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Abstract Numerical evaluation of compound distributions is an important task in
insurance mathematics and quantitative risk management. In practice, both recursive
methods as well as transform based techniques are widely used. We give a survey of
these tools, point out the respective merits and provide some numerical examples.

Keywords Panjer recursion · Fast Fourier transform · Compound distributions ·
Risk management

1 Introduction

The study of numerical methods to evaluate the distribution of compound sums SN =
Y1 + · · · + YN is one of the pillars of classical risk theory and non-life insurance.
In the recent years these tools have been extensively used in other areas as well,
particularly in credit risk modeling, for example as part of the widely used CreditRisk+
framework, and in operational risk (OpRisk) modeling; see for example Moscadelli
(2004) or Frachot et al. (2001) for typical loss distribution approach (LDA) based
models.

Before the advent of the personal computer, actuaries were reliant on relatively crude
approximation techniques to treat compound distributions. Such approximations are
either based on a central limit result (these are, for example, the normal approximation,
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498 P. Embrechts, M. Frei

the Edgeworth expansion and the saddle-point methods)—others are simply based
on some ad-hoc reasoning that often lacks rigorous theoretical justification (which
leads to approximations such as the shifted gamma, shifted F or inverse Gaussian
approximation). After all, these methods are limited to qualitative inquiries and cannot
be considered viable QRM tools; the results are just too unpredictable, and reasonable
error bounds cannot readily be obtained. Nevertheless, approximations of this kind
are still covered in most modern text books on risk theory. However, taking into
account the giant leaps in processing power during the recent decades, we are mainly
interested in “exact” procedures. The algorithmic foundations to these were laid down
in the early 1980s. Recursive techniques were introduced by Panjer (1981); techniques
using Fourier inversion were pioneered by Heckman and Meyers (1983) and Feilmeier
and Bertram (1987)—making extensive use of the fast Fourier transform (FFT), which
has been popularized by Cooley and Tukey (1965).

During the last 20 years, there have been various notable publications on the sub-
ject. Panjer and Wang (1993) examined the stability of the Panjer recursion; Will-
mot (1988), Sundt (1999) and Hess et al. (2002) have given generalizations of the
Panjer recursion; Grübel and Hermesmeier (1999, 2000) have investigated the pro-
pagation of discretization errors through compounding and established an improved
FFT based procedure using an exponential change of measure. The latter contribu-
tion is quite substantial since it essentially eliminates the so called aliasing error,
which is the fundamental deficit that arises through the use of the discrete Fourier
transform.

The rest of this paper is organized as follows: In Sect. 2, we will summarize the
methods and discuss various practical aspects; in Sect. 3, we will give numerical
examples that illustrate some relevant issues; and the final section contains some
closing remarks.

2 The methods

To begin with, we introduce some notation. Throughout, all random variables (rv’s)
are defined on some fixed non-atomic probability space (Ω,F , P). Let N be a rv
with values in N0 and distribution Q. Let {Yi }i∈N be an iid sequence of non-negative
rv’s independent of N with common distribution (function) F ; F is called the (claim)
severity distribution, Q is referred to as the frequency distribution. Put

SN :=
N∑

j=1

Y j

with the obvious interpretation
∑0

j=1 Y j = 0. The distribution of SN is called the
compound distribution of F under Q, denoted by Q ∨ F . Formally, we have

Q ∨ F (x) =
∞∑

j=0

F∗ j (x)P(N = j), (1)

123



Panjer recursion versus FFT for compound distributions 499

where F∗ j (x) = ∫ ∞
0 F∗( j−1)(x − y)F(dy) and F∗0 = I[0,∞). Since the convolution

powers F∗ j cannot be tracked analytically for most of the models used in practice, we
are reliant on numerical techniques.

To work with either the Panjer recursion or an FFT based algorithm, the severities
must be concentrated on a lattice hN0 = {0, h, 2h, 3h, . . .}, where h is some strictly
positive constant. In applications, however, severity distributions are usually taken
from the continuous distributions, and thus an initial arithmetization is required. We
choose a suitably small bandwidth h > 0 and replace F with a distribution Fh =
{ fh, j } j∈N0 on hN0. A very intuitive arithmetization design is the rounding method:
The severities are rounded to the closest integer multiple of h, that is

fh, j := F

(
jh + h

2

)
− F

(
jh − h

2

)
. (2)

It is clear that Fh converges to F weakly as h → 0, and in turn: Q ∨ Fh → Q ∨ F
weakly as h → 0. A-priori we do not know how Q ∨ Fh relates to Q ∨ F , and we
can not give any error bounds. In this regard, the so called forward and backward
differences are useful. The forward difference is given by

f +
h, j := F(( j + 1)h) − F( jh)

and, likewise, the backward difference is given by

f −
h, j := F( jh) − F(( j − 1)h).

