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Abstract Conformal predictors, introduced by Vovk et al.
(Algorithmic Learning in a Random World, Springer, New
York, 2005), serve to build prediction intervals by exploiting
a notion of conformity of the new data point with previously
observed data. We propose a novel method for constructing
prediction intervals for the response variable in multivariate
linear models. The main emphasis is on sparse linear mod-
els, where only few of the covariates have significant influ-
ence on the response variable even if the total number of
covariates is very large. Our approach is based on combin-
ing the principle of conformal prediction with the �1 penal-
ized least squares estimator (LASSO). The resulting confi-
dence set depends on a parameter ε > 0 and has a coverage
probability larger than or equal to 1 − ε. The numerical ex-
periments reported in the paper show that the length of the
confidence set is small. Furthermore, as a by-product of the
proposed approach, we provide a data-driven procedure for
choosing the LASSO penalty. The selection power of the
method is illustrated on simulated and real data.
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1 Introduction

Consider observations (xi, yi) ∈ R
p × R for i ≥ 1 from a

linear regression model yi = x′
iβ + ξi , where β ∈ R

p is the
unknown parameter and the ξi ’s are the noise variables. As-
sume that the pairs (xi, yi), i ≥ n come from an exchange-
able distribution P in the product space (Rp × R)∞. Sup-
pose also that we have already collected the dataset En =
((x1, y1), . . . , (xn−1, yn−1), xnew) where xnew ∈ R

p denotes
a new observation. Our goal is to predict the label ynew cor-
responding to xnew based on En and then exploiting the in-
formation in xnew . This setup is known as the transduction
problem (Vapnik 1998). Our estimation strategy is based on
local arguments in order to produce a better estimation for
ynew (Györfi et al. 2002). More precisely, we will follow
the approach of conformal prediction presented by Vovk
et al. (2005) which relies on two key ideas: one is to pro-
vide a confidence prediction (namely, a confidence set con-
taining ynew with high probability) and the other is to ac-
count for the similarity of the new data xnew compared to
the previously observed xi ’s. The notion of conformal pre-
dictor was first described by Vovk et al. (1999). Moreover,
Vovk et al. (2005) illustrate this approach on the example
of ridge regression. Along the paper, this predictor will be
referred to as Conformal Ridge Predictor1 (CoRP). In the
present contribution, we propose to adapt conformal predic-
tors to the sparse linear regression model, that is a model
where the regression vector β ∈ R

p contains only a few of
nonzero components. We introduce a novel conformal pre-
dictor called the Conformal Lasso Predictor (CoLP) which
takes into account the sparsity of the model. Its construc-
tion is based on the LASSO estimator (Tibshirani 1996).

1The Conformal Ridge Predictor was called the Ridge Regression Con-
fidence Machine by Vovk et al. (2005).

mailto:hebiri@stat.math.ethz.ch
mailto:hebiri@math.jussieu.fr


254 Stat Comput (2010) 20: 253–266

The LASSO estimator for linear regression corresponds to
an �1-penalized least square estimator and it has been ex-
tensively studied over the last few years (Knight and Fu
2000; Meinshausen and Bühlmann 2006; Bunea et al. 2007;
Zhao and Yu 2006) and several modifications have been pro-
posed (Zou 2006; Yuan and Lin 2006; Zou and Hastie 2005;
Tibshirani et al. 2005; Hebiri 2008). One attractive aspect of
the LASSO is that it aims both to estimate the regression
vector while enjoying variable selection when the model
is sparse. In the approach considered in the present paper,
the resulting Conformal Lasso Predictor has a large cover-
age probability and are small in terms of its length in the
same time. When we deal with regularized methods like the
Ridge or the LASSO estimators, the choice of the penalty
is an important task. Contrary to the Conformal Ridge Pre-
dictor for which no rule was established to pick the Ridge-
penalty (Vovk et al. 2005), the construction of the Confor-
mal Lasso Predictor provides a data-driven way for choosing
the LASSO penalty. Moreover, it turn out that this choice is
adapted to variable selection as supported by the numerical
experiments.

The paper is organized as follows. First, we concisely in-
troduce conformal prediction and the LASSO procedure in
Sects. 2 and 3 respectively. In Sect. 4, we give the explicit
form of the Conformal Lasso Predictor. An algorithm pro-
ducing the CoLP is presented in Sect. 5. Then in Sect. 6 we
discuss a generalization of the Conformal Lasso Predictor
to other selection-type procedures; we call these generalized
procedures Sparse Conformal Predictors. Finally, in Sect. 7,
we illustrate the performance of Sparse Conformal Predic-
tors through some numerical experiments.

2 Conformal prediction

Let us briefly describe the approach based on conformal pre-
diction developed in the book by Vovk et al. (2005) where
they develop the idea of conformal prediction. We aim to
predict the label ynew corresponding to a new observation
xn = xnew . To this end, we exploit the similarity of pairs
of the form (xnew, y) to the former observations (xi, yi) for
i = 1, . . . , n − 1, where y ∈ R. This is the purpose of intro-
ducing a nonconformity score α(y) = (α1(y), . . . , αn(y))′
which is based on En. Given a procedure constructed based
on the dataset {(x1, y1), . . . , (xn−1, yn−1), (xnew, y)}, each
value αi measures the quality of fit on the example (xi, yi).
For instance, if we use as procedure the least-squares linear
regression, then the nonconformity score can be defined as
αi = �(yi, μ̂i), where μ̂i stands for the linear fit of yi pro-
vided by the least-square procedure and � is any distance. In
order to obtain a relative information between different non-
conformity scores αi , we shall use the notion of p-value, as

introduced by Vovk et al. (2005), and defined as:

p(y) = 1

n
|{i ∈ {1, . . . , n} : αi(y) ≥ αn(y)}|, (1)

where for any set A, we denote its cardinality by |A|. The
above quantity lies between 1/n and 1. Moreover, we note
that the smaller this p-value is, the less likely the tested pair
(xnew, y) is (in other words, y is an outlier when associated
to xnew). An explicit form of the nonconformity score and
the p-value will be given in Sect. 4 when we will adapt it to
the CoLP.

Remark 1 The notion of p-value introduced in the present
paper differs from the classical one. To make the connection
with hypothesis testing in mathematical statistics (Casella
and Berger 2001), consider the following hypotheses:{

H0 : the pair (xnew, y) is conformal,

H1 : the pair (xnew, y) is not conformal.

Assume the observation Y = y is given. The function p(y)

permits to construct a statistical test procedure with critical
region Rε = {y : p(y) ≤ ε} and H0 is rejected if y ∈ Rε .

A nice feature of this nonconformity score is that it can
be related to the confidence of the prediction for ynew . We
now recall the concept of conformal predictor introduced by
Vovk et al. (2005). Set ε ∈ (0,1). Given the new observation
xnew , we search for a subset Γ ε = Γ ε(En) of R, in which the
expected value of ynew lies with a probability of 1 − ε. The
conformal predictor Γ ε is defined as the set of labels y ∈ R

such that p(y) > ε. In other words, Γ ε consists of labels y

which make the pair (xnew, y) more conformal than a pro-
portion ε of the previous pairs (xi, yi) for i = 1, . . . , n − 1.
Note moreover that the smaller ε, the more confident the
predictor. That is to say, for any ε1, ε2 > 0:

Γ ε1 ⊂ Γ ε2 whenever ε1 ≥ ε2.

