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Abstract Schwarz waveform relaxation algorithms (SWR) are naturally parallel
solvers for evolution partial differential equations. They are based on a decomposi-
tion of the spatial domain into subdomains, and a partition of the time interval of
interest into time windows. On each time window, an iteration, during which sub-
problems are solved in space-time subdomains, is then used to obtain better and
better approximations of the overall solution. The information exchange between
subdomains in space-time is performed through classical or optimized transmission
conditions (TCs). We analyze in this paper the optimization problem when the time
windows are short. We use as our model problem the optimized SWR algorithm with
Robin TCs applied to the heat equation. After a general convergence analysis using
energy estimates, we prove that in one spatial dimension, the optimized Robin param-
eter scales like the inverse of the length of the time window, which is fundamentally
different from the known scaling on general bounded time windows, which is like
the inverse of the square root of the time window length. We illustrate our analysis
with a numerical experiment.

Keywords Schwarz waveform relaxation · Optimized Robin transmission
conditions · Short time windows · Heat equation

1 Introduction

Waveform relaxation algorithms (WR) were invented in the circuit community, see
[21], in order to simulate very large scale circuits on parallel computers. They solve
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systems of ordinary differential equations (ODEs) with an iterative process based on
a partitioning of the system into subsystems, and solving problems over so called
time windows. WR algorithms are also interesting mathematically, since they have
often different convergence regimes: for example for linear dissipative systems of
ODEs on long time windows, convergence is in general linear, see for example [4, 20,
23, 24], whereas over short time windows, superlinear convergence is often observed
for very general systems of linear and non-linear ODEs, see for example [1, 3, 24].
Similarly, for evolution partial differential equations (PDEs), Schwarz waveform
relaxation algorithms (SWR) based on an overlapping decomposition of the spatial
domain were defined in [16], where also linear convergence was proved over long
time windows for the heat equation. The same algorithm also converges superlin-
early over short time windows, see [17, 18], and the superlinear convergence rate is
faster than for general systems of ODEs, due to the diffusion in the PDE, see also
[6] for the more general case of advection reaction diffusion problems. Waveform
relaxation algorithms have however often a significant drawback: their convergence
can be rather slow. The reason for this lies in the information exchange between sub-
systems or subdomains, which is performed in the classical WR and SWR through
function values or Dirichlet transmission conditions (TCs). In order to obtain more
effective algorithms, one has to use optimized TCs, see for example [8, 10] for the
case of circuit simulation, where now voltage as well as current values are exchanged
between subsystems, and very hard problems can be effectively solved [11]. For
PDEs of advection reaction diffusion type, see [2, 9] and references therein. For the
wave equation, classical and optimized SWR algorithms have been analyzed in detail
in [14, 15], where further interesting convergence behaviors were found (e.g. conver-
gence in a finite number of steps). TCs turned out to be important even for Schwarz
methods applied to steady problems, for a review, see [12]. An important further fea-
ture of optimized TCs is that the algorithms can then also be used without overlap, in
contrast to the classical variants that require overlap for convergence.

In order to optimize TCs in all the WR algorithms applied to diffusive problems
described above, it was assumed that the time windows are long, so that the algo-
rithms are in their linear convergence regime. A natural question to ask is how one
should optimize the transmission conditions over short time windows, i.e. when the
algorithms are in their superlinear convergence regime. It turns out that this analy-
sis is much more difficult, and we present in this paper a first step into this direction
for the particular case of the heat equation, and a SWR algorithm with Robin TCs.
We first give a very general convergence analysis of the algorithm applied to the d-
dimensional heat equation using energy estimates for the case of non-overlapping
subdomains. This analysis does however not reveal how the optimized Robin param-
eter should be chosen. We then focus on the one-dimensional case for which we can
give a complete analysis of the algorithm using Laplace transform techniques and
explicit estimates of the kernels arising in the iteration. We first obtain an approxi-
mation of the optimized parameter on bounded time windows [0, T ] by scaling the
time domain and applying a frequency analysis of the algorithm, see also [13]. Using
the fact that the frequency range is bounded, ω ∈ [ωmin, ωmax] where one can esti-
mate ωmin = π

T
and ωmax = π

�t
, �t being the time step of the time discretization, we

obtain a first estimate on bounded time windows for the optimized Robin parameter,
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which behaves like 1√
T

. Using our explicit expressions of the kernels, and asymptotic
analysis, we then obtain a second optimized parameter of the Robin TCs for short
time windows, and this parameter behaves like 1

T
. We finally show in a numerical

experiment that indeed the optimized parameter changes its asymptotic behavior as
the time window becomes small.

2 The Schwarz waveform relaxation algorithm

We consider as our model problem the heat equation in d spatial dimensions,

∂tu(x, t) = �u(x, t) + f (x, t), (1)

where x ∈ � ⊂ R
d and f (x, t) is a given source function. This equation is comple-

mented with an initial condition u0(x), and suitable boundary conditions, for example
of Dirichlet type, u(x, t) = g(x, t), on the boundary of �, denoted by �0 = ∂�.
We first subdivide � into non-overlapping subdomains �̃i , i ∈ {1, 2, . . . , I }, and
then enlarge each subdomain �̃i by a layer of width at least δ in order to obtain
overlapping subdomains �i , see Fig. 1 for a three-dimensional illustration of this
decomposition for the example of a cube. For the non-overlapping variant of the
algorithm, we simply take �i = �̃i , which also corresponds to taking δ = 0 in the
overlapping subdomain definition. The boundary of each subdomain �i consists of
different parts: if the boundary of �i contains a part of the physical boundary, we
denote it by �i0 := ∂�i ∩ �0. The interior parts of the boundaries of �i are denoted

by �ij := ∂�i ∩ �̃j . The classical Schwarz waveform relaxation algorithm (SWR)
applied to the heat equation (1) is then for n = 1, 2, . . . given by

∂tu
n
i (x, t) = �un

i (x, t) + f (x, t), �i × (0, T ),

un
i (x, 0) = u0(x), (0, T ),

un
i (x, t) = g(x, t), �i0 × (0, T ),

un
i (x, t) = un−1

j (x, t), �ij × (0, T ), (2)