It is clear that Q ∨ F+
h gives an upper bound for Q ∨ F , and analogously Q ∨ F−

h
yields a lower bound. Moreover, Q ∨ F±

h converges weakly to Q ∨ F as h → 0. In
theory, we thus can sandwich the true compound distribution with any given precision.

Notice that both the forward/backward differences and the rounding method do
not conserve any moments of the original distribution. In this light, Gerber (1982)
suggests a procedure that locally matches the first k moments. Practically interesting
is only the case k = 1; for k ≥ 2 the procedure is not well defined, potentially leading
to negative probability mass on certain lattice points. The moment matching method
is much more involved than the rounding method in terms of implementation; we
need to calculate the limited expected values

∫ kh
0 x F(dx). Apart from that, the gain is

rather modest; moment matching only pays off for large bandwidths, and after all, the
rounding method is to be preferred. This is further reinforced by the work of Grübel
and Hermesmeier (2000): if the severity distribution is absolutely continuous with a
sufficiently smooth density, the quantity fh, j/h, an approximation for the compound
density, can be quadratically extrapolated.

Assume for now that F is arithmetic (or has been suitably arithmetized). We will
use the notation

qk = P(N = k), fk = P(Yi = k), gk = P(SN = k).
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500 P. Embrechts, M. Frei

Observe that the discrete version of (1) is given by

gn =
∞∑

j=0

q j f ∗ j
n

where

f ∗ j
n :=

⎧
⎨

⎩

1 if j = 0 and n = 0
0 if j = 0 and n ∈ N∑n

i=0 f ∗( j−1)
n−i fi if j ≥ 0

.

This is messy and numerically expensive.

2.1 Panjer recursion

If the frequency distribution Q = {qk}k∈N0 satisfies

qk =
(

a + b

k

)
qk−1, k ≥ 1, (3)

for some a, b ∈ R, then the compound distribution gn = P(SN = n) satisfies the
recursion

gn = 1

1 − a f0

n∑

j=1

(
a + bj

n

)
f j gn− j , n ≥ 1 (4)

with initial condition

g0 = PN ( f0), (5)

where PN (t) = ∑∞
j=0 q j t j denotes the probability generating function (pgf) of N .

The recurrence relation (4) is referred to as the Panjer recursion. Observe that the
initial value (5) simplifies to g0 = q0 for f0 = 0. Sundt and Jewell (1981) showed
that (3) holds precisely for the binomial, negative binomial and Poisson distribution
(and, as a matter of course, for the degenerate distribution q0 = 1).

The Panjer recursion is very easy to implement in practice and numerically chea-
per than brute-force convolution, which asymptotically requires O(n3) operations to
obtain g0, . . . , gn compared to the O(n2) complexity in the Panjer case. As recently
shown by Hipp (2003), recursion (4) can be simplified if the severity distribution is of
phase-type (or more generally if the pgf is rational). The simplified recursion speeds
up the computation considerably, reducing the operation count to O(n). Of course,
in a practical situation the severities will not be of phase-type mostly and thus must
be approximated accordingly. Since the phase-type distributions are uniformly dense
in the space of arithmetic distributions (with respect to the Kolmogorov metric), this
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approach is useful, at least in the small claims case; however, phase-type distributions
are not suitable as approximations for typical heavy-tailed distributions because any
distribution with a rational pgf is light-tailed in the sense that its Laplace–Stieltjes
transform exists in a neighborhood of 0. For a review of the use of phase-type distri-
butions in insurance risk theory, see Bladt (2005).

Regarding robustness of the Panjer recursion, Panjer and Wang (1993) established
strong stability in the negative binomial and Poisson case: The accumulated rounding
error throughout recursion (4) grows linearly with a slope bounded by 1. Moreover,
if r digits are used, the number of valid digits #(r, n) for gn is bounded by (at a 99%
significance level):

#(r, n) ≥ r +
⌊

log10
4

3
− 1

2
log10(n + 1)

⌋
,

where log10 denotes the decadic logarithm and �·� the floor function; if, for example,
the number of lattice points is increased by a factor of 100, the same precision can
be retained with an additional two digits. The compound binomial case is somew-
hat pathological; serious error blow-up can happen, since terms with mixed signs
crop up throughout the recursion. The practical implications, however, are debatable:
Besides that the binomial distribution is the least interesting distribution in the Panjer
class, instabilities arise primarily if the frequency is heavily underdispersed or if the
severities exhibit substantial negative skewness—this is rather uncommon in typical
applications.

