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Abstract The integration of multipurpose legumes
into low-input tropical agricultural systems is needed
because they are a nitrogen (N) input through
symbiotic fixation. The drought-tolerant cover legume
canavalia (Canavalia brasiliensis) has been intro-
duced for use either as forage or as a green manure
into the crop-livestock system of the Nicaraguan
hillsides. To evaluate its impact on the subsequent
maize crop, an in-depth study on N dynamics in the
soil-plant system was conducted. Microplots were
installed in a 6-year old field experiment with maize-
canavalia rotation. Direct and indirect 15N-labelling
techniques were used to determine N uptake by maize

from canavalia residues and canavalia-fed cows’
manure compared to mineral fertilizer. Litter bags
were used to determine the N release from canavalia
residues. The incorporation of N from the amendment
into different soil N pools (total N, mineral N,
microbial biomass) was followed during the maize
cropping season. Maize took up an average of 13.3 g
Nm−2, within which 1.0 gNm−2 was from canavalia
residues and 2.6 gNm−2 was from mineral fertilizer,
corresponding to an amendment N recovery of 12%
and 32%, respectively. Recoveries in maize would
probably be higher at a site with lower soil available
N content. Most of the amendment N remained in the
soil. Mineral N and microbial N were composed
mainly of N derived from the soil. Combined total
15N recovery in maize and soil at harvest was highest
for the canavalia residue treatment with 98% recovery,
followed by the mineral fertilizer treatment with 83%
recovery. Despite similar initial enrichment of soil
microbial and mineral N pools, the indirect labelling
technique failed to assess the N fertilizer value of
mineral and organic amendments due to a high N
mineralization from the soil organic matter.
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ILT indirect labelling technique
N nitrogen
Ndff amount of N derived from the amendment
Ndfs amount of N derived from the soil
Nmin soil mineral N
Ntot total soil N
Nmic soil microbial N
15N-X 15N enrichment of the respective X pool

Introduction

The integration of multipurpose legumes into low-
input tropical agricultural systems is needed because
they represent a nitrogen (N) input through symbiotic
fixation. This can benefit the subsequent crop and
build up soil organic matter stocks over time, either
when their biomass is used as green manure or when
fed to animals whose manure is recycled into the soil.
To adequately manage legumes in crop rotations, their
N fertilizer value (i.e. the legume N uptake by the
succeeding crop and the amount and form of legume
N remaining in the soil) must be known. The drought-
tolerant cover legume Canavalia brasiliensis Mart.
Ex. Benth (canavalia), also known as Brazilian jack
bean, has recently been introduced as a green manure
and/or forage into the traditional maize-bean-livestock
system of the Nicaraguan hillsides (CIAT 2008;
Peters et al. 2004). Canavalia is well accepted by
farmers, but its fertilizer value remains unknown
(Douxchamps et al. 2010).

The direct 15N labelling technique (DLT), i.e. the
addition of 15N labelled amendment to an unlabelled
soil-plant system, has proven to be the most suitable
method to trace the fate of N from amendments into
different pools of the soil-plant system (Hauck and
Bremner 1976; Hood et al. 2008), and was therefore
applied to canavalia residues. Under tropical field
conditions, previous use of this method with legume
residues are scarce (McDonagh et al. 1993; Toomsan
et al. 1995; Vanlauwe et al. 1998a), and, to our
knowledge nonexistent with animal manure. As it is
difficult to label local cow manure, we used the
indirect 15N labelling technique (ILT), where poten-
tially available soil N is labelled instead of amend-
ment N. Potentially available soil N includes the
different soil N pools that can deliver mineral N
during the growing period of the crop: mineral N,

microbial N and non-living labile soil organic matter.
With the ILT approach it is assumed that the
potentially available soil N from the amended plot
and a non-amended control plot initially have the
same 15N enrichment, so that any dilution observed in
the amended plot results from the unlabelled amend-
ment. If potentially available soil N is not labelled
homogeneously, artefacts can arise due to pool
substitution (Jenkinson et al. 1985), for example
when labelled soil inorganic N is immobilized by
growing microbial cells after addition of a carbon
source and substituted by N of a lower enrichment.
This dilution in the mineral N pool is then errone-
ously attributed to the unlabelled legume residues or
manure. Labelling of the soil for a substantial time
before the application of the amendments has been
reported to prevent problems linked with pool
substitutions (Hood 2001). This hypothesis was
verified in this study by following the 15N enrichment
of soil mineral and microbial N pools after amend-
ment addition, which had not been reported by other
authors for the ILT method. The accuracy of the ILT
was further checked with DLT using canavalia
residues, mineral fertilizer and sheep manure pro-
duced under controlled conditions.