δ

Ω

Ω i

Ω̃ i

Ω̃ i

Ω̃ j

Γ ij

Fig. 1 Decomposition of the domain � into overlapping subdomains �i with an overlap of at least 2δ
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and one needs an initial guess u0
j (x, t) to start the algorithm. The last line of (2) is

called the transmission condition (TC) of the algorithm. Here only Dirichlet informa-
tion is exchanged on the interfaces, thus we call these TCs the Dirichlet transmission
conditions. We note that this algorithm does not converge if there is no overlap, i.e.
if δ = 0, since the iteration then stagnates on the interfaces: whatever the initial
guess on the interface was, it will stay the same, since the Dirichlet trace is taken pre-
cisely where the Dirichlet transmission condition was imposed; no new information
is thus exchanged, if there is no overlap. More sophisticated transmission conditions
are required for non-overlapping subdomains. We focus here on the SWR algo-
rithm with Robin transmission conditions. This algorithm computes for n = 1, 2, . . .

solutions of

∂tu
n
i (x, t) = �un

i (x, t) + f (x, t), �i × (0, T ),

un
i (x, 0) = u0(x), (0, T ),

un
i (x, t) = g(x, t), �i0 × (0, T ),

(∂ni u
n
i + pun

i )(x, t) =
(
∂ni u

n−1
j + pun−1

j

)
(x, t), �ij × (0, T ), (3)

where the vector ni stands for the unit outward normal vector on the boundary ∂�i .
Like before, an initial guess u0

j (x, t) is needed to start the algorithm. This algorithm
converges significantly faster than the classical algorithm (2) for the overlapping
case, i.e. for δ > 0, and also converges without overlap, i.e. for δ = 0. The well-
posedness of this algorithm with and without overlap in the appropriate Sobolev
space setting was studied in [13], and for the more general case of advection reaction
diffusion problems in [9]. The convergence analysis of this algorithm, and the opti-
mized choice of the parameter p in it is the focus of this paper. We are interested in
both cases, with and without overlap, and the types of analysis one can use depends
on this.

3 Convergence analysis with energy estimates

We present in this section a general convergence analysis of algorithm (3) using
energy estimate techniques introduced by Lions [22] and Deprès [7] for steady prob-
lems, see also [15] for the wave equation. This very general analysis can only be
used for the non-overlapping variant of the algorithm, δ = 0, in which case the inter-
faces satisfy the symmetry relation �ij = �ji . By linearity, it suffices to study the
homogeneous version of algorithm (3), the so called error equations,

∂tu
n
i (x, t) = �un

i (x, t), on �i × (0, T ),

un
i (x, 0) = 0, on (0, T ),

un
i (x, t) = 0, on �i0 × (0, T ),

(∂ni + p)un
i (x, t) = (∂ni + p)un−1

j (x, t), on �ij × (0, T ), (4)
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and to prove convergence to zero. We assume in what follows that p > 0, and
consider the energy

Ei,n(t) = 1

2

∫

�i

un
i (x, t)2dx, (5)

for which we have the following energy inequality:

Lemma 1 (Energy inequality) For un
i solution of (4) over �i , the energy Ei,n(t)

def ined in (5) satisf ies the energy inequality

∂tE
i,n(t) −

∑
j∈Vi
j �=0

∫

�ij

un
i ∂ni u

n
i dγ ≤ 0,

where Vi := {j | ∂�j ∩ �i �= ∅} and 0 ∈ Vi if �i0 is non empty.

Proof Taking a time derivative of the energy and using the heat equation, we obtain

∂tE
i,n(t) =

∫

�i

un
i ∂tu

n
i dx =

∫

�i

un
i �un

i dx.

Integrating by parts and dropping the negative term, we obtain the inequality

∂tE
i,n(t) = −

∫

�i

|∇un
i |2dx +

∫

∂�i

un
i ∂ni u

n
i dγ ≤

∑
j∈Vi

∫

�ij

un
i ∂ni u

n
i dγ .

The homogeneous boundary condition in (4) then allows us to eliminate the physical
part of the boundary ∂�i in the sum, which concludes the proof.

With the notation T i,+
p := ∂ni + p and T

i,−
p := ∂ni − p, we can rewrite the

transmission conditions as

T i,+
p

(
un

i

) = T i,+
p

(
un−1

j

)
, on �ij , (6)

and computing T i,±
p (un

i )
2 = (∂ni u

n
i )

2 + p2(un
i )

2 ± 2pun
i ∂ni u

n
i , we can reformulate

the energy inequality with components that have a sign,

∂tE
i,n(t) − 1

4p

∑
j∈Vi
j �=0

∫

�ij

(
T i,+

p

(
un

i

)2 − T i,−
p

(
un

i

)2
)

dγ ≤ 0, (7)

which leads to the following convergence result.

Theorem 1 (Convergence in energy) The Schwarz Waveform Relaxation algorithm
(3) for the d-dimensional heat equation converges in the energy norm, i.e.

∑
i∈I

Ei,n(T ) −→ 0, when n −→ +∞,

with I the set of indices of all subdomains and Ei,n the energy def ined in (5).
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Proof We consider the energy inequality (7) and use the transmission condition
recalled in (6) to obtain the inequality

∂tE
i,n(t) − 1

4p

∑
j∈Vi
j �=0

∫

�ij

(
T i,+

p

(
un−1

j

)2 − T i,−
p

(
un

i

)2
)

dγ ≤ 0.

Summing over all subdomains, we obtain

∂t

∑
i∈I

Ei,n(t) − 1

4p

∑
i∈I

∑
j∈Vi
j �=0

∫

�ij

(
T i,+

p

(
un−1

j

)2 − T i,−
p

(
un

i

)2
)

dγ ≤ 0.

The key argument now is that we can transform T i,+
p (un−1

j )2 into T j,−
p (un−1

j )2 by
noting that ∂ni = −∂nj on �ij (ni = −nj ), which implies

T i,+
p

(
un−1

j

)2 =
((

∂ni + p
)
un−1

j

)2

=
(
(−∂nj + p)un−1

j

)2

=
(
(∂nj − p)un−1

j

)2

= T j,−
p

(
un−1

j

)2
.