A further computational problem is potential underflow1 during the initialization
(5) of the Panjer recursion; this typically happens for frequencies with a large mean.
Naively, one would rescale g0 with some constant c, carry out the recursion and descale
afterwards. It is obvious that this kind of linear scaling introduces new obstacles; cgn

will eventually lead to overflow. Panjer and Willmot (1986) suggest two alternative
procedures to prevent underflow and circumvent the overflow issues associated to
linear scaling: These are exponential scaling and portfolio splitting; both methods are
equally applicable to the compound Poisson and compound negative binomial case.
We will briefly explain how to decompose a portfolio in the compound Poisson case;
it is well known that

(Pois(λ/m) ∨ F)∗m = Pois(λ) ∨ F, (6)

and for a suitably large m, Pois(λ/m) ∨ F can be evaluated without underflow;
the m-fold convolution is then carried out in brute-force fashion (or via some FFT
based fast convolution algorithm). Compound mixed Poisson distributions (such as
the compound negative binomial) can be decomposed similarly. After all, in an OpRisk
context, where we deal with low to moderate frequencies and (extremely) heavy-tailed
severities, we will usually not be concerned with underflow; see Aue and Kalkbrenner
(2006) for a discussion on typical OpRisk data.

1 Underflow or overflow occurs if the computer’s floating point arithmetic produces a number outside the
range of representable numbers; in this case either 0 or a formal constant ±∞ is output.
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Finally, we would like to mention that there are several generalizations of the
Panjer recursion, which allow for more general frequency distributions. For example,
modifying condition (3) to

qk =
(

a + b

k

)
qk−1, k ≥ l + 1, (7)

with initial values q0 = q1 = · · · = ql−1 = 0, leads to the Panjer recursion of order l:

gn = ql f ∗l
n +

n∑

j=1

(
a + bj

n

)
gn− j f j , ∀n ≥ l,

provided that f0 = 0. The class given by (7) includes, inter alia, the l-truncations of
the negative binomial and Poisson distributions, which are interesting in a reinsurance
context. An overview of higher order Panjer recursions is given by Hess et al. (2002);
furthermore, Sundt (1992) discusses recursions of the kind

qn =
k∑

j=1

(
a j + b j

n

)
qn−1, n ≥ 1.

For multivariate versions we refer to Sundt (1999), Hesselager (1996) or Vernic (1999).

2.2 An algorithm based on FFT

Observe that the characteristic function of a compound sum SN can be expressed in
terms of the characteristic function of the severity Y1:

φSN (t) := E
[
eit SN

]
= PN (φY1(t)), (8)

where PN denotes the pgf of N . Applying the inverse Laplace transform to the RHS of
(8), the distribution of SN can be obtained. Heckman and Meyers (1983) give explicit
formulas in case that the distribution function of Y1 is piecewise linear or piecewise
constant. However, we will resort directly to the discrete Fourier transform (DFT).

Set f = ( f0, f1, . . . , fM−1) ∈ R
M for some truncation point M . The DFT

f̂ = ( f̂0, . . . , f̂M−1)

is defined by

f̂ j =
M−1∑

k=0

fk ei2π jk/M , j = 0, 1, . . . , M − 1. (9)
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Given f̂ , the original sequence f can be reconstructed by

f j = 1

M

M−1∑

k=0

f̂ke−i2π jk/M . (10)

If M is a power of 2, (9) and (10) can be computed efficiently via one of the various
FFT algorithms.

With regards to (8), one takes the inverse DFT of

ĝM := PN ( f̂ ) (11)

as an approximation for g = (g0, . . . , gM−1). If
∑M−1

j=0 f j = 1, i.e. if there is no
truncation error, formula (11) evaluates the compound distribution exactly on the cyclic
group Z/MZ. Compound mass which lies at M and beyond will be “wrapped around”
and erroneously appears in the range 0, . . . , M−1. For severities with considerable tail
mass, the truncation and wrap-around error (the so called aliasing error) can become
quite an issue. If we are interested in the compound probabilities on {0, 1, . . . , n}, we
possibly have to take M much larger than n to obtain reasonable values. Grübel and
Hermesmeier (1999) quantified the aliasing error: If the frequency distribution has
finite variance, then

M−1∑

n=0

∣∣∣gM
n − gn

∣∣∣ =
∞∑

n=M

gn − P ′
N (1)

∞∑

n=M

fn + O

⎛

⎝
( ∞∑

n=M

fn

)2
⎞

⎠ . (12)

From (12), we deduce that the aliasing error is small if M is large and the tail of F
(and thus likewise the tail of Q ∨ F) decays fast. In this regard, the above authors
suggest a tilting procedure to reduce the error: Fix some θ > 0 and set

Eθ f =
(

e−θ j f j

)

j=0,1,...,M−1
.