The objectives of this study were (1) to determine
the N fertilizer value of canavalia for maize, when
canavalia biomass is used as green manure or fed to
animals whose manure is returned to the soil, (2) to
compare the ILT and DLT methods under tropical
field conditions for amendments N uptake by maize
and (3) to explain any discrepancies between ILT and
DLT by the evolution of the 15N excess in different
soil N pools.

Materials and methods

Field experiment and microplot design

The experimental work was carried out in a 6-year-old
field trial located in the municipality of San Dionisio,
Department of Matagalpa, Nicaraguan hillside (12°46′
47″N, 85°49′35″W), at 560 m above sea level, on a
10% slope. The climate was classified as tropical
savannah according to the Köppen-Geiger classification
(Peel et al. 2007). Annual mean rainfall was 1,570 mm
(INETER 2009) and had a bimodal pattern (Fig. 1).
Soil was a loam/clay loam classified as Ultic Tropu-
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dalf, with pH in water 6.6, total N 4.03 gkg−1, total
carbon 54.5 gkg−1, total phosphorus 1,131 mgkg−1,
available phosphorus (anion-exchange resins; Tiessen
and Moir 1993) 142 mgkg−1, cation exchange capacity
39.8 cmol kg−1 and bulk density 0.9 gcm−3.

The field trial had a complete randomized block
design, with six different crop rotations replicated
three times on 5×5 m plots to test for the effect on
maize yields of two different legumes, which included
canavalia. At the beginning of the second rainy
season in September 2007, 1.2 m2-microplots made
from tin sheets were installed down to a depth of
15 cm in the three maize-canavalia rotation plots.
Some of the microplots were used for ILT and some
for DLT, in a cross-labelling design (Hood 2001): two
matching sets of treatments were set up, identical in
all aspects except that either the available soil N or the
amendment N was 15N labelled (Fig. 2). The only
treatment without a mirror was the plot with local cow
manure. To check for the accuracy of the ILT for
manure, two 0.6 m2-microplots were established with
labelled and unlabelled manure obtained from a Swiss
sheep (Bosshard et al. 2008). The ILT-Control
treatment was used as an unamended control for the
ILT method, whereas the Control treatment was used
as natural abundance control for all treatments of both
methods (see calculations below).

Labelling of canavalia and soil N

In September 2007, canavalia (cv. CIAT 17009) was
sown on the whole surface of all plots at a density of
7.5 plants per m2. Soil of the microplots assigned to
ILT was labelled using a solution of 60 atom% 15N
(NH4)2SO4 at a rate of 50 kgNha−1. To minimize
leaching by the heavy rains, the dose was distributed
over five applications during the first two months of
canavalia development. The solution was applied to
the soil surface between the canavalia plants using a

watering can. Likewise, unlabelled (NH4)2SO4 was
applied using the same procedure to the microplots
assigned to DLT. Thus, unlabelled canavalia was
produced on DLT microplots and labelled canavalia
on ILT microplots. With the last N application,
sucrose was added as carbon source to give a C:N
ratio of 10:1 in order to promote homogenous soil N
labelling for ILT through microbial immobilization of
a part of the 15N. Sucrose was added to all ILT and
DLT microplots. Canavalia was harvested in February
2008 in the late flowering/early pod filling develop-
ment stage. As canavalia is a climbing plant, stems
grew up to 5 m away from their origin and tightly
wrapped themselves around material from other
microplots. Stems were gently separated, and the
small amounts of material that could not be assigned
with certainty to a microplot (i.e. leaves detached
from the stems) were discarded. Yields were recorded
for each single microplot, and subsamples were taken
for analysis. The material from each microplot was
then air dried, stirred regularly to produce hay and
stored dry until application. To ensure a homogeneous
soil N labelling in the ILT plots, soil was left to
equilibrate during the dry season from February to
June 2008. During this time, all the microplots were
weeded manually and weeds were left on the surface of
their microplot of origin. A composite soil (0–10 cm
and 10–20 cm) sample was collected in the microplots
in June 2008 to check the enrichment.

N uptake by maize from different amendments

At the beginning of the first rainy season in June 2008
(Fig. 1), canavalia residues were exchanged between
DLT and ILT-Residue microplots within the same
replicate. Leaves and stems were applied on the
surface and slightly incorporated to prevent wind
dispersal. A dose of 80 kgNha−1, corresponding to
the N yield of the least productive ILT and DLT-
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Fig. 1 Rainfall distribution
and crops during the field
experiment
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Residue microplots, was used as basis for all residue
applications (Table 1). Solution of unlabelled and 10
atom% 15N (NH4)2SO4 was applied with watering
cans on ILT and DLT-Mineral fertilizer microplots,
respectively. The total dose of 80 kgNha−1 was split
into two doses: one third at planting and two thirds
after 25 days, according to common farmers’ practice.
The two control microplots received no amendments.
The fresh animal manure (faeces only) for the ILT-
Manure microplots was collected from a local cow

