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Abstract A simple deformation field associated with an
exact torsion-like solution of the equilibrium equations of
linear elasticity is shown to provide a good approximation
of the deformation field in interior elements of a mesh that
models pure torsion of a right cylindrical bar with rectangu-
lar cross-section. Using this solution, modified torsion coef-
ficients are proposed for a 3-D brick Cosserat point element
(CPE) which are shown to improve convergence properties
for solutions of pure torsion.

Keywords Cosserat point element · Finite element ·
Elasticity · Rectangular cross-section · Torsion

1 Introduction

Torsion of a right cylindrical region with arbitrary cross-
section is a classical problem in the linear theory of elas-
ticity. The exact solution for a rectangular cross-section with
an isotropic material can be found in numerous texts (e.g.,
[22]) and for an orthotropic material can be found in [9].

Recently, Nadler and Rubin [11] have developed a 3-D
eight noded brick Cosserat Point Element (referred to as
CPE) which is based on the theory of a Cosserat point [14–
17]. It has been shown [3,6–8,10,18] that the CPE is a robust
user friendly element that can be used with confidence to
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model problems in nonlinear elasticity, including shells,
plates and beams. In contrast with standard finite element
methods the Cosserat approach treats the CPE as a structure
whose response is characterized by a strain energy function.
The constitutive coefficients in this strain energy function are
determined by matching exact linear elastic solutions and no
integration is needed over the element region.

In [11] the torsional constitutive coefficients for the CPE
were determined by matching exact solutions for pure torsion
of a rectangular parallelepiped. Since the strain and stress
fields do not depend on the coordinate parallel to the torsion
direction it is possible to use a mesh {n1 × n2 × 1} with
only one element in the torsion direction. If n1 = n2 = 1
and the rectangular parallelepiped is modeled by a single ele-
ment then the lateral surfaces of the element are traction free
and the element responds to pure torsion. However, when
the mesh is refined (with n1 > 1 and n2 > 1) then a typical
interior element no longer experiences pure torsion since its
lateral surfaces are subjected to nonzero tractions.

It will be shown in this paper that the displacement field of
a simple exact torsion-like solution of the equations of iso-
tropic linear elasticity is representative of the deformation
field in a typical interior element in a refined mesh for pure
torsion. Modified torsional coefficients of the CPE are pro-
posed which capture this simple solution and significantly
improve the convergence properties of the CPE for pure tor-
sion, while retaining the other good properties of the CPE
for bending dominated fields and large deformations.

An outline of this paper is as follows. Section 2 reviews the
classical solution for pure bending and introduces an exact
simple torsion-like solution which is representative of the
state in an interior element and which forms the basis for
the modified torsional coefficients of the CPE that are pro-
posed in Sect. 3. Section 4 presents example problems of
small deformation pure torsion of a bar with a rectangular
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cross-section and large deformation lateral torsional buck-
ling of a cantilever beam. Then, conclusions are summarized
in Sect. 5.

2 Summary of the exact pure torsion and torsion-like
solutions

Here attention is limited to the simple case of an isotropic
material and a bar which is a rectangular parallelepiped that
is subjected to torsion. Specifically, the position vector X∗ of
a material point in the reference configuration is expressed
in terms of its components Xi (i = 1, 2, 3) relative to fixed
rectangular Cartesian base vectors ei and the bar occupies
the region

X∗ =
3∑

i=1

Xi ei , |X1| ≤ L1

2
, |X2| ≤ L2

2
, 0 ≤ X3 ≤ L 3

2
, (1)

where Li are lengths of the bar.
For the exact linear solution of pure torsion of the bar the

displacement field can be expressed in the form (e.g., [22])

u∗ = [ω1φ̂
∗
1 (X2, X3) + ω2 X2 X3 − ω3 X2 X3]e1

+[−ω1 X1 X3 + ω2φ̂
∗
2 (X1, X3) + ω3 X1 X3]e2

+[ω1 X1 X2 − ω2 X1 X2 + ω3φ̂
∗
3 (X1, X2)]e3, (2)

where ωi denote the constant twists per unit length in the
ei directions, respectively, and φ̂∗

i are functions that control
warping of the Xi = constant cross-sections, respectively.
The warping functions φ̂∗

i are determined by satisfying equa-
tions of equilibrium (in the absence of body force) and bound-
ary conditions on the lateral surfaces of the bar. Then, the
exact solutions for the torsional stiffnesses B∗

i associated
with pure torsional solutions are given by (e.g., [11,22]) in
the forms