In the present analysis, apart from prediction, we develop
an approach for selecting relevant variables. For this reason,
we consider three criteria measuring the quality of our pro-
cedure: validity, accuracy, and selection. The first two were
introduced by Vovk et al. (2007). The fact that we consider
the issue of sparsity leads us to include the selection power
of the predictor.

Validity. This criterion accounts for the power of conformal
prediction. The simplest approach is to count the number
of times where yn does not belong to the set Γ ε . We take
the notation:

errεn =
{

1 if yn /∈ Γ ε(En)

0 otherwise.

Note that in an on-line perspective, one also focuses on the
cumulative error ERRε

n = ∑n
i=1 errεi . Asymptotic validity
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properties of this cumulative error have been studied by
Vovk (2002a) and Vovk et al. (2005, Chaps. 2 and 8). In
the present work, we will be interested in evaluating the
error errεn for a fixed n, rather than the cumulative one.

Proposition 1 (Vovk 2002a) Fix a significance level ε ∈
(0,1). Let α ∈ R

n be any nonconformity score. If the dis-
tribution P is exchangeable, then the conformal predictor

Γ ε =
{
y :

n∑
i=1

I(αi(y) ≥ αn(y)) ≥ nε
}
,

satisfies

P(ynew ∈ Γ ε) ≥ 1 − ε,

for any n ∈ N.

Accuracy. The length of the confidence predictor provides
a natural measure of the accuracy. We will see that such a
measure is adapted to the variable selection purpose. Note
that other choices are possible. We shall discuss this point
in Sect. 5.

Selection. Finally, in the case of sparse linear regression, it
is important to include a measure of the capacity of the es-
timator to select relevant variables, namely those for which
the regression parameter β has nonzero components.

3 The LASSO procedure

The LASSO estimator (Tibshirani 1996) has originally been
introduced in the linear regression model:

yi = x′
iβ

∗ + ξi, i = 1, . . . , n − 1, (2)

where the design xi = (xi,1, . . . , xi,p)′ ∈ R
p is determin-

istic, β∗ = (β∗
1 , . . . , β∗

p)′ ∈ R
p is the unknown regression

vector and the ξi ’s are independent and identically distrib-
uted (i.i.d.) centered Gaussian random variables with known
variance σ 2. Then the goal is to use the observations to pro-
vide an approximation of the label ynew of a new observation
xnew through the estimation of the regression vector β∗. The
penalized version of LASSO estimator is defined as follows:

β̂λ = argmin
β∈Rp

n−1∑
i=1

(
yi − x′

iβ
)2 + λ

p∑
j=1

|βj |, (3)

where λ ≥ 0 is a tuning parameter. We also refer to the pa-
pers by Chen and Donoho (1995) and Santosa and Symes
(1986) for anterior utilization of the above estimator in sig-
nal processing and in the deconvolution problem. Based on
β̂λ, an estimation of the response ynew of the new observa-
tion xn = xnew is produced by μ̂λ = x′

newβ̂λ. For a large

enough λ, the LASSO estimator is sparse. That is many
components of β̂λ equal zero. Therefore we can naturally
define a sparsity (or active) set as Aλ = {j ∈ {1, . . . , p} :
(β̂λ)j 	= 0}. Several effective algorithms to compute β̂λ, the
LASSO solution of the minimization problem (3) have been
proposed and studied (for instance Interior Points meth-
ods (Kim et al. 2007), homotopy algorithms introduced
by Osborne et al. (2000b) with a closed form called the
LARS (Efron et al. 2004), Pathwise Coordinate Optimiza-
tion (Friedman et al. 2007), Relaxed Greedy Algorithms
(Huang et al. )). In particular a LASSO modification of the
LARS algorithm (Efron et al. 2004) can iteratively provide
approximations of the LASSO estimator for a few values of
the tuning parameters λ = λ0, . . . , λK such that ∞ = λ0 >

· · · > λK = 0 (the indices refer to the algorithm steps and K

denotes the last step). These points are the so-called transi-
tion points.

Let us introduce some notation. First let xλ denotes the
(n − 1) × |Aλ| matrix whose columns are variables Xj =
(x1,j , . . . , xn−1,j )

′, with indices j ∈ Aλ. Then for λ ≥ 0, we
denote by β̄λ the estimator defined as the minimizer of (3)
over the set Aλ. That is

β̄λ = argmin
b∈R

|Aλ|
(y − xλ b)′ (y − xλ b) + λ

|Aλ|∑
j=1

|bj |, (4)

where y = (y1, . . . , yn−1)
′ and |Aλ| is the cardinality of the

set Aλ. From now on, let us also write β̄k , Ak and xk re-
spectively for the estimator β̄λ defined in (4), the sparsity
set Aλ and the matrix xλ evaluated at the transition point
λ = λk , where k ∈ {1, . . . ,K} is one of the LARS algorithm
steps. For each λk , we assume that the matrix (x′

kxk)
−1 is in-

vertible. Obviously, the estimator β̄k is an |Ak|-dimensional
vector. Furthermore, we denote by sk the |Ak|-dimensional
sign vector whose components are the signs of the compo-
nents of the estimator β̄k evaluated at the transition point λk

(i.e., (sk)j = 1 if (β̄k)j > 0, (sk)j = −1 if (β̄k)j < 0 where
j ∈ Ak). Here are some characteristics of the LARS algo-
rithm and we refer to the paper by Efron et al. (2004) for
more details:

(i) At each iteration of the algorithm (i.e., at each transi-
tion point), only one variable Xj = (x1,j , . . . , xn−1,j )

′,
j = 1, . . . , p is added (or deleted) to the construction of
the estimator according to its correlation with the cur-
rent residual. The algorithm begins with only one vari-
able and ends up when p ≤ n with the ordinary least
square (OLS) estimator. When p > n, the LARS can-
not select all p variables. It is limited by the sample size
n. In such a case, an OLS solution does not exist and
the LARS algorithm would end with a solution which
consists in the interpolation of the observed variables
with the smallest �1-norm, a solution of little interest.
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(ii) For each λ ∈ (λk+1, λk], the solution of the minimiza-
tion problem (4) can be expressed in the following
form:

β̄λ(y,xk, sk) = (x′
kxk)

−1
(

x′
ky − λ

2
sk

)
. (5)

Let us mention that the set Ak and the sign vector
sk remain unchanged when λ varies in the interval
(λk+1, λk

]
. We refer to the paper by Osborne et al.

(2000a, Sect. 3) for a good way to define the j -th com-
ponent of the sign vector sk evaluated at the transition
point λk , when Xj is an added variable.

(iii) Clearly, one can compute the LASSO estimator β̂λ

defined in (3) using the estimator β̄λ(y,xk, sk) given
by (5). This is done by setting (if necessary) to zero
the components j , with j /∈ Aλ in the vector β̂λ. The
remaining components of β̂λ coincide with the cor-
responding components of β̄λ. As highlighted by (5),
the LASSO estimator is piecewise linear in λ (Rosset
and Zhu 2007). Using the LASSO modification of the
LARS algorithm, this property helps us to provide the
regularization path of the LASSO estimator, which is
defined as {β̂λ : λ ∈ [0,∞)} (each point of the regu-
larization path matches an evaluation of the regression
vector estimator for a given value of λ). Indeed, the
slope of the LASSO regularization path changes at a
finite number of points which coincide with the transi-
tion points λ1, . . . , λK .