fed for 5 days with a mixture of maize stover, grass
and 8-month-old canavalia from the field experiment,
and was applied at a rate of 133 kgNha−1. The
intended dose of 80 kgNha−1 was exceeded because
the cow manure was more concentrated than expected
due to water loss during storage in San Dionisio. The
manure for the methodological control was produced
by feeding a sheep with 15N-labelled ryegrass hay for
9 days under controlled conditions in Switzerland.
The unlabelled manure came from the same animal at
the end of its feeding adaptation period to unlabelled
ryegrass diet (Bosshard et al. 2008). Both manures
were applied at a dose of 40 kgNha−1 on the small
microplots. All amendments were applied with the
same amount of water. No other nutrients were
applied because the nutrient status of the trial soil
was high enough to sustain maize growth without
limitations. Characteristics of the amendments for
each treatment are presented in Table 1.

The amended microplots were planted with Zea
mays (cv. NB-6) 2 days after amendment (DAA) at a
density of eight plants per 1.2 m2 (microplot surface).
Per microplot, there were four planting points with
two seeds each, with 0.8 m distance between rows
and 0.6 m distance between the planting points within
the rows. The distance between the plants and the
border of the microplots was 0.2 m. An unusual, short
drought hindered germination, and maize was
replanted at 15 DAA. The second mineral fertilizer
dose was therefore delayed until 36 DAA. Insecticide
chlorpyrifos was applied around the plots to protect
the seeds and young plants against ants. Microplots

Table 1 Amendments composition and dose of application, on a dry matter basis

Treatment Amendment Total N
g kg−1

C:N
ratio

15N abundance
atom% 15N

P
g kg−1

K
g kg−1

Lignin
g kg−1

Polyphenols
g kg−1

Dosis
g N m−2

ILT - Control – – – – – – – – –

ILT - Fertilizer (NH4)2SO4 223.0 – 0.36 – – – – 8

ILT - Residues Canavalia 19.7 21 0.38 3.1 14.4 87.3 125.3 8

ILT - Manure Cow manure 17.1 6 0.37 5.9 17.0 – – 13

DLT - Fertilizer 15(NH4)2SO4 230.0 – 10.00 – – – – 8

DLT - Residues 15N-labelled
canavalia

18.8 20 1.61 3.2 15.3 75.9 156.2 8

Control – – – – – – – – –

ILT - Check
manure

Sheep manure 32.0 5 0.41 35.1 13.3 – – 4

DLT - Check
manure

15N-labelled sheep
manure

35.0 11.23 39.9 25.9 – – 4
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Mineral
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Fig. 2 Microplot design for one of the three replicates of the
trial. ILT and DLT stand for indirect and direct labelling
technique, respectively. Grey colour indicates microplots with
labelled available soil N. Dark grey squares represent the litter
bags. Dashed line is the border of the plot
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were weeded manually and weeds were left on the
surface of their microplot of origin. At maturity,
maize was left to dry on the stems in the field
according to usual farmer practices. Stems were cut
above the ears and leaves were harvested to allow a
quicker drying process. Fifteen days later, when rains
had stopped and plants were dry, maize was harvested
and separated into grains, damaged grains (i.e.
broken, discoloured, shrivelled or undersized grains),
cobs, husks, and remaining stems. Maize dry matter
production was evaluated as the sum of the dry
weight of all plant parts, i.e. grains, damaged grains,
leaves, stems, cobs and husks.

Residue decomposition and recovery
of the amendments in different soil N pools

After amendments, litter bags were made by packing
remaining labelled canavalia hay from the ILT-
Residue treatments in 1.5 mm-mesh nylon bags of
20×20 cm. For all litter bags, 5 g leaves and 10 g
stems were weighted, which corresponded to the ratio
observed in the microplots. At seven DAA, the five
litter bags with material from the plot of the first
replicate were deposited in this same plot, and the
same was done for the litter bags of the other two
replicates. At 14, 26, 40, 54 and 147 DAA, one litter
bag was removed at random per plot.

At 1, 14, 26, 40, 54, and 147 DAA, a composite
soil (0–10 cm) sample was collected in each micro-
plot and sieved in the field at 5 mm or homogenised
by hand when soil was too agglomerated. Samples
were analyzed for total N (Ntot), mineral N (Nmin)
and microbial N (Nmic) as well as for the 15N
abundance of these pools (15N-Ntot, 15N-Nmin and
15N-Nmic, respectively).

Three measurements of the bulk density of the
topsoil were done per plot, and their mean was used
in subsequent calculations.