We therefore obtain the inequality

∂t

∑
i∈I

Ei,n(t) − 1

4p

∑
i∈I

∑
j∈Vi
j �=0

∫

�ij

T j,−
p

(
un−1

j

)2
dγ

+ 1

4p

∑
i∈I

∑
j∈Vi
j �=0

∫

�ij

T i,−
p

(
un

i

)2
dγ ≤ 0.

In order to simplify this inequality further, we introduce the quantities

Ên(t) :=
∑
i∈I

Ei,n(t), T̂ n := 1

4p

∑
i∈I

∑
j∈Vi
j �=0

∫

�ij

T j,−
p

(
un

j

)2
dγ.

We can equivalently switch the dummy summation indices i and j in T̂ n, and write

T̂ n = 1

4p

∑
j∈I

∑
i∈Vj

i �=0

∫

�ji

T i,−
p

(
un

i

)2
dγ.

Now observe that in this latter formula for T̂ n, summing over all subdomains �j and
all interfaces �ji for i ∈ Vj , i �= 0 is equivalent to summing over all subdomains
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�i and all interfaces �ij for j ∈ Vi , j �= 0, since we simply sum over all interfaces
�ij = �ji twice and the order is not important. We therefore obtain

T̂ n = 1

4p

∑
j∈I

∑
i∈Vj

i �=0

∫

�ji

T i,−
p

(
un

i

)2
dγ = 1

4p

∑
i∈I

∑
j∈Vi
j �=0

∫

�ij

T i,−
p

(
un

i

)2
dγ.

The energy inequality can therefore be written in the more compact form

∂t Ê
n(t) − T̂ n−1 + T̂ n ≤ 0.

This suggests to sum over the iterates, leading to a telescopic sum,

∂t

N∑
n=1

Ên(t) − T̂ 0 + T̂ N ≤ 0,

where T̂ N is positive and thus can be dropped from the inequality, and we obtain

∂t

N∑
n=1

Ên(t) ≤ T̂ 0.

Integrating in time and using the fact that the initial condition of the error equations
(4) is zero, we obtain

N∑
n=1

Ên(T ) ≤
∫ T

0
T̂ 0dt.

The right hand side is certainly finite and does not depend on the iterate n, hence
the left hand side converges when N goes to infinity and thus, since Ên(T ) ≥ 0, the
principal term of the sum must tend to zero which means that Ên(T ) tends to zero
when the iteration number goes to infinity.

Although this result ensures convergence of the optimized SWR algorithm for
a very general situation, it unfortunately does not give any information about the
convergence rate, and the influence of the parameter p on it. We present a much more
refined analysis in the next section, albeit for a more simplified situation.

4 Optimization of the algorithm

In order to get more precise convergence estimates for the optimized SWR algorithm
with Robin transmission conditions, we focus from now on on the one-dimensional
heat equation over the entire real axis, and are interested in bounded solutions u. We
decompose the real axis into two subdomains only,

�1 = (−∞, L), �2 = (0, +∞), L ≥ 0,
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which overlap for L > 0 and do not overlap for L = 0; we thus have both variants
of the algorithm we are interested in. The optimized SWR algorithm is then for n =
1, 2, . . . given by

∂tu
n
1(x, t) = ∂xxu

n
1(x, t) + f (x, t), �1 × (0, T ),

(∂x + p)un
1(L, t) = (∂x + p)un−1

2 (L, t), (0, T ),

un
1(x, 0) = u0(x), �1,

∂tu
n
2(x, t) = ∂xxu

n
2(x, t) + f (x, t), �2 × (0, T ),

(∂x − p)un
2(0, t) = (∂x − p)un−1

1 (0, t), (0, T ),

un
2(x, 0) = u0(x), �2. (8)

We define the error en
i := u−un

i , and by linearity, it suffices to study for n = 1, 2, . . .

the associated error equations

∂t e
n
i (x, t) = ∂xxen

i (x, t), �i × (0, T ),(
∂x + (−1)i−1p

)
en
i (�i, t) = (

∂x + (−1)i−1p
)
en−1
j (�i, t), (0, T ), j �= i,

en
i (x, 0) = 0, �i, (9)

where �1 = L and �2 = 0 are the interfaces, i.e. the boundaries of �1 and �2. Like
the solutions u and un

i , the errors en
i must also stay bounded when |x| goes to infinity.

4.1 Laplace analysis

We apply a Laplace transform in time to the error equations (9), where the Laplace
transform is defined by

ên
i (x, s) =

∫ ∞

0
en
i (x, t)e−t sdt, 
(s) > 0.

This transforms the error equations (9) into a system of ODEs, namely

sên
i (x, s) = ∂xx ên

i (x, s),(
∂x + (−1)i−1p

)
ên
i (�i, s) = (

∂x + (−1)i−1p
)
ên−1
j (�i, s), j �= i. (10)

The Laplace variable s lies in the complex plane with positive real part and the solu-
tion is required to stay bounded when x ∈ �i tends to infinity. System (10) has the
general solution

ên
1(x, s) = c1,1e

−√
s(x−L) + c1,2e

√
s(x−L), ên

2(x, s) = c2,1e
−√

sx + c2,2e
√

sx,

where ci,j , i, j = 1, 2 are functions of s only. The growing exponential term must
vanish, since we require that the solutions stay bounded in the spatial variable. There-
fore, the solutions simplify to ên

1(x, s) = c1,2e
√

s(x−L) and ên
2(x, s) = c2,1e

−√
sx ,

where c1,2 and c2,1 are determined by the transmission conditions. Computing the
derivatives ∂x ên

1 = √
sên

1 and ∂x ên
2 = −√

sên
2 , we obtain the transmission conditions

in the frequency domain, for example for the first subdomain

(p + √
s)ên

1(L, s) = (p − √
s)ên−1

2 (L, s).
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This gives for the error ên
1(x, s) on the first subdomain the formula

ên
1 (x, s) = e

√
s(x−L) p − √

s

p + √
s
ên−1

2 (L, s).

Similarly, we obtain for the error on the second subdomain

ên
2(x, s) = e−√

sx p − √
s

p + √
s
ên−1

1 (0, s).