B∗
1 = T1

ω1
= µ∗L2

2L2
3

3
b∗

(
L2

L3

)
,

B∗
2 = T2

ω2
= µ∗L2

1L2
3

3
b∗

(
L1

L3

)
, (3)

B∗
3 = T3

ω3
= µ∗L2

1L2
2

3
b∗

(
L1

L2

)
,

where Ti is the torque caused by the twist ωi , µ
∗ is the shear

modulus and b∗(ξ) is a function defined by

b∗(ξ) = ξ

[
1 − 192

π5
ξ

∞∑

n=1

1

(2n − 1)5
tanh

{
π(2n − 1)

2ξ

}]

for ξ ≤ 1, (4)

where use is made of the fact that

b∗(ξ) = b∗
(

1

ξ

)
, (5)

and that the series in (4) converges faster than series for
b∗(1/ξ) for ξ ≤ 1.

For a numerical solution of the problem of pure torsion
with only one torque T3 applied in the e3 direction, it is pos-
sible to consider an element mesh {n1 × n2 × 1} with n1

elements in the e1 direction, n2 elements in the e2 direction
and only one element in the e3 direction since there is no
dependence of the strain and stress fields on the axial coor-
dinate X3. Then, the lengths Hi of these elements are given
by

H1 = L1

n1
, H2 = L2

n2
, H3 = L3. (6)

2.1 A simple exact torsion-like solution

As mentioned in the introduction, since the stress field for
pure torsion associated with (2) varies over the cross-section,
a typical element whose center is located by

X∗ = X̄∗ =
3∑

i=1

X̄i ei , (7)

is subjected to nonzero tractions on its lateral surfaces. There-
fore, the displacement, strain and stress fields in a typical
element associated the problem (2) cannot be locally approxi-
mated by pure torsion. Instead, the state in an interior element
is more closely represented by a simpler exact torsion-like
solution for which the displacement, strain and stress fields
are specified by

u∗ = (ω1�1 + ω2 − ω3)X2 X3e1

+(−ω1 + ω2�2 + ω3)X1 X3e2

+(ω1 − ω2 + ω3�3)X1 X2e3,

2E∗ = [−ω1(1 − �1)+ω2(1 + �2)]X3(e1 ⊗ e2+e2 ⊗ e1)

+[ω1(1 + �1) − ω3(1 − �3)]X2(e1 ⊗ e3+e3 ⊗ e1)

+[−ω2(1 − �2) + ω3(1 + �3)]
X1(e2 ⊗ e3 + e3 ⊗ e2), T∗ = 2µ∗E∗. (8)

where the constants �i control the local warping fields. It
can easily be seen that this stress field also satisfies the equa-
tions of equilibrium in the absence of body force. In the next
section this simple torsion solution will be used to develop
modified forms for the constitutive coefficients that control
torsion in the CPE.

3 Relevant aspects of the CPE formulation

Recently, Nadler and Rubin [11] used the theory of a Cosserat
point [14,15,17] to develop a new 3-D brick CPE for the
numerical solution of problems in nonlinear elasticity. Within
the context of this approach, the CPE is considered to be a
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structure and the constitutive equations of the structure are
specified in terms of a strain energy function � . Using a non-
linear form of the patch test, Nadler and Rubin [11] proposed
a form for � which is determined by the strain energy func-
tion �∗ of the 3-D material and a strain energy function �

for inhomogeneous deformations, such that

� = �∗ + �. (9)

Following the work in [7] it is convenient to express � in the
form

2m� = D1/2V µ∗

6(1 − ν∗)

⎡

⎣
9∑

i=1

9∑

j=1

Bi j bi b j

⎤

⎦ + D1/2V [K16(κ
1
4 )2

+K17(κ
2
4 )2 + K18(κ

3
4 )2], Bi j = B ji , (10)

where m is the mass of the element, ν∗ is Poisson’s ratio,
κ i

j are strains due to inhomogeneous deformations, D1/2V is
defined by the reference geometry of the element,
{Bi j , K16, K17, K18} are constitutive constants and the aux-
iliary vector bi is defined by

bi = {κ1
1 , κ3

3 , κ2
1 , κ3

2 , κ1
2 , κ2

3 , κ3
1 , κ2

2 , κ1
3 }. (11)