Sample preparation and analysis

All plant samples were dried at about 40°C until a
constant dry weight was reached, weighed and ground
with a rotary knife mill at CIAT-Nicaragua. From
each soil sample, a subsample was air-dried. All plant
and soil samples were shipped to Switzerland where
they were powdered with a ball mill (Retsch, GmbH,
Germany) and analyzed for total N and 15N

abundance at the Geological Institute of the ETH Zurich
on a Thermo Electron FlashEA 1112 coupled in
continuous-flow with a Thermo-Fisher Delta V mass
spectrometer. Finely ground plant seed with an atom%
15N of 0.514 was used as an analytic standard.

The fresh samples were brought to laboratories of
the Universidad Nacional Agraria in Managua, and
extracted on the next day following the method of
Vance et al. (1987), where two subsamples equivalent
to 10 g soil dry matter were weighed and one was
fumigated with chloroform. Both subsamples were then
extracted with 40 ml K2SO4 (0.5 M), and soil extracts
were frozen and shipped to Switzerland. Total N was
determined in all extracts on a TOC/TN Analyzer
(SKALAR, Netherlands). Nmic for each sample was
obtained by subtracting the N content of non-fumigated
subsamples from fumigated subsamples. In the extracts
of the non-fumigated subsamples, NO3

− and NH4
+

contents were determined on a flow injection analyzer
(SKALAR San++ System, Netherlands), and summed
to obtain Nmin.

To determine 15N-Nmin, extracts from non-fumigated
samples were diffused on acid filters following an
adaptation of the method of Goerges and Dittert (1998).
Briefly, 0.02 g MgO and 0.4 g Devarda’s alloy were
added to 12 ml extracts in 20 ml polyethylene vials.
Quartz filters (Whatman, QM-A) of 5 mm diameter
were acidified with 10 μl KHSO4 2.5 M and enclosed
in polytetrafluoroethylene tape (Angst + Pfister, Dodge
Fibers Nr.121) below the vial caps. Vials were shaken
horizontally for 72 h at 150 rpm, before removing and
drying the filters. The determination of 15N-Nmic
followed the same principle. Extracts were autoclaved
with K2S2O8 (Cabrera and Beare 1993). Then 0.4 g
Devarda’s alloy, 4 ml of a saturated KCl solution and
4 ml NaOH 5 M were added to 10 ml extracts (Mayer
et al. 2003) and diffusion on filters followed as
described above. All filters were analyzed for 15N
abundance at the Geological Institute of the ETH Zurich
as described above.

Calculations and statistics

For all DLT- and ILT-treatments and all compart-
ments, the 15N enrichments were obtained by sub-
tracting from the 15N abundances the mean 15N
abundance of the respective compartment from the
Control microplot, which is at natural abundance
(Fig. 2). For the DLT, the amount of N derived from
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the amendments (Ndff) in a compartment was
calculated as follows (Hauck and Bremner 1976):

%Ndff ¼ atom% 15Nexcess compartment

atom% 15Nexcess amendment
� 100

ð1Þ

where atom% 15N excess compartment is the 15N
enrichment of the compartment considered (i.e., either
a maize plant part or a soil N pool) and atom% 15N
excess amendment is the enrichment of the amend-
ment applied (residues, mineral fertilizer or manure).

For each microplot, a weighted 15N excess was
used for maize, calculated from all plant parts
according to Danso et al. (1993):

weighted 15N excess ¼
Pn

i¼1

atom% 15N excessi�total Ni

Pn

i¼1

total Ni

ð2Þ

where i is a particular plant part and n the total
number of plant parts.

For the ILT, the Ndff was calculated as follow
(Hood 2001):

%Ndff ¼ 1� atom% 15N excess compartment

atom% 15N excess control compartment

� �

� 100
ð3Þ

where atom% 15Nexcess control compartment is the
15N enrichment of the compartment considered, in

the ILT-Control microplot of the same replicate
(Fig. 2).

The absolute amount of N derived from the
amendments in the different compartments was
calculated as follows:

Ndff gm�2½ �or mg kg soil�1
� � ¼ %Ndff � TNð Þ=100

ð4Þ

where TN is the total N amount in the compartment
considered, in g m−2 (for plants) or mg kg soil−1 (for
soil). TN was calculated as the product of the
concentration of N in the compartment and its weight
in g m−2 (for plants) or mg kg soil−1 (for soil). For
soil, the weight of the 0–10 cm layer was calculated
by multiplying its volume for a 1 m2 surface by the
bulk density. The amount of N derived from the soil
(Ndfs) for a compartment was the difference between
TN and absolute Ndff.

The amount of N recovered from the amendment
was calculated as follows:

%Recovery ¼ Ndff

N applied
� 100 ð5Þ

where N applied is the amount of N applied with the
amendments.

The total 15N recovery in DLT treatments was
calculated as the sum of the 15N recoveries in maize
and in total soil N.