(iv) An important property of the LASSO modification of
the LARS algorithm is piecewise linearity. Indeed, let
λ ∈ (λk+1, λk] where λk+1 and λk are two successive
transition points. In this interval, the LASSO estima-
tor β̂λ uses the same variables (variables with indices
in Ak). By using (5), it is easy to see Zou et al. (2007),
that the linearity of the LASSO estimator implies that,
for any λ ∈ (λk+1, λk]:
n−1∑
i=1

(
yi − x′

i β̂λ

)2
>

n−1∑
i=1

(
yi − x′

i β̂λk+1

)2
.

This last observation indicates that the transition points
are the most interesting points in the regularization
path.

All these nice properties encourage the use of the LASSO
as a selection procedure. In the sequel, we will consider
the LASSO modification of the LARS algorithm which pro-
vides an approximate solution to the LASSO.

Remark 2 Through the paper, one should keep in mind the
analogy between each iteration k of the LARS algorithm
(more precisely its modified version) and its corresponding
tuning parameter value λk . Decrease of tuning parameter λ

is reflected through the increase of the number of iterations
of the LARS algorithm.

4 Sparse predictor with conformal Lasso

For the reasons exposed above section, we focus on the tran-
sition points λ1, . . . , λK and construct conformal predictors
for each of these λk . We then propose to select the best con-
formal predictor among them according to its performance
in terms of accuracy (cf. Sect. 2).

Now let us detail the construction of the CoLP for
each λk . To this end, denote by X̃j = (x1,j , . . . , xn−1,j ,
xnew,j )

′, j = 1, . . . , p the augmented variable j . Define
the augmented design matrix x̃ = (x1, . . . , xn−1, xnew)′ =
(X̃1, . . . , X̃p) and the augmented response vector ỹ =
(y1, . . . , yn−1, y)′ where y is a candidate value for ynew .
Using the notation introduced in Sect. 3, for the fixed λk , we
also define the estimator β̄k (̃y, x̃k, sk) from expression (5)
based on these augmented data. That is

β̄k (̃y, x̃k, sk) = (̃x′
k x̃k)

−1
(̃

x′
k ỹ − λk

2
sk

)
. (6)

Let us mention that in the above expression, the transition
point λk and the corresponding sign vector sk are obtained
as described in Sect. 3. In particular, they do not depend
on xnew nor on y. They are only dependent on the n − 1
pairs {(x1, y1), . . . , (xn−1, yn−1)}. From now on, we denote
the estimator (6) by β̄k . We define μ̄k := x̃kβ̄k . Moreover,
the matrix Hk will be the n × n projection matrix onto the
subspace generated by x̃k and I identity matrix of the same
size. For each λk , we define a corresponding nonconformity
score αk = (

αk
1, . . . , αk

n

)′
by:

αk(y) := |̃y − μ̄k| =
∣∣∣∣(I − Hk) ỹ + λk

2
x̃k

(̃
x′
k x̃k

)−1
sk

∣∣∣∣
= |Ak + Bk y|,

where | · | is meant here componentwise, Ak = (ak
1, . . . , ak

n)
′

and Bk = (bk
1, . . . , b

k
n)

′ with

{
Ak := (I − Hk) (y1, . . . , yn−1,0)′ + λk

2 x̃k

(̃
x′
k x̃k

)−1
sk,

Bk := (I − Hk) (0, . . . ,0,1)′.
(7)

We defined the above nonconformity score based on the ab-
solute difference between the observed and fitted value. In
light of (1), let us mention that one can use other measure,
as the squared difference for instance, without inducing any
modification in the resulting conformal predictor. Note also
that each component αk

i (y) is piecewise linear with respect
to y. Then the corresponding p-value pk(y) as defined by
(1) clearly can change only at points y where the sign of
αk

i (y) − αk
n(y) changes. Hence, we do not have to evalu-

ate all the possible values of y. We only focus on points
y for which the i-th nonconformity measure αk

i (y) equals
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αk
n(y). For this purpose, we define, for each observation

i ∈ {1, . . . , n}

Sk
i =

{
y : αk

i (y) ≥ αk
n(y)

}
, (8)

which corresponds to the range of values y such that the
new pair (xnew, y) has a better conformity score than the
i-th pair (xi, yi). Moreover, let lki and uk

i denote two reals
defined respectively as

lki = min

{
−ak

i − ak
n

bk
i − bk

n

;−ak
i + ak

n

bk
i + bk

n

}
, (9)

and

uk
i = max

{
−ak

i − ak
n

bk
i − bk

n

;−ak
i + ak

n

bk
i + bk

n

}
, (10)

where ak
i and bk

i are given by (7).

Proposition 2 Let us fix k ∈ {1, . . . ,K} and i ∈ {1, . . . ,

n − 1}. Assume that both bk
i and bk

n are non-negative. Then

(i) If bk
i 	= bk

n, we have either Sk
i = [lki ;uk

i ] or Sk
i =

(−∞; lki ] ∪ [uk
i ;−∞), with lki and uk

i given by (9)
and (10) respectively.

(ii) If bk
i = bk

n 	= 0, then lki = uk
i = − ak

i +ak
n

2bk
n

and we have

either Sk
i = (−∞; lki ] or Sk

i = [lki ;−∞). Moreover if
ak
i = ak

n, we have Sk
i = R.

(iii) If bk
i = bk

n = 0, we have either Sk
i = R or Sk

i = ∅.

The assumption that all the bk
i are non-negative does not

make lose any generality as one can multiply ak
i and bk

i by
−1 if bk

i < 0. With this definition of Sk
i , we may rewrite the

definition of the conformal predictor as follows

Γ ε
k =

{
y :

n∑
i=1

I(αk
i (y) ≥ αk

n(y)) ≥ nε

}

=
{

y :
n∑

i=1

I(Sk
i )(y) ≥ nε

}
, (11)

where I(·) stands for the indicator function. The above ap-
proach leads to a whole collection of confidence intervals
Γ ε

1 , . . . ,Γ ε
K . We propose below a strategy for choosing one

particular Γ ε
k , the performance of which will be studied in

Sect. 7 through numerical experiments.
It is worth mentioning that in view of the paper by Vovk

(2002b, Theorem 1) (see also the book by Vovk et al. 2005,
Proposition 2.3, p. 26), each of predictor Γ ε

k would have
a coverage probability at least equal to 1 − ε, if the corre-
sponding value λk of the tuning parameter were determinis-
tic. In fact, the following result holds.

Proposition 3 Fix the significance level ε ∈ (0,1) and the
tuning parameter λ > 0. Let β̂λ,n(y) be the LASSO estimate
for the augmented dataset (̃x, ỹ) and let us define αλ(y) =
|̃y − x̃β̂λ,n(y)|. If the distribution P is exchangeable, then
the conformal predictor

Γ ε
λ =

{
y :

n∑
i=1

I(αλ
i (y) ≥ αλ

n(y)) ≥ nε

}
,

satisfies

P(ynew ∈ Γ ε
k ) ≥ 1 − ε,

for any n ∈ N.