In [11] the constitutive constants associated with Bi j were
determined by comparing solutions of the linearized CPE
with exact solutions of a rectangular parallelepiped. For such
an element the responses to bending, torsion and higher-order
hourglassing are uncoupled (B7i = B8i = B9i = 0, i =
1, 2, . . . , 6). Specifically, in [11] the values of (Bi j , i = j =
1, 2, . . . , 6) were determined by matching exact solutions to
pure bending and the values of {K16, K17, K18} were deter-
mined by matching exact solutions to a higher-order hour-
glass modes. Determination of the coefficients

{B77, B78, B79, B88, B89, B99}, (12)

corresponding to torsion solutions was less straight forward
since it was impossible to satisfy all of the equations for
pure torsion of a general rectangular parallelepiped. Moti-
vated by the structure of the coefficients determined by exact
integration of the tri-linear displacement field associated with
the Bubnov–Galerkin procedure, the constitutive coefficients
associated with (12) were proposed in the forms

B77 = (1 − ν∗)B

[
H2

1 + H2
2

H2
3

]
, B78 = (1 − ν∗)B

[
H2

1

H2 H3

]
,

B79 = (1 − ν∗)B

[
H2

2

H1 H3

]
, B88 = (1 − ν∗)B

[
H2

1 + H2
3

H2
2

]
,

B89 = (1 − ν∗)B

[
H2

3

H1 H2

]
, B99 =(1 − ν∗)B

[
H2

2 + H2
3

H2
1

]
,

(13)

where the constant B is introduced here for convenience.
Using these expressions it can be shown that the CPE pre-
dicts values of the torsional stiffnesses Bi for pure torsion of
a rectangular parallelepiped in the forms

B1 = T1

ω1
= µ∗ H2

2 H2
3

3
b̂

(
H2

H3

)
,

B2 = T2

ω2
= µ∗ H2

1 H2
3

3
b̂

(
H1

H3

)
,

B3 = T3

ω3
= µ∗ H2

1 H2
2

3
b̂

(
H1

H2

)
, (14)

where the function b̂(ξ ) is given by

b̂(ξ) = 2B

ξ + 1
ξ

. (15)

Comparison of the expressions (3) and (14) indicates that
within the context of the theory of a CPE the exact function
b∗(ξ) in (4) for torsional stiffness is approximated by b̂(ξ)

in (15). In [11] it was shown that the Bubnov–Galerkin value
of the constant B in (15) is given by

B = 1

2
for Bubnov–Galerkin. (16)

Furthermore, it was noted that when the rectangular parallel-
epiped is a cube (H1 = H2 = H3), which is the ideal aspect
ratio for finite elements, then the approximate value of (15)
equals the exact value of (4) when B is specified by

B = b∗(1) ≈ 0.421732. (17)

This value of B was specified for the CPE with a general
reference geometry. Figure 1a plots the values of the exact
function b∗(ξ) in (4), denoted by (E), the values of b̂(ξ ) with
the original Cosserat specification (17), denoted by (O), and
the values of b̂(ξ ) with the Bubnov–Galerkin specification
(16), denoted by (BG). Figure 1b plots the relative error E
of these stiffnesses defined by

E = b̂(ξ)

b∗(ξ)
− 1. (18)

From these figures it can be seen that, by design, the Cosserat
solution is accurate for an ideal aspect ratio (ξ = 1) and pre-
dicts an error of (−15.6%) for very large aspect ratios (small
values of ξ ). In contrast, the Bubnov–Galerkin solution is
accurate for large aspect ratios and predicts an error of 18.6%
for an ideal aspect ratio.

Since the aspect ratios of finite elements are typically lim-
ited to be near ideal it was thought that the original Cosserat
specification (17) would be more accurate than the Bubnov–
Galerkin specification. However, it will be shown presently
that, in spite of these results, it is better to specify the con-
stant B by the Bubnov–Galerkin value (16). To this end, it
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Fig. 1 Normalized torsional
stiffnesses for the exact (E), the
original CPE (O) and
Bubnov–Galerkin (BG)
solutions. a values of the
functions b∗(ξ) in (4) and b̂(ξ)

in (15); and b relative errors (18)
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is recalled that within the context of the CPE theory, the
position vector X∗ and displacement vector u∗ are related
to the reference element director vectors Di and the element
director displacement vectors δi , such that