15N-Nmic was calculated as a mass balance
according to Mayer et al. (2003):

15N� Nmic ¼ total Nfum � atom% 15N excessfum � total Nnonfum � atom% 15N excessnonfum
total Nfum � total Nnonfum

ð6Þ

where fum stands for fumigated sample and nonfum
for non fumigated sample.

Statistical analyses were performed using the
program R (R Development Core Team 2007). The
effects of replicates and amendments were tested
with a two-way analysis of variance using aov
(Chambers et al. 1992). Wilcoxon’s rank-sum test
was used to check for significant differences be-
tween ILT and DLT methods. The significance level
chosen was α=0.05.

Results

Labelling of canavalia and soil N

The above ground dry matter production of canavalia
in the microplots was on average 820 gm−2, with a
standard deviation of 366 gm−2. The 15N abundance
of canavalia from unlabelled microplots ranged from
0.38 to 0.50 atom%, and the 15N abundance of
canavalia from labelled microplots ranged from 1.23
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to 2.28 atom%. Variation in canavalia 15N abundance
within replicates was higher for ILT- than DLT-
microplots, with a mean coefficient of variation of
15% and 5%, respectively. The recovery from labelled
fertilizer in canavalia was on average 6%, with a
standard deviation of 2%.

Before amendment applications in June 2008, total
soil N from the ILT plots had an average abundance
of 0.643 atom% 15N up to 10 cm depth, with a
standard deviation of 0.076 atom% 15N. Within plot
variation was on average 11% (n=5). In the 0–10 cm
soil layer, the recovery from labelled fertilizer was on
average 44%, with a standard deviation of 12%. In the
10–20 cm layer, total soil N had an average
abundance of 0.626 atom% 15N with a standard
deviation of 0.067 atom% 15N. In the 10–20 cm soil
layer, the recovery from labelled fertilizer was on
average 48%, with a standard deviation of 16%. Total
recovery (in canavalia and in soil) from labelled
fertilizer was therefore on average 98%.

Residue decomposition

The canavalia leaves decomposed faster than the
stems (Fig. 3). Thirty-three days after the litter bag
installation (i.e. 40 DAA), leaves were below the
detectable weight limit. The 15N enrichment of stems
and leaves decreased slightly with time, with stems
more enriched than leaves. The highest N release was
observed between DAA 7 and DAA 26 with on
average 202 mgN per litter bag, i.e. per 15 g residues.
Knowing the amount of residues applied in the
microplots per m2, the 202 mgN released per litter
bags corresponded to a release of 5.7 gNm−2, of
which 72% was from the leaves.

Incorporation of amendment N into soil N pools

The evolution of Nmin and Nmic with time is
presented on Fig. 4. The ILT and DLT treatments
are merged as amounts of Nmin and Nmic were not
significantly different between labelling methods (p=
0.781 and p=0.058, respectively). After amendment
addition, Nmin slightly decreased for all treatments
and then stayed stable during maize growth. The two
mineral fertilizer applications clearly affected the
mineral soil N pool at DAA 1 and 40 and were still
observable at DAA 14 and 54. A net microbial
immobilization of up to 52 mgNkg−1 soil occurred

between DAA 1 and 14 for all treatments, followed
by a net N release of up to 60 mgNkg−1 soil. The
highest immobilization was observed for the residues
treatment and the lowest for the mineral fertilizer
treatment. Treatments had a significant effect on Nmic
(p=0.011).

0

2

4

6

8

10

12

g 
dr

y 
m

at
te

r

0.0

0.5

1.0

1.5

2.0

2.5

3.0

at
om

%
 15

N

0

40

80

120

160

200

7 14 26 40 54 147

DAA

m
g 

N
 

a

b

c

stem

leaves

LSD

LSD

LSD

Fig. 3 Decomposition (a), 15N abundance (b) and N release (c)
per litter bag from canavalia stems and leaves, with days after
amendments (DAA). Error bars represent the least significant
difference (LSD)

Plant Soil (2011) 341:179–192 185



For the DLT treatments, Ndff and Ndfs were
calculated for soil N pools. Ndff in Nmin (Fig. 5) shows
that the differences between treatments observed in
Fig. 4 came from the amendments. Except for the DLT-
Mineral fertilizer treatment, most of Nmin was derived

from the soil. The Ndff in Nmic for the two most
contrasting points regarding the size of Nmic (Fig. 4) is
presented on Fig. 6. Most of Nmic was derived from
the soil. The highest Ndff in Nmic was observed with
the DLT-Residues treatment just after the beginning of
the rains (DAA 14) and represented 6% of Nmic. The
DLT-Residue treatment had also a higher Ndff in Nmic
at harvest than the other treatments.