In the proof of Proposition 3 detailed by Vovk (2002b),
one needs the exchangeability of (x1, y1), . . . , (xn−1, yn−1)

and the last pair (xn, y) in the definition of the predictor.
Actually, this property is not fulfilled when the tuning para-
meter λ is chosen in the set {λ1, . . . , λK} of LASSO’s tran-
sition points, since the elements of this set depend only on
the first n − 1 observations and not on (xn, y). We believe
that under some additional assumptions a result similar to
Proposition 3 can be obtained for the predictor Γ ε

k as well,
for each k = 1, . . . ,K . This is the topic of an ongoing work.
In the present paper, we restrict ourselves by proposing a
data-driven choice of the conformal predictor from the col-
lection of predictors {Γ ε

k ;1 ≤ k ≤ K} and by exploring its
empirical properties.

Remark 3 Of course, one can also apply the well-known
sample splitting technique for choosing the values
λ1, . . . , λK based on a first sample, and then use the method-
ology described below for selecting the data-driven predic-
tor based on a second sample which is assumed to be inde-
pendent of the first sample. However, this technique is not
attractive from the practical standpoint, that is why we do
not develop this approach.

As discussed above, we believe that all the predictors Γ ε
k

share nearly the 1 − ε validity property, which is supported
by our empirical study. We suggest to select among them the
one which has the smallest Lebesgue measure. We denote
this confidence set by Γ ε

opt , that is

Γ ε
opt = Γ ε

ν , ν = argmin
k

|Γ ε
k |. (12)

In general, since ν is a random variable, the 1 − ε validity
of all Γ ε

k would not imply the 1 − ε validity of Γ k
opt , but

only 1 − Kε validity. However, 1 − Kε is a worst case ma-
jorant obtained by a simple application of the union bound,
whereas numerical examples we considered (some of them
are reported below) suggest that the validity is much better
than 1 − Kε and could even be equal to 1 − ε when p ≤ n.
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5 Implementation

Algorithm 1: Lasso Conformal Predictor
Step 1: Normalize the dataset
((x1, y1), . . . , (xn−1, yn−1)) such that for any
j ∈ {1, . . . , p}, we have∑n

i=1 xi,j = 0, n−1 ∑n
i=1 x2

i,j = 1 and
∑n

i=1 yi = 0.
Run the LASSO modification of the LARS algorithm
on this normalized dataset
Step 2: Construct the Conformal Lasso Predictors for
each λk ∈ {λ1, . . . , λK} begin

Step 2a: Initialization : Define Ak and Bk as in (7).
Set Uk ←− ∅
Step 2b: Harmonization
for i = 1 to n do

if bk
i < 0 then
ak
i = −ak

i and bk
i = −bk

i

end
end
Step 2c: Actualize the set Uk

for i = 1 to n do
if bk

i 	= bk
n then

Add lki and uk
i (9)–(10) to Uk

end
if bk

i = bk
n 	= 0 and ak

i 	= ak
n then

Add lki = uk
i (9)–(10) to Uk

end
end
Step 2d: Sort Uk . Let m ←− |Uk|. Then
y(0) ←− −∞ and y(m+1) ←− +∞
Step 2e: Evaluate Nk

j for j = 1, . . . ,m. Initialize

Nk
j ←− 0. Then actualize

for i = 1 to n do
for j = 1 to m do

if |ak
i + bk

i y| ≥ |ak
n + bk

n y| for
y ∈ (y(j), y(j+1)) then

Increment Nk
j = Nk

j + 1

end
end

end
Step 2f: For a fixed threshold ε > 0, output the
conformal predictor

Γ ε
k = ∪

j : Nj
n

>ε
[y(j), y(j+1)]

end
Step 3: Output the Conformal Lasso Predictor Γ ε

opt as
the smallest (w.r.t. their Lebesgue measure) confidence
set among the constructed conformal predictors

We provide here a three-step algorithm which enables us to
easily construct the CoLP. After a convenient normalization,

we start in Step 1 by applying the LASSO adaptation of the
LARS algorithm to the dataset ((x1, y1), . . . , (xn−1, yn−1)).
This step provides all transition points λ1, . . . , λK , the cor-
responding design matrices xk and sign vectors sk for k =
1, . . . ,K . Then, in Step 2, we construct the conformal pre-
dictor Γ ε

k associated to each λk . Thanks to Proposition 2,
for each λk , we can construct the sets Sk

i for i = 1, . . . , n

defined by (8). We use these sets in order to construct the
conformal predictor Γ ε

k . To do this, we take advantage from
the fact that the function y → ∑n

i=1 I(Sk
i (y)) is piecewise

constant. Furthermore, the endpoints of the intervals where
this function is constant belong to the set of the all endpoints
of intervals forming the sets Sk

i . Thus, to determine Γ ε
k , we

sort the set U consisting of the all endpoints of the inter-
vals described in Proposition 1 and include an interval hav-
ing as endpoints two successive elements of U in Γ ε

k if the
center of this interval belongs to at least [nε] sets Sk

i . Fi-
nally, in a Step 3, we provide the CoLP, says Γ ε

opt , which
is defined as the smallest confidence set, according to its
Lebesgue measure, among the constructed conformal pre-
dictors Γ ε

k , k = 1, . . . ,K . According to Proposition 3, each
Γ ε

k is valid. Moreover the criterion for choosing the CoLP
is adapted to variable selection as conformal predictors con-
structed here for different values of λk, k = 1, . . . ,K bring
into play different variables. This is illustrated in Fig. 1
(left) where we constructed the conformal predictors when
n = 300. One can observe that all the conformal predictors
are valid since they contain the true value of the label ynew .
Hence our construction is suitable when the sample size is
larger than the number of variables (i.e., n > p) but may
be not appropriated when p ≥ n. Figure 1(right) shows an
example where almost all the constructed conformal predic-
tors Γ ε

k , k = 1, . . . ,K , using the above algorithm are valid.
Only six are not. One of them is the selected CoLP (itera-
tion 57 in Fig. 1(right)) which corresponds to the smallest
predictor. In such cases (p ≥ n), a correction can be made
and other choices for the accuracy measure are possible. We
discuss this criterion in Sect. 7. Let us add that we only il-
lustrated the validity of the conformal predictors in Fig. 1
(right) as the unstable zone (on the right side of the verti-
cal line) makes the representation hard to be analyzed. More
details are given in Sect. 7.