X∗ =
7∑

i=0

N i (θ j )Di , u∗ =
7∑

i=0

N i (θ j )δi , (19)

where the element region is defined by the convected coor-
dinates θ i

|θ1| ≤ H1

2
, |θ2| ≤ H2

2
, |θ3| ≤ H3

2
, (20)

and the shape functions N i are specified by the tri-linear
forms

N 0 = 1, N i = θ i (i = 1, 2, 3), N 4 = θ1θ2, N 5 = θ1θ3,

N 6 = θ2θ3, N 7 = θ1θ2θ3. (21)

For a rectangular parallelepiped the reference directors can
be specified so that

Di = ei (i = 1, 2, 3), Di = 0 (i = 4, 5, 6, 7). (22)

Moreover, the value of D0 and the functional forms of the
coordinates Xi associated with the specification (7) can be
determined by equating (1) and (19) to deduce that

D0 = X̄∗, Xi = (X̄i + θ i ) (i = 1, 2, 3). (23)

Thus, the displacement field associated with the simple tor-
sion-like solution (8) [with ω1 = ω2 = 0] can be expressed
in terms of the convected coordinates by

u∗ = −ω3(X̄2 + θ2)(X̄3 + θ3)e1 + ω3(X̄1 + θ1)(X̄3 + θ3)e2

+ω3�3(X̄1 + θ1)(X̄2 + θ2)e3. (24)

An important difference between standard finite element
methods and that used in the CPE theory is that the con-
stitutive coefficients for the CPE are determined by match-
ing exact solutions and not by integration over the element
region. This means that although the displacement field (24)
is a bilinear function of the convected coordinates, which is
a special case of the tri-linear form (19), the equations of the
CPE do not necessarily reproduce this solution exactly. More

specifically, it can be shown that the CPE will reproduce this
exact simple solution only when the value of B is specified by
the Bubnov–Galerkin value (16). The examples considered
in the next section demonstrate that the simple torsion-like
solutions (8) are basic solutions that should be reproduced
exactly in order to improve the convergence properties for
the more general pure torsion problem. Therefore, it is now
suggested that the torsion coefficients (13) in the CPE theory
be modified to use the value (16) instead of the original value
(17). However, the other constitutive coefficients for the CPE
remain those determined by the exact solutions of bending
and higher order hourglassing modes, which are different
from those determined by the Bubnov–Galerkin approach.

4 Examples

The objective of this section is to consider example prob-
lems which demonstrate that the convergence properties of
the CPE for torsion problems are improved by using the value
(16) instead of (17). In the following simulations, the full non-
linear equations [with ω1 = ω2 = 0] are solved even though
for most of the calculations the magnitude of the twist

ω3 = 1 × 10−3 rad/m, (25)

is specified small enough that the response is essentially lin-
ear. Also, the three-dimensional material is characterized by
the compressible Neo–Hookean strain energy function

2ρ∗
0�∗ = K ∗(J − 1)2 + µ∗(α1 − 3), J = det(F),

α1 = J−2/3C · I, (26)

where F is the deformation gradient, C = FT F is the right
Cauchy–Green tensor, J is the dilatation, α1 is a pure mea-
sure of distortion, ρ∗

0 is the reference mass density, and the
small deformation bulk modulus K ∗ and shear modulus µ∗
are specified by

K ∗ = 1 Gpa, µ∗ = 0.6 Gpa. (27)

Results are presented for the modified CPE with the value
(16) [denoted by (C)], for the original CPE with the value
(17) [denoted by (O)], and for the enhanced strain element in
FEAP [23] [denoted by (F)]. The element in FEAP is one of
a class of 3-D brick finite elements that has been developed
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based on enhanced strain/incompatible mode methods or
reduced integration with hourglass control (e.g., [1,2,4,5,
12,13,19–21]) to model bending of thin structures. Calcula-
tions were also performed using the full integration element
in FEAP and it was found that for pure torsion of a rectangu-
lar parallelepiped element, the response predicted by the full
integration and enhanced strain elements are nearly the same.
Consequently, the results for the full integration element are
not recorded.