For the ILT treatments, Ndff and Ndfs in soil N
pools are not presented because negative estimates
were often obtained; this is considered further in the
discussion section. The evolution of 15N-Nmin and
15N-Nmic with time is presented on Fig. 7. Except for
the mineral fertilizer treatment, 15N-Nmin decreased
with time for all treatments. The ILT-Control treat-
ment had, at most time points, a higher enrichment
than the other treatments. The two applications of
unlabelled mineral fertilizer at DAA 1 and 40 were
clearly diluting the enrichment, and were then
followed by an increase of the enrichment up to a
level close to the ILT-Control treatment. After the
dilution by the mineral fertilizer, the strongest dilution
was observed for the ILT-Residue treatment at DAA
14, and for the ILT-Manure treatment at DAA 26.

Amendment N recovery in maize

Maize drymatter productionwas on average 1,344 gm−2,
with a standard deviation of 256 gm−2 (Table 2), and
was not significantly different between ILT and DLT
(p=0.410). The N uptake was on average 13.3 gNm−2,
with a standard deviation of 2.4 gNm−2. The amend-
ments had no significant effect on maize dry matter
production (p=0.085) or on N uptake (p=0.125).
Maize from the DLT-Fertilizer treatment had the highest
15N excess (Table 2). With the DLT, maize took up
2.6 gNm−1 from mineral fertilizer and 1.0 gNm−2

from canavalia residues, corresponding to an amend-
ment recovery of 32% and 12%, respectively (Fig. 8).
Treatments had a highly significant effect on amend-
ments recoveries determined with the DLT (p=0.005)
and no effect on the amendments recoveries deter-
mined with the ILT (p=0.976). Variation within
treatment with the ILT reached 204%.

Total recovery of amendment N

Most of the amendment N was recovered in the 0–
10 cm soil layer (Table 3). The total 15N recovery was

0

10

20

30

40

50

60

70

80

90

100

So
il 

m
in

er
al

 N
 (

m
g 

N
m

in
 k

g-1
 s

oi
l)

 

0

10

20

30

40

50

60

70

80

90

100

1 14 26 40 54 147

DAA

M
ic

ro
bi

al
 N

 (
m

g 
N

m
ic

 k
g-1

 s
oi

l)
 

Controls Mineral fertilizer Residues

Manure Check manure

LSD

LSD

a

b

Fig. 4 Changes in soil mineral N (a) and microbial N (b) pools
with days after amendments (DAA) for all treatments. Averages
of ILT and DLT. Error bars represent the least significant
difference (LSD)

186 Plant Soil (2011) 341:179–192



highest for the DLT-Residue treatment with 98%
recovery, followed by the DLT-Fertilizer treatment
and by the DLT-Check manure treatment. The highest
recovery for the DLT-Residue treatment was due to a
higher recovery in the soil. The lowest total recovery
for manure was due to its low recovery in maize.

Discussion

Labelling of canavalia and soil N

Despite a cautious harvest, the nature of canavalia
growth and the proximity of labelled and unlabelled
microplots introduced a small contamination of unla-
belled canavalia biomass. However, this contamination
did not affect the 15N abundance of soil N because
maize from the Control microplots was unlabelled
(Table 2) and because soil N of the control plots was
close to the basic natural abundance (0.372 atom%
15N, after harvest in November 08).

Variation in 15N enrichment of canavalia grown on
ILT plots could be due to differential mineral fertilizer
leaching between microplots and varying N uptake by
canavalia from different soil layers, which in turn
could be attributed to uneven distribution of stones in
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the soil profile of the field. Particularly in the layer
below 20 cm, total soil N was less 15N enriched than
in the 0–20 cm layers (data not shown).

Because canavalia above ground 15N enrichment
varied between microplots, 15N labelled belowground
biomass could contribute unequally to the N uptake of
the subsequent maize. Belowground N associated
with or derived from roots can represent up to 50%
of the total plant N of legumes (Herridge et al. 2008)
and can contribute substantially to the subsequent
crop. In both methods, ILT and DLT, belowground N
contribution from canavalia roots stood proxy for part

of the soil N pool because labelled canavalia roots
remained in labelled soil and unlabelled roots in
unlabelled soil. Soil 15N enrichment before applica-
tion of the amendments showed low variation
between the ILT treatments (12% and 16% at 0–
10 cm depth and 10–20 cm depth, respectively),
suggesting that the impact of 15N decomposition of
unevenly labelled belowground canavalia residues
was minor.