By induction, we obtain after 2n iterations

ê2n
i (�j , s) = e−2nL

√
s

(
p − √

s

p + √
s

)2n

e0
i (�j , s), i, j = 1, 2, j �= i.

The solution of (9) is the inverse Laplace transform of ê2n
i (x, s). We must therefore

study

e2n
i (x, t) = L−1

(
e−2nL

√
s

(
p − √

s

p + √
s

)2n

ê0
i (�j , s)

)
, i �= j.

To do so, we compute the inverse Laplace transform of the first factor,

f2n(L, t) := L−1

(
e−2nL

√
s

(
p − √

s

p + √
s

)2n
)

, (11)

such that the error is then the convolution

e2n
i (�j , t) =

∫ t

0
f2n(L, t − τ)e0

i (�j , τ )dτ. (12)

To simplify the notation, we will always consider in what follows n iterations, n =
1, 2, . . ., instead of 2n.

4.2 Explicit Kernel formulas

First we prove technical lemmas leading to a closed form expression for fn for every
positive integer n = 1, 2, . . . and for L > 0. We define the functions

h1(y) := e−py

√
py

+ √
perf(

√
py),

h2,n(y) := 2nn!e−py

(2n)!√πy
He2n(2

√
py), (13)

where He2n is the Hermite polynomial of degree 2n defined by the relation,

Hen(y) = (−1)ney2/2 dn

dyn
e−y2/2. (14)

Lemma 2 For the convolution h(x) := ∫ x

0 h1(x − y)h2,n(y)dy, we have that

h(0) = 2nn!√π

(2n)!√p
, n = 1, 2, . . . .



230 Numer Algor (2013) 64:221–243

Proof The product h1(x − y)h2,n(y) can be expanded as

h1(x − y)h2,n(y)

=
(

e−p(x−y)

√
p(x − y)

+ √
perf(

√
p(x − y))

)
2nn!e−py

(2n)!√πy
He2n(2

√
py)

= 2nn!
(2n)!√π

(
e−px

√
p(x − y)y

+
√

perf(
√

p(x − y))e−pyHe2n(2
√

py)√
y

)
.

Thus, we have that h(x) is equal to

h(x) = 2nn!
(2n)!√π

∫ x

0

(
e−px

√
p(x − y)y

+
√

perf(
√

p(x − y))e−pyHe2n(2
√

py)√
y

)
dx

= 2nn!
(2n)!√π

(
e−px

√
p

∫ x

0

1√
(x − y)y

dx

+√
p

∫ x

0

erf(
√

p(x − y))e−pyHe2n(2
√

py)√
y

dx

)
.

We observe then that

0 ≤
∫ x

0

erf(
√

p(x − y))e−pyHe2n(2
√

py)√
y

dx ≤
∫ x

0

He2n(2
√

py)√
y

dx,

and that when x goes to zero we have

lim
x→0

∫ x

0

He2n(2
√

py)√
y

dx = 0,

since the function
He2n(2

√
py)√

y
is integrable. On the other hand, we have that

∫ x

0

1√
(x − y)y

dx =
∫ 1

0

1

(1 − t)
1
2 t

1
2

dt (15)

with the change of variables t = y
x

. The integral (15) is given in [19] page 346,

∫ 1

0

1

(1 − t)
1
2 t

1
2

dt = π,
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which does not depend on x. We thus obtain

h(0) = lim
x→0

h(x) = 2nn!π
(2n)!√π

√
p

= 2nn!√π

(2n)!√p
.

Lemma 3 For h(x) = ∫ x

0 h1(x −y)h2,n(y)dy where h1 and h2,n are def ined in (13)
and δnL(x) = δ(x − nL) the shifted Dirac delta function, we have for n = 1, 2, . . .∫ ∞

0

∫ x

0
h(x − y)δ′

nL(y)e−xsdydx =
∫ ∞

0

∫ ∞

y

h(x − y)δ′
nL(y)e−xsdxdy, (16)

where δ′
nL(y) is the weak derivative of the Dirac delta function with respect to y.

Proof We first use integration by parts1 for the left hand side of (16),∫ ∞

0

∫ x

0
h(x − y)δ′

nL(y)e−xsdydx =
∫ ∞

0

∫ x

0
h(x − y)δ′

nL(y)dye−xsdx

=
∫ ∞

0

(
h(x − y)δnL(y)

∣∣∣
x

0
−

∫ x

0

d

dy
(h(x − y))δnL(y)dy

)
e−xsdx. (17)

Because nL > 0, we have δnL(0) = 0, and together with d
dy

(h(x−y)) = −h′(x−y),
we can simplify (17) to
∫ ∞

0

(
h(x − y)δnL(y)

∣∣∣
x

0
−

∫ x

0

d

dy
(h(x − y))δnL(y)dy

)
e−xsdx

=
∫ ∞

0
h(0)e−xsδnL(x)dx +

∫ ∞

0

∫ x

0
h′(x − y)δnL(y)dye−xsdx

= h(0)e−nLs +
∫ ∞

0

∫ x

0
h′(x − y)δnL(y)dye−xsdx

= h(0)e−nLs +
∫ ∞

nL

h′(x − nL)e−xsdx.

Note that h(0) is finite, as shown in Lemma 2.
For the right hand side of (16), we obtain, using the change of variables z = x −y,∫ ∞

0

∫ ∞

y

h(x − y)δ′
nL(y)e−xsdxdy =

∫ ∞

0

∫ ∞

y

h(x − y)e−xsdxδ′
nL(y)dy

=
∫ ∞

0

∫ ∞

0
h(z)e−(z+y)sdzδ′

nL(y)dy

=
∫ ∞

0
δ′
nL(y)e−ysdy

∫ ∞

0
h(z)e−zsdz. (18)

1All these calculations hold in the sense of distributions
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The first factor
∫ ∞

0 δ′
nL(y)e−ysdy is the Laplace transform of δ′

nL which is equal to
∫ ∞

0
δ′
nL(y)e−ysdy = se−nLs .