Remark 4 In Step 1 of Algorithm 1, we use the LARS al-
gorithm for its ability to generate a small number of tuning
parameter values of interest. It is an important aspect as it
considerably reduces the computational cost. On-line ver-
sions could be implemented by plugging in an on-line ver-
sion of the LASSO solution as in the paper by Garrigues
and El Ghaoui (2008) and more recently by Langford et al.
(2009) and Shalev-Shwartz and Tewari (2009). The analysis
of such on-line versions is the object of work under progress.
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Fig. 1 (Color online) Left: Conformal predictors Γ ε
k evolution through

the iterations of the LASSO modification of the LARS algorithm when
n = 300 (the first iteration corresponds to λmax and the last one cor-
responds to λmin). The CoLP is drawn in a large cyan line. It corre-
sponds to the 34-th iteration and is marked by the arrow. The horizon-
tal dashed blue line corresponds to the value of ynew . Right: Validity

analysis (errεn) of the conformal predictors Γ ε
k through the iterations of

the LASSO modification of the LARS algorithm when n = 50 (the first
iteration corresponds to λmax and the last one corresponds to λmin).
The CoLP is marked by a black square and corresponds to the 57-th
iteration. The vertical line represents a separation between a stable and
an unstable zone

6 Extension to others procedures

In this section we generalize the construction of the con-
fidence predictor to a family of estimators which includes
selection-type methods as the Elastic-Net (Zou and Hastie
2005) and the Smooth-Lasso (Hebiri 2008). As for CoLP
(Sect. 4), we are interested in two properties of estimators:
the piecewise linearity w.r.t. the response y (to easily com-
pute the nonconformity scores αi, i = 1, . . . , n), and the
piecewise linearity w.r.t. the tuning parameter λ (Rosset and
Zhu 2007) (to reduce computational effort by using a modi-
fication of the LARS algorithm).

We use the same notation as in Sect. 3 for the LASSO
estimator. Set β̂(x,y) to be an estimator of the regression
vector β based on x and y. Let also s be the sign vector of
the estimator β̂(x,y) (the components of s can equal zero if
the corresponding regression coefficients equal zero). On the
other hand, using the notation in Sect. 4, we set μ̂ = x̃β̂(̃x, ỹ)

where this time β̂(̃x, ỹ) is based on the augmented dataset x̃
and ỹ.

Assumption 1 The estimator μ̂ can be written as:

μ̂ = U(̃x, s)̃y + V (̃x, s), (13)

where U(·) and V (·) are piecewise constant functions
w.r.t. ỹ.

As soon as Assumption 1 holds, we can construct a confor-
mal predictor corresponding to the estimator μ̂. Then many

estimators can be considered. The CoLP and CoRP obvi-
ously belong to this class of predictors and we introduce
here the Conformal Elastic Net Predictor (CENeP) which
is a conformal predictor constructed based on the Elastic-
Net modification of the LARS instead of the LASSO one
(Step 1 in Algorithm 1). Nevertheless, let us first mention
that the functions U(·) and V (·) in the CoLP construction
induce the dataset x̃k instead of x̃, where k is one step of
the LASSO modification of the LARS algorithm. Then these
functions map into a smaller space. For this reason, we will
note for such iterative methods u(·) and v(·) instead of U(·)
and V (·), but we mention that U and V can easily be recon-
stituted using u and v by adding, if necessary zeros to the
proper places. Now let β̂ be the Elastic-Net estimator (Zou
and Hastie 2005). Based on the dataset (x,y), this estimator
is defined by

β̂(x,y) = argmin
β∈Rp

n−1∑
i=1

(
yi − x′

iβ
)2 + λ

p∑
j=1

|βj | + ν

p∑
j=1

β2
j ,

where λ ≥ 0 and ν ≥ 0 are two tuning parameters. We note
s its sign vector. Similarly to the LASSO we use a modifi-
cation (the Elastic-Net here) of the LARS algorithm to it-
eratively compute K > 0 solutions β̄1, . . . , β̄K (analogues
to (5)), which easily provide K solutions of the above min-
imization problem by setting to zero the components cor-
responding to non active variables. Note that for each k ∈
{1, . . . ,K}, the vector β̄k is a |Ak|-dimensional vector given



260 Stat Comput (2010) 20: 253–266

by

β̄k = xk(x′
kxk + νkIk)

−1x′
ky − λk x̃k(̃x′

k x̃k)
−1sk,

where sk is the sign vector at the k-th step of the Elastic-
Net modification of the LARS algorithm and λk and νk are
the tuning parameters evaluated at this step. Finally, follow-
ing the same reasoning as for the LASSO, Assumption 1
holds with the functions u(̃xk, sk) = x̃k(̃x′

k x̃k + νkIk)
−1̃x′

k

and v(̃xk, sk) = −λk x̃k(̃x′
k x̃k)

−1sk , where Ik is the |Ak| ×
|Ak| identity matrix. In the same way, we can also define
the Conformal Smooth Lasso Predictor (CoSmoLaP) based
on a Smooth-Lasso modification of the LARS algorithm
(Hebiri 2008). Here u(̃xk, sk) = x̃k(̃x′

k x̃k + νkJk)
−1̃x′

k and
v(̃xk, sk) = −λk x̃k (̃x′

k x̃k)
−1sk . The difference between the

CoSmoLaP definition the CENeP one is the identity matrix
Ik which is replaced by the |Ak| × |Ak| matrix Jk whose
components are such that (Jk)i,i = 1 if i = 1 or i = |Ak| and
(Jk)i,i = 2 otherwise. Moreover for (i, j) ∈ {1, . . . , Ak}2

with i 	= j , we have (Jk)i,j = −1 if |i − j | = 1 and zero
otherwise. Note that the definition of Jk makes the CoSmo-
LaP more appropriated to model with correlation between
successive variables.

As for CoLP, we can define the nonconformity score
α = (α1, . . . , αn)

′ of an expected label y associated to the
estimator μ̂ as follows:

α(y) := |̃y − μ̂| = | (I − U(̃x, s)) ỹ − V (̃x, s)|
= |A + B y|,

where A = (a1, . . . , an)
′ and B = (b1, . . . , bn)

′ with{
A := (I − U(̃x, s)) (y1, . . . , yn−1,0)′ − V (̃x, s),

B := (I − U(̃x, s)) (0, . . . ,0,1)′,

and I is the n×n identity matrix. The quantities A and B are
the analogues of Ak and Bk respectively, when we consid-
ered the CoLP at the transition point λk, k = 1, . . . ,K . Then
replacing Ak and Bk by respectively A and B in Step 2.a of
Algorithm 1, we obtain the conformal predictors associated
to the estimator μ̂.

Note that the dependency in the tuning parameter, noted λ,
can be included in U(̃x, s) (as for CoRP) or V (̃x, s) or in
both of them (as for the CoLP). For instance, in the con-
struction of the CoLP, this dependency is underlined in the
matrix x̃k and the sign vector sk as they were computed by
the LARS algorithm for a specified value λk of the tuning
parameter λ.

To evaluate the computational cost of the proposed algo-
rithm, three main points should be taken into account. First,
one run of the LARS algorithm requires the same cost as the
computation of the least square estimation. Then we have to
consider the number of conformal predictors we have to con-
struct: each value of the tuning parameter λ provides a con-
formal predictor Γλ using the algorithm described in Sect. 5.

The final conformal predictor Γopt is then the one with the
minimal length. As for the CoRP, the main problem is how
many λ’s do we have to test? One way is to use a grid of
value for λ which lets open the question of the choice of the
grid and the window of this grid.

On the other hand, we saw that the LARS algorithm
allows to reduce considerably the number of tuning para-
meters to be considered. Indeed the grid of tuning para-
meters values is directly described by the transition points
λ1, . . . , λK obtained from the run of the LARS algorithm.
Finally, let us consider the construction of the conformal
predictor itself: this point has been treated by Vovk et al.
(2005, Chaps. 2.3 and 4.1). It turns out that sparse conformal
predictors and in particular the CoLP require computation
time O(n2) which can be further reduced to O(n log(n)).