The low recovery of mineral fertilizer in canavalia
above ground biomass of the ILT plots was due to
high amounts of available soil N, to immobilization

Table 2 Maize dry matter production, nitrogen uptake and enrichment for each treatment at harvest

Treatment Dry matter N uptake 15N enrichmentb

atom% 15N excess
Totala g m−2 Grains g m−2 Totala g m−2 Grains g m−2

ILT - Control 1,085 396 11.1 5.4 0.466

ILT - Fertilizer 1,431 489 13.7 7.0 0.404

ILT - Residues 1,461 583 15.4 9.1 0.383

ILT - Manure 1,317 507 12.5 6.9 0.342

DLT - Fertilizer 1,625 493 14.9 6.7 1.680

DLT - Residues 1,424 543 14.5 7.7 0.075

Control 1,477 649 16.7 10.8 0.000

ILT - Check manure 1,244 477 11.2 6.6 0.410

DLT - Check manure 1,028 429 9.5 5.6 0.143

LSD 535 326 6.9 6.0 0.101/0.383c

a total for all plant parts, i.e. grains, damaged grains, leaves, stems, cobs and husks
b weighted enrichment for all plant parts
c ILT/DLT
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by the microbial biomass induced by sucrose addition
and to a dilution of the label through symbiotic N2

fixation. The recovery in the soil and the resulting
enrichments of soil N were high enough to allow the
application of the ILT. Also, the 0–10 and 10–20 cm
layer had similar enrichments.

Decomposition of canavalia residues

Litter bag studies are often considered to underesti-
mate residue decomposition through reduced litter/
soil contact (Vanlauwe et al. 1997). In our trial, an
overestimation of the decomposition rate is more
likely, as eroded soil along the slope partially covered
the litter bags with soil. The residues in the litter bags
were therefore slightly more mixed with soil than the
residues in the microplots which were protected from
soil inflow through the microplot frames. Ideally, the
litter bags should have been applied on the same day
as the amendments, but due to time constraints it was
done 1 week later. However, as no rain fell during this
week, we assume that decomposition of the residues
in the microplots was minimal before litter bag
installation. Decomposition of canavalia litter was
rapid, which is in agreement with previous studies
(Carvalho et al. 2008, 2009; Cobo et al. 2002).

Nitrogen released from the litter bags by mineral-
ization can be taken up by plants, get immobilized by
microorganisms, be sorbed onto soil particles or be
transformed into forms prone to losses. The residues
can also be incorporated into the particulate soil
organic matter fraction. In the microplots, most
residue N remained in the soil (Table 3). The time
of highest N release (between DAA 7 and 26)
corresponded to the highest microbial N immobiliza-
tion (Fig. 4). At this time, maize was still at an early
growth stage (with 2 or 3 leaves). From the 8 gNm−2

applied (Table 1), only 1.0 gNm−2 in average was
recovered in maize (Fig. 8). However, as stems were
more enriched and decomposed more slowly than
leaves, the residue recovery in maize may be under-
estimated because the maize took up N from the less
enriched leaves. The Ndff for the DLT-Residue treat-
ment calculated with the 15N excess of the leaves was
1.5 gNm−2, which corresponds to a recovery of 19%.
The underestimation would be therefore around 50%.

Soil N dynamics after amendments

The Nmin initially decreased with the first rains.
During the following period of maize growth, it
stayed stable on a level of 8 mgNkg−1 soil. At DAA
147, after maize had been drying in the field for
15 days and was, therefore, no longer taking up N, it
increased. According to the DLT, about the same
amount of Nmin was derived from the soil for all
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Fig. 8 Nitrogen derived from the amendments (Ndff) and their
recovery in maize, for indirect (ILT) and direct (DLT) labelling
techniques. Error bars represent the standard deviation (n=3).
Least significant difference is 6.1 gNm−2 for the ILT Ndff and
0.6 gNm−2 for the DLT Ndff. Least significant difference is
86.7% for the ILT recovery and 8.8% for the DLT recovery

Table 3 15N recovery (%) in maize and in different soil N
pools (0–10 cm) at maize harvest, for the direct labelling
technique. Total recovery is the sum of recoveries in maize and
total soil N

Treatment Maize Soil Total

Ntot Nmin Nmic

DLT - Fertilizer 31.8 50.1 1.1 0.82 82

DLT - Residues 12.0 85.8 0.9 2.94 98

DLT - Check manure 2.9 73.3 1.1 ~0 76

LSD 8.8 31.1 1.3 8.8
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treatments at each time point, the differences between
treatments being attributable to Ndff. The Ndff in
Nmic was low and shows that this pool was mainly
alimented by soil organic matter N.

The steady 15N-Nmin decrease over time for all
ILT treatments except the mineral fertilizer treatment
(Fig. 7) could not be due to dilution by microbial
turnover as 15N-Nmic was close to 15N-Nmin at DAA
14 and was therefore attributed to mineralization of
unlabeled native organic N. The 5 years of canavalia
cultivation and application as green manure that
occurred in the trial prior to our labelling resulted in
the build up a large unlabelled soil organic matter pool.
We can assume that most of it entered the potentially
available soil N pool (Vanlauwe et al. 1998b).