4.1 Pure torsion of a square cross-section (small
deformations)

In this example the right-cylindrical region (1) is restricted
to have a square cross-section with

L1 = L2 = L3 = 1 m, (28)

and a twist ω3 is applied in the e3 direction. Also, the case
of pure torsion is considered so that the lateral surfaces (X1 =
L1/2; X2 = L2/2) are traction free. Belytschko and
Bindeman [1] proposed an assumed strain stabilization
procedure for a brick element and considered a number of
problems which included pure torsion. In particular, they
simulated pure torsion by applying surface tractions to the
cross-section. Here, an alternative approach is taken which
specifies mixed-mixed boundary conditions on the cross-
sections (X3 = 0; X3 = L3). Specifically, the mesh is taken
to be {n × n × 1} and the nodes in the X3 = 0 cross-section
are fixed in the e1 − e2 plane and allowed to move freely in
the e3 direction. Thus, the nodal displacement ū and f̄ force
applied to a typical node in the cross-section (X3 = 0) are
restricted so that

ū · e1 = ū · e2 = 0, f̄ · e3 = 0 for X3 = 0. (29)

Also, the nodal displacement and force applied to a typical
node in the cross-section (X3 = L3) are restricted so that

ū · e1 = −ω3L3 X2, ū · e2 = ω3L3 X1,

f̄ · e3 = 0 for X3 = L3. (30)

In addition, one of the nodes in the cross-section (X3 = 0) is
prevented from moving in the e3 direction to eliminate rigid
body translation.

Figure 2 shows the convergence of the error E of the tor-
sional stiffness in (18) for the mesh {n×n×1}, with the exact
value of b∗(1) given by (17). By design the original CPE (O)
predicts zero error when the cross-section is modeled by a
single element (n=1). It also predicts slightly better conver-
gence than the modified form (C), which for this problem
yields the same results as FEAP (F). This is consistent with
the statement in [1] that “It is a simple matter to reduce the
element stiffness in the warping mode so the one element

0.0

5.0

10.0

15.0

20.0

C

O

F

0               4               8              12            16             20

E
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%(

n

Fig. 2 Pure torsion of a square cross-section. Convergence of the error
in the torsional stiffness predicted by the modified CPE (C), the original
CPE (O) and FEAP (F) for the mesh {n × n × 1}

mesh has very accurate torsional stiffness . . .; however, the
more refined meshes will show little improvement. . .”.

4.2 A rectangular cross-section (small deformations)

The second simulation considers a rectangular cross-section
with aspect ratio (L2/L1 = 5) specified by

L1 = 0.2 m, L2 = L3 = 1 m. (31)

For this cross-section the exact value of b∗ is given by

b∗(0.2) ≈ 0.174790. (32)

Figure 3 shows the convergence properties for four dif-
ferent meshes. Convergence associated with the patch test
is considered by the meshes Fig. 3a, b. Specifically, refine-
ment is made in both the e1 and e2 directions with the mesh
{n × n × 1} preserving the aspect ratio (H2/H1 = 5) and
with the mesh {n × 5n × 1} preserving an ideal aspect ratio
(H2/H1 = 1). Except for the point n=1 in Fig. 3a, b it can
be seen that the original CPE (O) predicts slightly better
convergence than the modified CPE (C) or FEAP (F). How-
ever, when the mesh is only refined in the e2 direction like
{1 × n × 1} in Fig. 3c and {2 × n × 1} in Fig. 3d it can be
seen that the modified CPE (C) and FEAP (F) continue to
converge to the exact solution whereas the original CPE (O)
converges to a solution that predicts an unphysical weaker
torsional stiffness. These results clearly indicate that the dis-
placement field in the simple torsion-like solution (8) is truly
representative of the displacement field in elements during
mesh refinement and that the convergence properties of the
CPE can be significantly improved. Thus, it is important for
an element formulation to produce a good approximation of
the simple torsion-like solution.
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Fig. 3 Pure torsion of a
rectangular cross-section with
aspect ratio L2/L1 = 5.
Convergence of the error in the
torsional stiffness predicted by
the modified CPE (C), the
original CPE (O) and FEAP (F)
for the meshes: a {n × n × 1};
b {n × 5n × 1}; c {1 × n × 1}
and d {2 × n × 1}
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Fig. 4 Sketch of a thin cantilever beam subjected to a shear force P

4.3 Lateral torsional buckling (large deformations)

Figure 4 shows a sketch of a thin cantilever beam with a rect-
angular cross-section with aspect ratio (L2/L1 = 5) that is
specified by

L1 = 2 mm, L2 = 10 mm, L3 = 200 mm. (33)

The beam is clamped at its end X3 = 0 with all nodes being
fixed and it is subjected to a shear force P that acts in the
constant e2 direction at its end X3 = L3. Specifically, the
nodal forces at this end are specified to be constant and are
determined by a uniform shear stress applied to the cross-sec-
tion. It is well known that lateral torsional buckling occurs at
a critical value of the load P for this beam with a rectangu-
lar cross-section. In order to plot the nonlinear post-buckling
response of the beam it is convenient to consider the displace-
ments uA and uB of the corners (A,B) of the cross-section
shown in Fig. 4 and define the average �u and difference �u

of these displacements by the expressions

�u = 1

2
(uA + uB), �u = uA − uB . (34)