7 Experimental results

In this section we present the experimental performance of
the Sparse Conformal Predictors (SCP) with respect to their
validity, their accuracy and also their selection power. As a
benchmark, we use the CoRP2 for its validity and accuracy
and the original LASSO and Elastic-Net estimators for their
selection3 power.

Three SCPs are considered: the Conformal Lasso Predic-
tor (CoLP was introduced in Sects. 4 and 5) and the Confor-
mal Elastic Net Predictor (CENeP was described in Sect. 6).
The last SCP called Conformal Ridge Lasso Predictor (CoR-
LaP) is a mix of the CoRP and the CoLP. To construct the
CoRLaP, we use the variables selected by the LASSO mod-
ification of the LARS algorithm (Step 1 in Algorithm 1 de-
scribed in Sect. 5). Then we use these variables to construct
a CoRP. This conformal predictor can be seen as a restricted
CoRP. All conformal predictors are constructed with confi-
dence level 1 − ε = 90%.

7.1 Synthetic data

We consider four simulated datasets from the linear regres-
sion model

y = X′β + σξ,

with β ∈ R
50, and

X = (X1, . . . ,X50)
′ ∈ R

50, ξ ∼ N (0,1).

2We construct the CoRP associated to same tuning parameters as the
CoLP (i.e., the transition points λk observed in Sect. 5). Note that the
performance would not be altered as conformal predictors according
to this method are almost embedded and changes sensitively while the
tuning parameter varies (Vovk et al. 2005, p. 39).
3We use a BIC-type criterion to select the optimal tuning parameter.
Such a criterion is adapted to variable selection.
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Fig. 2 (Color online) Analysis of conformal predictors length (y-axis)
through the LASSO modification of the LARS algorithm iterations
(x-axis: the first iteration corresponds to λmax and the last one cor-
responds to λmin) in Example (c)[300/1] (top left) and in Exam-
ple (c)[50/1] (top right). The iteration associated to the CoLP is

marked by a blue star. Predictors which are non valid are marked
by a black circle. The panel of bottom shows the lengths of intervals
in a logarithmic scale associated to the same Example (c)[50/1] dis-
played in the top right panel

Hence p = 50 through the simulations. Noise level σ and
the sample size n are left free. They will be specified during
experiments.

Example (a) [n/σ ]: Very Sparse and Correlated. Here only
β1 is nonzero and equals 5. Moreover, the design cor-
relation matrix � is described by �j,k = exp(−|j − k|)
for (j, k) ∈ {15, . . . ,35}2 and �j,k = I(j = k) otherwise
where I(·) is the indicator function.

Example (b) [n/σ ]: Sparse and Correlated. Correlations
are defined as in Example (a) and the regression vector is
given by βj = −5 + 0.2j for j = 1, . . . ,5; βj = 4 + 0.2j

for j = 10, . . . ,25 and zero otherwise.
Example (c) [n/σ ]: Sparse and Highly correlated. We have
βj = 5 for j ∈ {1, . . . ,15} and zero otherwise. We con-
struct three groups of correlated variables: �j,j = 1 for
every j ∈ {1, . . . , p}; for j 	= k, �j,k ≈ 1 (actually �j,k =

1
1+0.01 , due to an extra noise variable) when (j, k) belongs

to {1, . . . ,5}2, {6, . . . ,10}2 and {11, . . . ,15}2 and zero oth-
erwise.

Example (d) [n/σ ]: Non Sparse and Correlated. Here βj =
3 + 0.2j for j ∈ {1, . . . , p} and the correlations are de-
scribed by �j,k = exp(−|j − k|) for (j, k) ∈ {1, . . . , p}2.

We consider separately the three points of interest: accu-
racy, validity and selection.

Accuracy. First of all, let us consider the length of the pre-
dictors Γ ε

k , k = 1, . . . ,K obtained at the end of Step 2 in
Algorithm 1 described in Sect. 5. We recall that each of
these predictors is associated to an iteration of a modifi-
cation of the LARS algorithm, that is the transition points
λk, k = 1, . . . ,K . Figure 2 illustrates the predictors lengths
for the construction of the CoLP, when applied to Exam-
ple (c)[n/1] with n = 300 and n = 50. When n = 300, we
note that the length of the Γ ε

k s sensitively changes from
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Table 1 Mean lengths [with
precision ±95%] of the CoRP,
CoLP, CoRLaP, CENeP, the
Early-Stopped CoLP and the
2-PN CoLP based on 500
replications

EXAMPLE σ CORP COLP CORLAP CENEP

(a)[300/σ ] 1 3.7 ± 0.1 3.2 ± 0.1 3.1 ± 0.1 3.2 ± 0.1

(a)[50/σ ] 3 13.4 ± 0.3 7.4 ± 0.3 4.7 ± 0.3 7.1 ± 0.3

(b)[300/σ ] 1 8.5 ± 0.1 3.4 ± 0.1 3.3 ± 0.1 3.4 ± 0.1

(b)[50/σ ] 1 20.3 ± 0.1 3.9 ± 0.1 2.3 ± 0.1 3.7 ± 0.1

(b)[20/σ ] 1 101.2 ± 0.1 52.5 ± 0.1 17.2 ± 0.1 37.6 ± 0.1

(c)[300/σ ] 1 3.9 ± 0.1 3.4 ± 0.1 3.2 ± 0.1 3.3 ± 0.1

(c)[300/σ ] 3 11.0 ± 0.3 10.1 ± 0.3 9.6 ± 0.3 9.7 ± 0.3

(c)[300/σ ] 10 34.3 ± 0.9 33.0 ± 0.9 31.8 ± 0.9 32.2 ± 0.9

(d)[300/σ ] 10 286.5 ± 0.9 70.2 ± 0.9 36.0 ± 0.9 54.0 ± 0.9

EXAMPLE σ CORP COLP STOPPED-COLP 2-PN-COLP

(a)[50/σ ] 3 13.1 ± 0.3 7.2 ± 0.3 9.1 ± 0.3 9.5 ± 0.3

(b)[50/σ ] 1 20.7 ± 0.1 3.9 ± 0.1 5.5 ± 0.1 5.9 ± 0.1

(b)[50/σ ] 10 55.3 ± 0.9 32.1 ± 0.9 46.2 ± 0.9 48.7 ± 0.9

(c)[20/σ ] 3 28.3 ± 0.3 7.44 ± 0.3 13.2 ± 0.3 14.1 ± 0.3

(d)[20/σ ] 10 233.0 ± 0.9 115.3 ± 0.9 164.1 ± 0.9 170.2 ± 0.9

one iteration to the following and that the larger predic-
tor has a reasonable length compared to the smallest one
(about 10 times larger). Then the construction is stable. We
also observe that in the neighborhood of the optimal iter-
ation (that is iteration 20), the conformal predictors have
approximately the same size. Such an observation can also
be made when we take a look at Fig. 1(left) when applied
to Example (b)[300/1]. On the other hand, when n = 50, it
appears that the predictors length grows drastically at some
iteration (around iteration 85). We even cannot compare the
lengths of the bigger and smaller predictors (more than 104

times larger). In the same time, it seems that the construc-
tion becomes unstable as strong variations often happen af-
ter this iteration 85. We will consider in the next point the
validity of these predictors. However let us mention that in
Example (c)[50/1], the CoLP which is the smallest Γ ε

k and
then the selected predictor is not valid (in Fig. 2(right), the
selected predictor at iteration 93 is not valid). This aspect
can also be observed in Fig. 1(right) (the graph corresponds
to Example (b)[50/1]) where the selected CoLP at iteration
57 is not valid. Similar strong variations of the correspond-
ing predictors lengths would have been observed after iter-
ation 49 if we have provided a graph as Fig. 2 (right).