The 15N-Nmin was in general lower in the amended
treatments than in the control which can be explained
by the dilution from the unlabeled amendments. After
unlabelled mineral fertilizer application, the 15N-Nmin
first decreased and then increased strongly. This
mineralization flush after addition of mineral fertilizers
has been reported in other studies (Kuzyakov et al.
2000). As the material mineralized was of higher
enrichment (labelled microbial biomass and canavalia
roots) 15N-Nmin increased up to the level of the
control. This flush can not be detected by observing the
evolution of Nmin only, as a net decrease in Nmin was
observed at the same time (Fig. 4).

Indirect vs. direct labelling technique

Compared to the DLT, the average Ndff ILT estimate
from residues and sheep manure was overestimated,
suggesting a greater dilution of the label in the
microplot treatment compared to the control. The
reason for this is not likely to be as a result of pool
substitution from microorganisms as the enrichment
of Nmic was only slightly lower than the enrichment
of Nmin at the beginning of organic amendments
decomposition (DAA 14). If pool substitution oc-
curred, then it must result from soil N pools other
than Nmin and Nmic.

In this study, the main problem of ILT was high
variation of the results caused by small dilutions of
the 15N enrichments of the relevant pools. High
variation with the use of ILT has also been reported
by other authors (McDonagh et al. 1993; Muñoz et al.
2003; Stevenson et al. 1998). The dilution of 15N-
Nmin attributable to the amendments was very small

relative to the dilution from mineralization of unla-
belled organic matter (Fig. 7). This was reflected in
the differences between maize 15N enrichment from
the control and the treatments in each plot. The
smaller the difference between ILT-Control and
treatment, the more inaccurate and variable the Ndff
estimates were. Negative differences resulted in
negative Ndff values.

These problems did not occur with the DLT
method, where 15N-Nmin and 15N-Nmic were directly
attributable to the amendments. Therefore, results
from the DLT are considered more relevant to define
the availability of canavalia residues and manure for
maize. Still, the recovery with the mineral fertilizer
treatment may be underestimated due to an isotope
displacement reaction, described by Jenkinson et al.
(1985) as the displacement of unlabelled NH4

+ from
clay minerals by the added labelled ammonium
sulphate, or through the priming of soil organic N
mineralization seen from the evolution of 15N-Nmin
in the ILT (as noted earlier). Seen the rapid mineral-
ization from canavalia residues, the recovery with the
residue treatment may also be underestimated.

Availability of canavalia residues and manure
for subsequent maize

The N recovery in maize was highest for mineral
fertilizer, followed by canavalia residues and finally
sheep manure. At a recovery of 12% of applied N, the
recovery of canavalia residue N in subsequent maize
was at the lower end of the range of what has been
previously observed for tropical legumes in similar
studies. Vanlauwe et al. (1998a) reported 9% Leucaena
N recovery in maize, McDonagh et al. (1993) 12 to
26% groundnut N recovery in maize, and Toomsan et
al. (1995) 15 to 23% soybean N recovery in rice and
8 to 22% groundnut N recovery in rice. The 3%
recovery of sheep manure N was lower than the 10%
recovery in winter wheat reported for the same
manure by Bosshard et al. (2009). These rather lower
recoveries are most probably due to the high soil N
availability at the research site. Furthermore, lateral
root growth of maize growing inside the microplots at
a soil depth of more than 15 cm (i.e., underneath the
15 cm deep microplot borders) might have given
access to additional unlabelled soil N.

Most of the amended N remained in the soil. This
observation is consistent with a recent study that
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included results from thirteen tropical agroecosystems
where the authors reported an average N recovery
from residues of 7% in crops and 71% in soil
(Dourado-Neto et al. 2010). The high total recovery
for mineral fertilizer (83%), with 50% in the soil
despite the heavy rains, suggests that a high amount
of NH4

+ has been retained on clay minerals. Since the
mineral fertilizer was applied as solution which
rapidly infiltrated into the soil, there was no signifi-
cant loss of N from mineral fertilizer in gaseous form.
As N recovery in soil was higher for canavalia
residues than for mineral fertilizer, higher residual
effects can be expected from canavalia for further
cropping (Vanlauwe et al. 1998b).

Conclusions

Canavalia residues represent a valuable source of N
for the subsequent maize crop. Results from this
study showed that despite similar enrichment of both
the microbial N pool and the mineral N pool at the
start of maize growth, the ILT failed to assess the N
fertilizer value of mineral and organic amendments.
This is due to the presence of an important
unlabelled mineralizable soil N pool. Pool substitu-
tion from microorganisms is not the only limitation
for ILT. While the labelling of the soil for a
subsequent time before application of unlabelled
amendment might be adequate to label potentially
available soil N in less fertile soils, it is not
sufficient in soils with high amounts of labile soil
organic matter. With DLT amendment recoveries in
maize would probably be higher at a site with lower
soil available N content.
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