Substituting this result into (18) and using again integration by parts leads to
∫ ∞

0
δ′
nL(y)e−ysdy

∫ ∞

0
h(z)e−zsdz = se−nLs

∫ ∞

0
h(z)e−zsdz

= e−nLs

∫ ∞

0
h(z)se−zsdz

= e−nLs

(
−h(z)e−zs

∣∣∣∞
0

+
∫ ∞

0
h′(z)e−zsdz

)

= h(0)e−nLs +
∫ ∞

0
h′(z)e−zse−nLsdz,

where we used in the last equality the fact that h(z) is bounded and 
(s) > 0. Finally,
the change of variables x = z + nL gives

∫ ∞

0
h′(z)e−zse−nLsdz =

∫ ∞

nL

h′(x − nL)e−xsdx,

which shows that the left and right hand sides of (16) are indeed equal.

Lemma 4 The Laplace transform of h(x) = ∫ x

0 h1(x − y)h2,n(y)dy is for n =
1, 2, . . . given by

L
(∫ x

0
h1(x − y)h2,n(y)dy

)
=

(
p − s

p + s

)n 1

s
, (19)

where h1 and h2,n are def ined in (13), and p is a constant.

Proof The integral
∫ x

0 h1(x − y)h2,n(y)dy represents the convolution h1 ∗ h2,n, and
the Laplace transform of a convolution is the product of the Laplace transforms, i.e.

L
(∫ x

0
h1(x − y)h2,n(y)dy

)
= L(h1)L(h2,n).

Both Laplace transforms of h1 and h2,n are given in [25],

L(h1) =
√

s + p

s
, L(h2,n) =

(
p − s

p + s

)n 1√
p + s

,

which we can multiply to conclude the proof.

For every function g(u) ∈ L1(R+), we have the formula

L(g)(
√

s) = L
(∫ ∞

0
ηt (u)g(u)du

)
, ηt (u) := 1

2
√

πt
3
2

ue− u2
4t , (20)
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see for example [25], page 210. We are ready now to give a closed form expression
for the error in the SWR algorithm with Robin transmission conditions.

Theorem 2 The error of the SWR algorithm (8) solved with Robin transmission
conditions is for n = 1, 2, . . . of the form

en
i (�j , t) =

∫ t

0
fn(L, t − τ)e0

i (�j , τ )dτ, (21)

where the function fn is given by

fn(L, t) = −
∫ ∞

0

e
−(x+nL)2

4t (2t − (x + nL)2)

4
√

πt
5
2

h(x)dx, (22)

with h(x) = ∫ x

0 h1(x − y)h2,n(y)dy and h1 and h2,n def ined in (13).

Proof We compute first the Laplace transform of the convolution
∫ x

0 h(x −
y)δ′

nL(y)dy,

L
(∫ x

0
h(x − y)δ′

nL(y)dy

)
=

∫ ∞

0

∫ x

0
h(x − y)δ′

nL(y)dye−xsdx

=
∫ ∞

0

∫ x

0
h(x − y)δ′

nL(y)e−xsdydx,

which is, by Lemma 3, equal to
∫ ∞

0

∫ ∞

y

h(x − y)δ′
nL(y)e−xsdxdy.

Using (18), we have that
∫ ∞

0

∫ ∞

y

h(x − y)δ′
nL(y)e−xsdxdy = L(δ′

nL)L(h),

where L(δ′
nL) = se−nLs , and by Lemma 4

L(h) = L
(∫ x

0
h1(x − y)h2,n(y)dy

)
=

(
p − s

p + s

)n 1

s
.

Thus, we obtain

L
(∫ x

0
h(x − y)δ′

nL(y)dy

)
=

(
p − s

p + s

)n

e−nLs,

Now using (20) leads to

L
(∫ ∞

0

∫ x

0
h(x − y)δ′

nL(y)dyηt (x)dx

)
=

(
p − √

s

p + √
s

)n

e−nL
√

s,

which is equivalent to
∫ ∞

0

∫ x

0
h(x − y)δ′

nL(y)dyηt (x)dx = L−1
((

p − √
s

p + √
s

)n

e−nL
√

s

)
. (23)
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We now simplify the left hand side of (23). We integrate by parts the inner integral
∫ ∞

0

∫ x

0
h(x − y)δ′

nL(y)dyηt (x)dx

=
∫ ∞

0

(
h(x − y)δnL(y)

∣∣∣
x

0
+

∫ x

0
h′(x − y)δnL(y)dy

)
ηt (x)dx

=
∫ ∞

0

(
h(0)δnL(x) +

∫ x

0
h′(x − y)δnL(y)dy

)
ηt (x)dx

=
∫ ∞

0
h(0)δnL(x)ηt (x)dx +

∫ ∞

0

∫ x

0
h′(x − y)δnL(y)dyηt (x)dx

= h(0)ηt (nL) +
∫ ∞

nL

∫ x

0
h′(x − y)δnL(y)dyηt (x)dx, (24)

where we used the fact that δnL(y) = 0 for 0 ≤ x < nL. We can further simplify the
double integral,

∫ ∞

nL

∫ x

0
h′(x − y)δnL(y)dyηt (x)dx =

∫ ∞

nL

h′(x − nL)ηt (x)dx,

which we integrate by parts,
∫ ∞

nL

h′(x − nL)ηt (x)dx = h(x − nL)ηt (x)

∣∣∣
∞
nL

−
∫ ∞

nL

h(x − nL)η′
t (x)dx

= −h(0)ηt (nL) −
∫ ∞

nL

h(x − nL)η′
t (x)dx, (25)

where we used that limx→∞ ηt (x) = 0 and h is bounded. We substitute the result of
(25) into (24) and obtain

∫ ∞

0

∫ x

0
h(x − y)δ′

nL(y)dyηt (x)dx = −
∫ ∞

nL

h(x − nL)η′
t (x)dx.

A last change of variables x̃ = x − nL finally gives
∫ ∞

nL

h(x − nL)η′
t (x)dx =

∫ ∞

0
h(x̃)η′

t (x̃ + nL)dx̃,

which is equal to (22) and concludes the proof, since then, using (23) and removing
the unnecessary tilde on the x variable,

fn(L, t) = L−1
((

p − √
s

p + √
s

)n

e−nL
√

s

)
=

∫ ∞

0
h(x)η′

t (x + nL)dx.