Now let us compare the accuracy of the final conformal
predictors obtained at the end of Step 3 in Algorithm 1
while using the different methods or different values for the
setting parameters. Table 1 sums up the obtained results.
First of all, an important remark is that all Sparse Con-
formal Predictors (CoLP, CoRLaP, CENeP, . . .) are more

accurate than the CoRP. Indeed, the length of the SCPs are
most of the time more than twice smaller than the CoRP
one. However when we treat problems with both small
level of noise and big sample size, it happens that the gain
of accuracy is limited as can be seen in Example (a)[300/1]
and Example (c)[300/1]. In such situations, one should all
the same mention that all provided conformal predictors
are accurate. Through these observations we conclude that
SCPs exploit favorably the sparsity in order to improve the
accuracy of conformal predictors. Comparing the accuracy
of the CoLP, the CoRLaP and the CENeP, it turns out that
the CoRLaP is the more accurate SCP, whereas the CoLP
is the less accurate one. In the other hand, let us now con-
sider the influence of the setting parameters on the accu-
racy. It seems to be clear that the smaller the sample size is
or the higher the noise level is, the larger the length of the
conformal predictors is (see Example (b)[n/1] and Exam-
ple (c)[300/σ ] respectively). Noise level and sample size
seems to be the more influential parameters on the accu-
racy of the predictors. Finally except for the case where
the model is not sparse (Example (d)[n/σ ]), one can ob-
serve that the sparsity is not a crucial parameter on the ac-
curacy. This can be illustrated through the obtained results
on Example (a)[300/1], Example (b)[300/1] (for which
the dataset is built with the same correlation matrix as in
Example (a)) and Example (c)[300/1].

Validity. Now, we consider the validity of the selected pre-
dictors (cf. Step 3 in Algorithm 1). As shown in Table 2,
we observe that variations on the noise level, the vari-
ables correlations and the sparsity of the model do not
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Table 2 Validity frequencies
[with precision ±95%] of the
CoRP, CoLP, CoRLaP, CENeP,
the Early-Stopped CoLP and the
2-PN CoLP based on 1000
replications

EXAMPLE σ CORP COLP CORLAP CENEP

(a)[300/σ ] 1 0.899 ± 0.019 0.886 ± 0.020 0.854 ± 0.022 0.882 ± 0.020

7 0.894 ± 0.019 0.908 ± 0.018 0.894 ± 0.019 0.899 ± 0.019

15 0.893 ± 0.019 0.893 ± 0.019 0.879 ± 0.020 0.887 ± 0.020

(b)[300/σ ] 1 0.901 ± 0.018 0.895 ± 0.019 0.889 ± 0.020 0.892 ± 0.019

(c)[300/σ ] 1 0.900 ± 0.019 0.900 ± 0.019 0.891 ± 0.019 0.901 ± 0.018

(d)[300/σ ] 1 0.892 ± 0.019 0.895 ± 0.019 0.895 ± 0.019 0.895 ± 0.019

(a)[50/σ ] 3 0.887 ± 0.020 0.668 ± 0.029 0.414 ± 0.030 0.789 ± 0.025

(a)[20/σ ] 3 0.865 ± 0.021 0.596 ± 0.030 0.304 ± 0.028 0.685 ± 0.029

EXAMPLE σ CORP COLP STOPPED-COLP 2-PN-COLP

(a)[50/σ ] 7 0.853 ± 0.022 0.620 ± 0.030 0.815 ± 0.024 0.881 ± 0.020

(b)[50/σ ] 1 0.854 ± 0.022 0.624 ± 0.030 0.814 ± 0.024 0.907 ± 0.018

(c)[20/σ ] 15 0.875 ± 0.020 0.608 ± 0.030 0.769 ± 0.026 0.893 ± 0.019

(d)[20/σ ] 1 0.900 ± 0.019 0.602 ± 0.030 0.793 ± 0.025 0.892 ± 0.019

perturb the validity whereas the sample size relatively to
the dimension p does. When n = 300 > p, all the pro-
cedures seem to be quite similar and produce good pre-
dictors. In the other cases, i.e., when n = p = 50 and
n = 20 < p, the selected confidence predictors have worst
performance than expected (validity with smaller propor-
tion than 1 − ε = 90%). Moreover, Sparse Confidence Pre-
dictors perform worst than the CoRP as observed in Ta-
ble 2. As pointed in the accuracy part, one explication can
be observed in Fig. 2 as the selected predictor which also
is not valid (iteration 93) corresponds to an iteration in the
unstable zone (that is, after iteration 85). Then in order to
reduce the gap between SCP and CoRP in the cases p ≥ n,
we suggest to modify the selection criterion in Step 3 in
two ways. (i) Early Stopping CoLP: do not consider (and
do not construct) all the conformal predictors Γ ε

k . Stop the
construction of the predictors Γ ε

k as soon as the length of
Γ ε

k (predictor at iteration k) has a length at least 10 times
larger than Γ ε

k−1; (ii) N Previous Neighbors CoLP: we can
enforce the Early Stopping rule by considering as final pre-
dictor: Γ ε

opt = ⋃
j :0≤k−j<N Γ ε

j , where k is the index of the
(selected) smallest predictor and N is the number of neigh-
bors we consider. Table 1 exemplifies the performance of
these corrected versions of the CoLP according to their ac-
curacy. Obviously both of the above rules provide slightly
larger predictors than the original CoLP. In the same time
we observe that the Early Stopping CoLP and 2 Previ-
ous Neighbors CoLP are still much more accurate than the
CoRP. Note further that N Previous Neighbors rule does
not alter a lot the accuracy of the Early Stopping CoLP (see
Table 1). This is due to the fact that the Early Stopping rule
ensures that we are in the stable zone (cf. Fig. 2(right) and
Fig. 1(right)). Moreover, note that the N Previous Neigh-

bors rule does not neither alter the selection properties of
the Early Stopping CoLP as Γ ε

k is usually constructed with
more variables than Γ ε

j when j < k. Finally Table 2 sums
up the performance of the early-stopped CoLP and the 2-
PN CoLP in term of validity. We observe the good adapta-
tion of both methods to the case p = n and we remark that
2-PN CoLP nicely produce valid predictor even in the case
p > n. This improvement in the term of validity can also
be illustrated by Fig. 1(right) where we observe that in Ex-
ample (b)[50/1], the early-stopped CoLP is valid whereas
the original CoLP is not.

