix rows k and i = k + 1 of B. Let P stand for the corresponding permutation
matrix. Note that we actually swap the same rows of the triangular matrix L (as
PB = PLU) such that the minor( lk+1,k 1

1 0
) will be generated along the diagonal

positions k and k + 1 of the new matrix PL. Hence, the kth leading principal
minor of this matrix equals lk+1,k and will be strictly negative due to a pivot choice
bk+1,k < 0. The final n − k leading principal minors of PL come out as −1. This
means that the last n−k +1 leading principal minors of PL, and thus of PB, assume
a negative value. Consequently, the factorization of PB (instead of B) must result
in a negative diagonal element ukk of U while all subsequent diagonal elements of
U maintain their positive sign. Finally, observe that any division or sector i > k +1
can be re-labeled to become division or sector k + 1 beforehand.

Table I provides an adaptation of a standard version of Crout’s algorithm in
pseudo code (e.g. Press et al. (1987, pp. 33–36)). The algorithm completes the first
column of L, then turns to the second row of U, and so on. At the same time,
the entries to the respective lower-right part of B are updated. On output, B will
contain the LU decomposition of (a row-wise permutation of) the corresponding
Leontief matrix according to (4), provided that the factorization was successful. If
not, then the Boolean variable fail will return ‘true’ (= −1) which signifies that a
zero or negative coefficient ukk was encountered prior to a pivot search and that the
factorization of B had been halted.

Table I. Technology Parser (in situ).

Input: A, n
Output: B, fail

B := I − A, k := 1, fail := 0

DO WHILE (b(k, k) > 0 AND k ≤ n − 1)
Pivoting:

Find blk such that |blk | = maxi≥k |bik |
IF l > k THEN SWAP rows l and k of B

FOR i = k + 1 TO n STEP 1 DO bik := bik/bkk

FOR i = k + 1 TO n STEP 1 DO

FOR j = k + 1 TO n STEP 1 DO b ji := b ji − b jk · bki

k := k + 1
LOOP

IF bkk ≤ 0 THEN = fail := −1
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Hence, in case of a non-productive technology, the algorithm may terminate
before the decomposition is complete, and thereby reduce its run time.

3. Concluding Remarks

In our experiments, it took less than one second on a Pentium 4 CPU (2.40 GHz)
to identify a viable technology for dense (hypothetical) production systems of up
to 200 divisions or sectors and an associated double-precision matrix B. The com-
putational burden became more noticeable for larger systems, as Crout’s method
has an O(n3) count of approximately 2n3/3 floating-point operations. These results
suggest that Table I provides an effective workhorse method for parsing economic
technology matrices of reasonable practical sizes.

The literature offers further characterizations of a productive or viable technol-
ogy. They can be useful when the numerical stability of a parsing algorithm is a
critical issue and indirect methods are called for, as in cases of very large tech-
nology matrices or matrices that are ill conditioned. While these methods may be
computationally more demanding, it can still be shown that a technology is always
productive if ‖A‖ < 1 holds for an arbitrary matrix norm like, e.g., the row-sum
or column-sum norms (Brauer–Solow row-sum or column-sum conditions). There
are thus sufficient conditions for the viability of a production system which can be
checked first with little extra effort. The interested reader is referred to Takayama
(1985, Chapter 4).
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