The tail of Eθ f decays at an exponential rate and thus potentially much faster than f .
The operator Eθ commutes with convolution and therefore we have

Q ∨ F = E−θ (Q ∨ Eθ F). (13)

In accordance with (11) and (13), this gives the following algorithm:

1 Choose a truncation point M ∈ N and a tilting parameter θ > 0.
2 Set f = ( f0, f1, . . . , fM−1).
3 Tilt the sequence: f �→ Eθ f = (e−θ j f j ) j=0,1,...,M−1.

4 Calculate the DFT of the tilted sequence: Eθ f �→ Êθ f .
5 Take the inverse DFT of PN (Êθ f ) and untilt by applying E−θ .

The tilting is of much practical value and can reduce the aliasing error tremendously.
In applications, the tilting parameter should be chosen as large as possible without
producing under- or overflow; if we use common (64 bit) double precision, a value
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Mθ ≈ 20 seems reasonable in most cases. Care must also be taken for “large” fre-
quencies; in this case, the evaluation of the pgf PN may lead to underflow as well.
This problem can be solved with the portfolio splitting technique; see (6).

Compared to the Panjer recursion, FFT has two main advantages: It works with
arbitrary frequency distributions and it is much more efficient. To obtain g0, . . . , gn ,
FFT takes essentially O(n log n) operations compared to the O(n2) operations for
recursion. Bühlmann (1984) gives a detailed analysis in the compound Poisson case,
concluding that FFT practically always beats Panjer recursion for n ≥ 256. Of course,
this figure is somewhat archaic in light of today’s processing powers, and both Panjer
recursion and FFT take merely a split second to evaluate for n = 256 lattice points. In
a realistic setup, with potentially heavy-tailed severities—say, we want to determine
the 99.9%-quantile of a compound Pareto distribution—several (ten) thousand knots
are required; the Panjer recursion will be outperformed by far. This last example is
typical for the calculation of regulatory capital for OpRisk; see Chapter 10 in McNeil
et al. (2005).

3 Examples

The following examples will be carried out numerically within the R programming
language. We will make use of the actuar-package freely available through CRAN.
This package features the discretize() routine, which implements the arithmetization
designs mentioned above, and incorporates some useful distributions (such as the
Pareto, loggamma and Weibull).

3.1 Introductory Example

We start with a simplistic example that pools the essential concepts. Suppose we want
to evaluate the distribution Pois(λ)∨ Pareto(α, β) on the range [0, (M −1)h], where
the Pareto(α, β) distribution has density

f (x) = α

β

(
1 + x

β

)−(α+1)

x ≥ 0, α > 0, β > 0.

– Arithmetization of Pareto(α, β) with span h via the rounding method:

f <- discretize(ppareto(x,alpha,beta), from=0, to=(M-1)h, by=h,
method="rounding")

The difference designs can be obtained via “lower” and “upper”, the local moment
matching method via “unbiased”.

– Compute g0, . . . , gM−1 via FFT without tilting:

fhat <- fft(f, inverse=FALSE)
P <- exp(lambda*(fhat-1))
g <- 1/M*fft(P, inverse=TRUE)
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Observe that the pgf of N ∼ Pois(λ) is given by

PN (t) = exp(λ(t − 1))

and that fft(·, inverse=TRUE) returns the unnormalized inverse DFT, thus we divide
by 1/M .

– Tilting with θ > 0 gives the procedure:

f <- exp(-theta*(0:(M-1)))*f
fhat <- fft(f, inverse=FALSE)
P <- exp(lambda*(fhat-1))
g <- exp(theta*(0:(M-1)))*(1/M*fft(P, inverse=TRUE))

– Since Pois(λ) corresponds to a = 0 and b = λ in (3), the Panjer recursion can be
implemented as follows:

g <- vector(length=M)
g[1] <- exp(-lambda)
for(n in 1:(M-1)){

g[n+1] <- sum(lambda*(1:n)/n*f[(1:n)+1]*g[n-(1:n)+1])
}

Observe the index shift, since R allows solely strictly positive indices.