4.3 First optimization on bounded time windows

We use in this section the fact that one can scale the heat equation to obtain a time
window of constant length (0, 1). This scaling directly reveals the role the time plays
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in the convergence behavior of SWR, and leads to a first optimized choice of the
parameter p. We also refer to [13], where a similar result has been obtained by direct
Fourier analysis, without time scaling.

We consider again the error equations

∂t e
n
l (x, t) = ∂xxen

l (x, t), �l × (0, T ),

(∂nl + p)en
l (�l, t) = (∂nl + p)en−1

j (�l, t), (0, T ), j �= l,

en
l (x, 0) = 0, �l. (26)

We now perform the change of variables to x̃ and t̃ such that x = √
T x̃ and t = T t̃ .

Since (x, t) lies in �l × (0, T ), we have that (x̃, t̃) belongs to �s
l × (0, 1) with �s

l

defined by

�s
l := {x | √

T x ∈ �l}.
We define �̃l by �l = √

T �̃l . The error equations in the scaled variables are

∂t e
n
l (

√
T x̃, T t̃) = ∂xxe

n
l (

√
T x̃, T t̃), �s

l × (0, 1),

(∂nl + p)en
l (

√
T �̃l , T t̃) = (∂nl + p)en−1

j (
√

T �̃l, T t̃), (0, 1), j �= l,

en
l (

√
T x̃, 0) = 0, �s

l .

Differentiating with respect to x or with respect to x̃ differs only by a constant, i.e.
∂x̃ = √

T ∂x , and similarly for the time ∂t̃ = T ∂t . Therefore, the error equations with
the tilde differentiation symbols become

1
T

∂t̃ e
n
l (

√
T x̃, T t̃) = 1

T
∂x̃x̃e

n
l (

√
T x̃, T t̃), �s

l × (0, 1),

(∂nl + p)en
l (

√
T �̃l , T t̃) = (∂nl + p)en−1

j (
√

T �̃l, T t̃), (0, 1), j �= l,

en
l (

√
T x̃, 0) = 0, �s

l .

Note that the derivative with respect to nl is simply a derivative ∂nl = ±∂x where the
sign depends on which boundary we are located. Hence, a factor

√
T appears in the

transmission conditions,

(∂nl + p)en
l (

√
T �̃l, T t̃) =

(
1√
T

∂ñl
+ p

)
en
l

(√
T �̃l, T t̃

)

(∂nl + p)en−1
j (

√
T �̃l, T t̃) =

(
1√
T

∂ñl
+ p

)
en−1
j

(√
T �̃l , T t̃

)
,

where we use ∂ñl
to denote the derivative with respect to x̃ in the direction n. We

multiply on both sides of the transmission conditions by
√

T and simplify the factor
1
T

in the error equations, to obtain

∂t̃ e
n
l (

√
T x̃, T t̃) = ∂x̃x̃e

n
l (

√
T x̃, T t̃), �s

l × (0, 1),

(∂ñl
+ √

T p)en
l (

√
T �̃l , T t̃) = (∂ñl

+ √
T p)en−1

j (
√

T �̃l , T t̃), (0, 1), j �= l,

en
l (

√
T x̃, 0) = 0, �s

l .
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Finally, we introduce the new error functions ẽn
l (x̃, t̃) := en

l (
√

T x̃, T t̃), which leads
to error equations equivalent to (26) on the scaled domains �s

l × (0, 1),

∂t̃ ẽ
n
l (x̃, t̃) = ∂x̃x̃ ẽ

n
l (x̃, t̃), �s

l × (0, 1),

(∂ñl
+ √

T p)ẽn
l (�̃l, t̃) = (∂ñl

+ √
T p)ẽn−1

j (�̃l, t̃), (0, 1), j �= l,

ẽn
l (x̃, 0) = 0, �s

l . (27)

This new formulation illustrates the relative role of the overlap. The overlap between
�s

1 and �s
2 is of size L√

T
and thus the overlap is “big” only with respect to the time

window, i.e. “big” means L√
T

is big. This shows that the absolute size of L is not

important, but only the ratio between L and
√

T is relevant for the convergence speed.
The other main benefit of the scaled formulation is that the Robin parameter is no

longer p, but
√

T p, and hence the square root of the time window length appears
explicitly. We can therefore instantly obtain information about the optimized param-
eter p∗ for bounded time windows. In [13], a direct Fourier analysis was applied to
the unscaled error equations (26), which led to the transformed equations

iωên
l (x, iω) = ∂xx ên

l (x, iω),

(
√

iω ± p)ên
l (�l, iω) = (

√
iω ± p)ên−1

j (�l, iω).

Proceeding as before, the solutions are given by

ên
l (�j , iω) =

√
iω − p√
iω + p

e−L
√

iωên−1
j (�l, iω), l �= j,

and iterating twice one obtains a recursion with contraction factor ρ,

ên
l (�j , iω) = ρ(iω)ên−2

l (�j , iω), with ρ(iω) =
(√

iω − p√
iω + p

)2

e−2L
√

iω.

(28)
The optimized choice of the parameter p is thus the one that makes the contrac-
tion factor as small as possible over all frequencies ω, which leads to the min–max
problem

min
p>0

max
ω∈I

|ρ(iω)|, I ⊂ R. (29)

In a numerical calculation, the range of frequencies lies in the bounded interval I =
(ωmin, ωmax), where one can estimate ωmax = π/�t and ωmin = π/T where �t =
T/m with m + 1 the number of points discretizing the time window [0, T ], see [13]
for details.

Theorem 3 (Zeroth order approximation, see [13]) The min–max problem (29) with

I = (ωmin, ωmax) has, for L = 0, the optimized parameter p∗ = (ωminωmax)
1
4 . For

L > 0, three cases occur:

1. for 0 < L ≤ L = √
2ω

1/4
minω

−3/4
max + o(ω

−3/4
max ), (29) has for optimized parameter

p∗ the solution of the nonlinear equation |ρ(iωmin)| = |ρ(iωmax)|.
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2. for L < L ≤ L̄ = C/
√

ωmin, with C = 0.3401 . . . , (29) has for optimized
parameter p∗ the solution of the nonlinear equation |ρ(iωmin)| = |ρ(iωe)|, with
ωe = pL−1(1 + √

1 − (Lp)2 − 2Lp).
3. for L > L̄, (29) has for optimized parameter p∗ = √

ωmin.