Also, it is convenient to introduce a small imperfection, such
that the beam is twisted in its stress-free reference config-
uration with the cross-sections X3 being displaced relative
to the perfect beam by the displacement field (24) and the

specification

ω3 = 5 × 10−6 rad/mm, �3 = 0. (35)

In this example the beam is subjected to shear and bending
before buckling and then combined shear, bending, extension
and torsion in the post-buckled state. The predictions of the
modified CPE for the most refined mesh {4 × 20 × 80} are
considered to be exact and are denoted by (CE). Figure 5
shows the nonlinear response for three meshes with differ-
ent number of elements in the cross-sections together with
the exact solution. Specifically, the mesh for Fig. 5a, b is
{1 × 1 × 40}, that for Fig. 5c, d is {1 × 5 × 40}, and that for
Fig. 5e,f is {1×10×40}. In order to explore the convergence
properties of the solutions it is convenient to define the errors
E� and E

E� = �u2

�∗
u2

− 1, E = u2

∗
u2

− 1, (36)

where �u2 and u2 are the components of �u and u in
the e2 direction for any calculation and �∗

u2 and ∗
u2 are the

values predicted by the most refined mesh {4 × 20 × 80} of
the modified CPE for a load P greater than the buckling load

�∗
u2 = 36.372 mm, ∗

u2 = 0.6980 mm, P = 1.5 N . (37)

Figure 6 show convergence of these errors for two meshes
{1 × 5n × 40} and {n × 5n × 40}.

From Fig. 5 it can be seen that the bending response is
captured accurately until the onset of buckling by all of the
elements even when there is no mesh refinement in the thin
e1 direction. However, the prediction of the buckling load
is very sensitive to the prediction of the torsional stiffness,
which is predicted more accurately by the modified CPE
(C) than by the original CPE (O). Also, from Fig. 6a, b it
can be seen that the original CPE (O) does not converge to
the correct solution when the mesh is refined only in the e2

direction.
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Fig. 5 Post-buckling curves for
a thin cantilever beam subjected
to a shear force P for three
meshes
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Fig. 6 Convergence of the
errors E� and E in (36) for
two meshes: (a, b)
{1 × 5n × 40}, and (c, d)
{n × 5n × 20n} with P = 1.5 N
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4.4 A beam element

Using the CPE approach it is not possible to predict all three
exact torsional stiffnesses associated with a general parallel-
epiped. However, it is possible to use the 3-D brick CPE as
a beam element by predetermining the axis of the beam as
say e3 and then specifying the value of B in (15) by the exact

value B∗ associated with the cross-section with dimensions
{H1, H2}

B∗ = 1

2

(
ξ + 1

ξ

)
b∗(ξ), ξ = H1

H2
. (38)

Figure 7 shows that the predictions of this beam element
(CB) for the mesh {1×1×80} and those of the modified CPE
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Fig. 7 Post-buckling curves for
a thin cantilever beam subjected
to a shear force P modeled by
the beam CPE element (CB)
with the mesh {1 × 1 × 80} and
by the modified CPE (CE) with
the most refined mesh
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(C) with the most refined mesh {4 × 20 × 80} are indistin-
guishable even though only one beam element is used in the
cross-section. This emphasizes the importance of accurately
modeling the torsional stiffness for this buckling problem.

5 Conclusions

The numerical solution of pure torsion of a right cylindri-
cal bar with rectangular cross-section has been reexamined
and an exact simple torsion-like solution has been identified
which produces a good approximation of the deformation
field in typical interior elements in the mesh for pure torsion.
Modified torsional coefficients for a 3-D brick CPE are pro-
posed which cause the CPE theory to reproduce the simple
torsion-like solution exactly. Examples of small deformation
pure torsion and large deformation lateral torsional buckling
of a cantilever beam demonstrate that the convergence prop-
erties of the modified CPE are significantly improved relative
to those of the original CPE. Also, constitutive coefficients
for the 3-D brick CPE have been proposed to obtain a beam
element which predicts accurate response for lateral torsional
buckling with only one element modeling the rectangular
cross-section.

Attention has been limited to isotropic material response
because no functional form is yet available for the strain
energy of inhomogeneous deformations of a CPE modeling
an anisotropic material.
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