The vector g contains the probability masses on the set {0, h, 2h, . . . , (M − 1)h}.
Due to small rounding errors, the numerical values of g will most likely be complex
numbers with non-vanishing imaginary parts. Of course, we only work with the real
parts. Dividing the entries of g by h gives an approximation for the compound density
on (0, (M − 1)h]. Figure 1 displays these densities for Pois(20)∨ Pareto(4, 3) with
model parameters h = 0.1, M = 28 and θ = 0.01. The wrapped-around mass is
clearly visible. For illustrative purposes the tilting parameter θ has been chosen quite
small. According to our rule of thumb θ ≈ 20/M , we would use a much larger value,
say, θ = 0.1. In this case, however, the difference between the tilted FFT density and
the Panjer density would be no longer visible in the plot; in fact, the absolute difference
would be less than ≈ 0.0006 over the observed range.

Fig. 1 Approximate densities
for Pois(20) ∨ Pareto(4, 3)
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Panjer recursion
FFT w/out tilting
FFT w/ tilting
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3.2 Bandwidth choice

In practice, a suitably small bandwidth h must be chosen for the arithmetization of the
severity distribution. Since there is no analytically tractable formula available for the
discretization error, the choice is kind of an educated guess. As a simple ad-hoc method
one might use the bounds obtained via the forward and backward differences, reducing
h until the difference of the bounds is smaller than some margin of error which seems
acceptable in the given context. However, this approach is somewhat dissatisfying.
The forward/backward bounds are usually very pessimistic: approximations obtained
via the rounding method are typically much closer to the exact value than to one of the
bounds. An example is given in Table 1. In this regard, it is probably more advisable
to successively reduce h and compute the corresponding compound distribution with
the rounding method until the (relative) improvement is smaller than some threshold.

3.3 The alias effect

In situations where both Panjer recursion and FFT are equally applicable, and where
we have to deal with a large number of lattice points, we would typically favor FFT
because it is numerically cheaper. However, one may worry about the aliasing error.
Yet, this worry is unsubstantiated, and with suitable tilting, the effect is negligible in
practical circumstances. Consider, for example, the following two (extremely heavy-
tailed) models:

(a) Pois(50) ∨ Pareto(1.5, 0.5)

(b) Pois(5) ∨ Pareto(1, 0.1).

Model (a) has infinite variance, model (b) has infinite mean. We will compute the
compound distribution function via Panjer recursion and FFT, and plot the absolute
differences between the two distribution functions; this difference essentially arises
from the aliasing since the Panjer recursion evaluates the distribution exactly up to
discretization errors, and potential rounding effects are negligible. For reasonably large
truncation points, the alias error is very small, as one can gather from Fig. 2.

Tilting is particularly useful if one is only interested in the body of the distribution
(say, below the 90%-quantile). Figure 3 displays the logarithmic absolute aliasing

Table 1 99.9%-quantile estimate for Pois(50) ∨ Exp(1) using different arithmetization designs

Design h = 1 h = 0.5 h = 0.1 h = 0.01 Exact

Forward 58 70.0 81.9 84.78

Rounding 84 84.5 85.1 85.11 85.11

Backward 124 103.0 88.4 85.43
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Fig. 2 Logarithmic absolute aliasing errors of the approximate cumulative distribution function for
Pois(50) ∨ Pareto(1.5, 0.5) (plot a) and Pois(5) ∨ Pareto(1, 0.1) (plot b) with different truncation
points M . A span h = 1 was used. The dotted vertical lines indicate the 0.99, 0.999 and 0.9999 quantiles,
respectively
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Fig. 3 Logarithmic absolute aliasing errors of the approximate cumulative distribution function for a
Pois(20) ∨ Pareto(1, 0.1) distribution with different truncation points M ; with tilting (plot c), without
tilting (plot d). A span h = 0.01 was used. The dotted vertical lines indicate the 0.1, 0.5 and 0.9 quantiles,
respectively

errors of the approximate cdf for a Pois(20) ∨ Pareto(1, 0.1) distribution—once
with tilting (plot c), and once without (plot d). Without tilting, the approximation is
useless in this example.

4 Conclusion

The Panjer recursion is arguably the most widely used method to “exactly” evaluate
compound distributions. However, FFT is a viable alternative: It can be applied with
arbitrary frequencies and offers a tremendous timing advantage for a large number
of lattice points; moreover, the use of exponential tilting—which practically rules out
any aliasing effects—facilitates applications (such as evaluation of the lower tail) that
were thought to be an exclusive task for recursive procedures.
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