The conclusion is here that for small time windows, the overlap of the scaled
system (27) is given by L/

√
T which is big. For a time T small enough such that

the condition of the third item of Theorem 3 is satisfied, i.e. L√
T

> L̄, the theorem

gives an estimate for the optimized parameter, namely p∗ = √
ωmin =: p∗

scaled and
ωmin is defined for the time interval (0, 1). Recall that the Robin parameter for the
scaled problem is pscaled = √

T pnon-scaled, hence the optimized parameter for the
non-scaled problem is

p∗
1 := p∗

non-scaled = ωmin√
T

=
√

π√
T

. (30)

This first estimate for the optimized parameter in the SWR algorithm is based on the
linear convergence bound (28), and a truncation of the frequencies to the numerically
relevant ones. It does however not take into account that the algorithm converges
superlinearly on bounded time intervals, a phenomenon which becomes particularly
important as soon as one is interested in short time intervals. We show in the next sub-
section, where we use the exact error expression derived in Section 4.2, that indeed
for short times, there is an asymptotically better choice of p.

4.4 Second optimization on short time windows

We now study the convergence behavior of the optimized SWR algorithm (8) on short
time intervals, using the explicit kernel representation of fn from Section 4.2, and we
focus on the case of one iteration, i.e. the case n = 1. We therefore need to study in
detail

e1
i (�j , t) =

∫ t

0
f1(L, t − τ)e0

i (�j )dτ, (31)

where f1 is given by

f1(L, t) = L−1
(

p − √
s

p + √
s
e−L

√
s

)
.

We first compute

g(t) = L−1
(

p − s

p + s
e−Ls

)
.

This inverse Laplace transform is the convolution of the inverse Laplace transforms of

ϕ1(t) := L−1
(

p − s

p + s

)
and ϕ2(t) := L−1(e−Ls).
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We have from [5] that ϕ1(t) = 2pe−pt −δ(t), and also that ϕ2(t) = δL(t). Therefore,
if t < L, we have

g(t) = (ϕ1 ∗ δL)(t) = 0,

since δL(t) is zero for all t < L. If t ≥ L, we obtain

g(t) =
∫ t

0
ϕ1(t−τ)ϕ2(τ )dτ =

∫ t

0
(2pe−pt−δ(t))δL(τ)dτ = 2pe−p(t−L)−δ(t−L).

Now by formula (20) we have

f1(L, t) = L−1
((

p − √
s

p + √
s

)
e−L

√
s

)
=

∫ ∞

0
ηt (u)g(u)du =

∫ ∞

L

ηt (u)g(u)du,

where

ηt (u) = ue− u2
4t

2
√

πt
3
2

.

This then gives the following integral to which we apply the change of variables
z = u − L,

∫ ∞

L

ue− u2
4t

2
√

πt
3
2

(2pe−p(u−L)−δ(u−L))du =
∫ ∞

0

(z + L)e− (z+L)2
4t

2
√

πt
3
2

(2pe−pz−δ(z))dz.

This integral can be evaluated in closed form, namely

f1(L, t) = e− L2
4t

2t
3
2
√

π
(4pt − L) − 2p2ep2t+pLerfc

(
L + 2pt

2
√

t

)
. (32)

We can therefore establish an upper bound on e1
1 in (31), by estimating

|e1
1(�2, t)| ≤

∫ t

0
|f1(L, t − τ)e0

1(�2, τ )|dτ

≤
∫ t

0
|f1(L, t − τ)|dτ max

τ∈(0,t)
|e0

1(�2, τ )|

≤
∫ t

0
|f1(L, t − τ)|dτ max

τ∈(0,T )
|e0

1(�2, τ )|

=
∫ t

0
|f1(L, t − τ)|dτ ||e0

1(�2, ·)||L∞(0,T ).

It therefore remains to estimate
∫ t

0
|f1(L, t − τ)|dτ = −

∫ 0

t

|f1(L, τ)|dτ =
∫ t

0
|f1(L, τ)|dτ ≤

∫ T

0
|f1(L, τ)|dτ,

and we thus need an L1 estimate for f1 in order to obtain the bound

||e1
1(�2, t)||L∞(0,T ) ≤ ||f1||L1(0,T )||e0

1(�2, t)||L∞(0,T ).
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A new way to optimize the SWR algorithm with Robin transmission conditions is
therefore to determine the parameter p such that the norm ||f1||L1(0,T ) is minimal, i.e.

min
p>0

||f1||L1(0,T ). (33)

Remark 1 The above argument remains unchanged for n > 1, i.e. more than one
iteration. The associated optimization problem is however much more involved then,
and is currently under investigation.

In order to study the optimization problem (33), we first investigate the zeros of
f1 given in (32) using an asymptotic expansion for t small. If t goes to zero, then
the fraction L+2pt

2
√

t
goes to infinity. We thus need to expand the complementary error

function erfc(x) into an asymptotic series for x → ∞,

erfc(x) = e−x2
(

1√
πx

+ O

(
1

x3

))
.

This implies that for t → 0 we have the leading order expansion

ep2t+pLerfc

(
L + 2pt

2
√

t

)
= ep2t+pLe

−
(

L+2pt

2
√

t

)2 (
2
√

t√
π(L + 2pt)

+ O
(√

t3
))

= e− L2
4t

(
2
√

t√
π(L + 2pt)

+ O
(√

t3
))

.

Hence, the function f1(L, t) has an asymptotic expansion for t → 0 of the from

f1(L, t) = e− L2
4t

2t
3
2
√

π
(4pt − L) − 2p2ep2t+pLerfc

(
L + 2pt

2
√

t

)

= e− L2
4t

1√
π

(
(4pt − L)

2t
3
2

− 4p2√t

L + 2pt
+ O(t)

)

We can further neglect the term order
√

t , which leads to

f1 ∼ e− L2
4t

(4pt − L)
√

π2t
3
2

=: f̃1.

A zero of f1 is then located around t̃0 := L
4p

which is the zero of the asymp-
totic expansion of f1. This shows also that we expect only one zero of the function
f1(L, t) in the interval (0, T ) for small T . We denote the exact zero of f1(L, t) in
this interval by t0.

Two cases occur: either t̃0 is in the interval (0, T ), or it is greater than T . We first
consider the case where t̃0 > T , thus the L1-norm of f1 in the interval (0, T ) can be
estimated by

||f1||L1(0,T ) ∼ ||f̃1||L1(0,T ) =
∫ T

0
|f̃1|dt,
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where we supposed that f̃1 does not change sign in the interval (0, T ). We can then
compute the integral using integration by parts,

∫ T

0
|f̃1|dt =

∣∣∣∣
∫ T

0
f̃1dt

∣∣∣∣

=
∣∣∣∣∣
∫ T

0
e− L2

4t
(4pt − L)
√

π2t
3
2

dt

∣∣∣∣∣

=
∣∣∣∣
∫ T

0

1√
π

e− L2
4t

(
− L

2t
3
2

+ 2p

t
1
2

)
dt

∣∣∣∣

=
∣∣∣∣∣−

L

2
√

π
e− L2

4T
4T

1
2

L2
+ L

2
√

π

∫ T

0
e− L2

4t
2

L2t
1
2

dt +
∫ T

0

1√
π

e− L2
4t

2p

t
1
2

dt

∣∣∣∣∣

=
∣∣∣∣∣−e− L2

4T
2T

1
2√

πL
+

(
1√
πL

+ 2p√
π

)∫ T

0
e− L2

4t
1

t
1
2

dt

∣∣∣∣∣ .

Again using integration by parts we evaluate the integral

∫ T

0
e− L2

4t
1

t
1
2

dt = e− L2
4T

4T
3
2

L2
−

∫ T

0
e− L2

4t
6t

1
2

L2
dt,

which gives

∫ T

0
|f̃1|dt =

∣∣∣∣∣e
− L2

4T
1√
π

(
−2T

1
2

L
+

(
1

L
+ 2p

)
4T

3
2

L2

)

− 1√
π

(
1

L
+ 2p

) ∫ T

0
e− L2

4t
6t

1
2

L2

∣∣∣∣∣ .

The last integral is of order e− L2
4T O(T

5
2 ), and therefore we can neglect it, i.e.

∫ T

0
|f̃1|dt =

∣∣∣∣∣e
− L2

4T
1√
π

(
−2T

1
2

L
+

(
1

L
+ 2p

)
4T

3
2

L2
+ O(T

5
2 )

)∣∣∣∣∣

=
∣∣∣∣∣e

− L2
4T

(
8T

3
2√

πL2

(
L

4T
− 1

2L
− p

)
+ O(T

5
2 )

)∣∣∣∣∣ . (34)

Returning to the optimization problem (33), we thus have that

min
p>0

||f1||L1(0,T ) ∼ min
p>0

||f̃1||L1(0,T ),
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and the optimal p is then the one that makes the factor of the exponential vanish in
(34). This result is stated in the following theorem.

Theorem 4 The minimization problem (33) has an asymptotic solution p∗
2 for short

time windows given by

p∗
2 = L

4T
− 1

2L
.

Proof The proof is simply finding the zero of the first term of the right hand side of
(34) which vanishes when p = L

4T
− 1

2L
.

Remark 2 We did not investigate the case t̃0 ∈ (0, T ) further, since the numerical
experiments confirm a dependence of p∗

2 ∼ L
4T

− 1
2L

, which implies that indeed

t̃0 = L

4p∗
2

= 4L2T

4(L2 − 2T )
>

4L2T

4L2 = T .

5 Numerical experiment

A first estimate in Section 4.3 showed that the optimized parameter in the Robin
transmission conditions for bounded time windows is given by

p∗
1 =

√
π√
T

, (35)

see (30). This prediction was obtained through a frequency analysis and by restricting
the possible time frequencies to ( π

T
, π

�t
). For short time windows, a second approach

taking into account explicit kernel information was shown in Section 4.4. By solving
exactly the error equations of the SWR algorithm, we obtained for one iteration step
the asymptotically optimized parameter

p∗
2 = L

4T
− 1

2L
. (36)

We compute now in a numerical implementation of the algorithm explicitly the
numerically optimized parameter we denote by p∗

num. We show in Fig. 2 that indeed
this value shows a change of behavior depending on the length of the time window,
as predicted by our analysis. For this simulation, we used a centered finite difference
discretization in space, with 100 meshpoints for the domain � = (−1, 1), which
gives a spatial mesh size �x = 2

99 . In time we used a backward Euler scheme, with
constant time step �t = 10−6 for all experiments. We used two subdomains and an
overlap of L = 8

99 .

Remark 3 The constant used for the red line in Fig. 2 is not the one of the predic-
tion of (35), which can not be expected to be sharp based on the rough numerical

frequency estimates. We show in the plot the line defined by
√

π

1.32
√

T
.
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Fig. 2 This figure shows the change of behavior of the numerically computed optimal parameter p∗
num. It

behaves for short times like the theoretical optimal parameter p∗
2 and for longer times like the theoretical

optimal parameter p∗
1 times a constant

6 Conclusions

We have shown in this paper that while the optimized SWR algorithm with Robin
transmission conditions can be shown to converge for very general decompositions
in many spatial dimensions, the optimization of the Robin parameter over short time
windows is a challenging task. This is because the effects of the superlinear con-
vergence regime of SWR need to be taken into account over short time windows.
In particular, we have shown that the asymptotic behavior of the optimized param-
eter necessarily changes from the estimate over bounded time windows, as soon as
the time window becomes short, or the overlap large. For the one dimensional heat
equation and two subdomains, we provided new explicit kernel formulations for the
case of many iterations, and an asymptotic result over short time windows for the
optimized parameter over one iteration. Our numerical experiments illustrated the
analysis, and also revealed that the optimized parameter based on the simpler linear
convergence regime can still be used for quite small time windows.
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