Selection. Here, we are concerned by the selection ability of
Sparse Conformal Predictors. First of all, note that the se-
lected variables in SCPs are directly linked to the selection
ordering through the iterations of the LASSO or Elastic-
Net modification of the LARS algorithm. Then, if the used
modification of the LARS algorithm fails to recover the
true model, we cannot hope to get a predictor which con-
tains only the true variables. Figure 3 illustrates the evo-
lution of the variable selection of CoLP, CoRLaP and the
LASSO on one hand and the CENeP and the Elastic-Net
on the other hand, in Example (b)[300/1]. It turns out that
CoLP and CENeP select larger model that expected (that is,
some noise variables are selected), as the LASSO and the
Elastic-Net do. Moreover CoRLaP uses to select a smaller
subset of variables than the CoLP. Then it often produces a
better variable selection performance than the other meth-
ods. It often provides closer model to the true one. Com-
pared to the LASSO, it seems that the CoLP and the CoR-
LaP perform better in this example. However, we can not
conclude to the superiority of the CoLP on the LASSO
in term of variable selection. A similar conclusion can be
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Fig. 3 (Color online) Variable selection analysis for the CoLP, the
CoRLaP and the CENeP in Example (b)[300/1] (variables 1 to 5 and
10 to 25 are relevant; see variables in dark blue on the plot). On the
left, we consider the CoLP and the CoRLaP selected variables (x-axis)
with respect to the LASSO modification of the LARS algorithm iter-
ations (y-axis: the first iteration corresponds to λmax and the last one

corresponds to λmin). On the right, we consider the CENeP selected
variables (x-axis) with respect to the Elastic-Net modification of the
LARS algorithm iterations (y-axis: the first iteration corresponds to
λmax and the last one corresponds to λmin). The selected iteration is
marked by red diamonds for the CoLP, green squares for CoRLaP and
black squares for the CENeP

Table 3 Selection frequency of
each variable by the different
SCPs on 150 random
permutations of the House
Boston dataset with (p = 13 and
n = 506)

Variable X1,X6,X11 → X13 X2 X3 X4 X5 X7 X8 X9 X10

CoLP 1 1 0.90 1 1 0 1 1 1

CoRLaP 1 1 0.17 1 1 0.01 1 0.99 0.99

CENeP 1 0.99 0.80 0.99 0.99 0.03 0.99 0.99 1

given when we compare the CENeP and the Elastic-Net.
Nevertheless, the CENeP seems to select little larger mod-
els than the Elastic-Net. Finally, analogously to the superi-
ority of the Elastic-Net compared to the LASSO, we can re-
mark that the CENeP manages to have better selection per-
formances compared to the CoLP and the CoRLaP when a
group structure may exist between different variables (for
instance in Example (d)[n/σ ]). This is due to the LASSO
modification of the LARS algorithm which uses to select
some noise variables before relevant ones in such cases.

7.2 Real data

We apply SCPs on 150 random permutations of the House
Boston dataset,4 in which we randomly choose one row
to be the new pair (xnew, ynew). The original dataset con-
sists of 506 observations with 13 variables. First Table 3
displays the obtained variable selection results. We note
that almost all SCPs are constructed without the variable

4The data and their description are available at http://archive.ics.uci.
edu/ml/datasets/Housing.

X7 = (x1,7, . . . , x505,7). This variable is selected with fre-
quencies lower than 3%. The CoRLaP also does not con-
sider the variable X3 as relevant with a frequency equal to
17%. Conforming to Sect. 7.1, we would better consider X3

irrelevant as the CoRLaP uses to produce better performance
when variable selection is in concern. Then we conclude that
the proportion of non-retail business acres per town and the
proportion of owner-occupied units built prior to 1940 do
not interfere in the value of owner-occupied homes. A gen-
eral observation is that variable selection improves the ac-
curacy of conformal predictors (as already seen in Table 1).
Here, the median lengths of the CoLP, the CoRLaP and the
CENeP are respectively 13.61, 13.50 and 13.58, whereas
CoRP length is 14.45.

To consider a high dimensional setting we use the same
trick as in the paper by Bühlmann and Hothorn (2010).
For this purpose, we look at a synthetically enlargement
of the Boston Housing dataset. We add 483 additional, in-
effective noise predictor variables Xadd ∼ N483(0, I). The
new design matrix X has then p = 500 columns or vari-
ables with at most 13 effective predictors. We fix this ma-

http://archive.ics.uci.edu/ml/datasets/Housing
http://archive.ics.uci.edu/ml/datasets/Housing
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Table 4 Validity frequencies (with precision ±95%) and noise variables selection (variables X14 to X500) of the CoRP, CoLP, CENeP, the Early-
Stopped CoLP and the 2-PN CoLP based on the augmented Boston Housing dataset (p = 500 and n = 50)

CoRP CoLP CENeP Stopped-CoLP 2-PN-CoLP

Validity 0.93 ± 0.01 0.43 ± 0.04 0.85 ± 0.02 0.85 ± 0.02 0.93 ± 0.01

Noise 100% 20.3% 4.0% 5.9% 5.9%

trix. In the sequel, we arbitrarily chose 50 examples among
the available 506 rows of this matrix X. As a consequence
we have constructed two datasets: a training set with 50
instances and a test set with 456 instances. Each instance
is a 500-dimensional vector. In this high dimensional set-
ting, we apply the SCPs on 100 random permutations of
the training dataset. Each time, we randomly chose one
row in the test dataset to be the new pair (xnew, ynew). We
study the behavior of the CoRP, the CoLP, the CENeP, the
early-stopped-CoLP and of the 2-PN CoLP in such a frame-
work.

As observed on synthetic data, all of the CENeP, the
early-stopped-CoLP and the 2-PN CoLP have better perfor-
mance than the original CoLP (see Table 4). We also observe
that the better performance is reached by the 2-PN CoLP and
the CoRP with a validity equal to 0.93 (this is better than the
expected validity level). However, an important point is that
the 2-PN CoLP has also the advantage of producing a sparse
predictor whereas the CoRP does not.

As for the accuracy, let us remark that the lengths of the
SCPs are much smaller than the CoRP length. Indeed the
median lengths of the CoLP, the CENeP, the early-stopped-
CoLP and the 2-PN CoLP are respectively 1.5, 8, 8 and 8,
whereas the CoRP’s length equals 19. This observation ad-
vocates for the use of the 2-PN CoLP.

According to the selection task, we observe in Table 4
(last line) that at most 6% of the additional noise variables
are selected by the SCPs (except the CoLP which selects
more than 20% of these irrelevant variables). Concerning the
original variables, only X1, X4, X6, X11, X12 and X13 are
selected. This at least confirms that the proportion of non-
retail business acres per town and the proportion of owner-
occupied units built prior to 1940 (X3 and X7 respectively)
do not interfere in the value of owner-occupied homes as
observed above in the case p ≤ n.

Remark 5 For comparison, Sparse Conformal Predictors
have also been applied on the same setting as above but
without the 483 additional noise predictor variables. It turns
out that also in this situation the 2-PN CoLP has a valid-
ity frequency equal to 0.92 which is larger than expected
(0.9). The 2-PN CoLP seems to provide better performance
than the CoRP and the CoLP in this dataset. Moreover, the
same variables X1, X4, X6, X11, X12 have been considered
as relevant.

8 Conclusion

In this paper, we introduced a new family of l1 regularized
conformal predictors termed Sparse Conformal Predictors.
We then focused on LASSO and Elastic-Net versions of
these Sparse Conformal Predictors and illustrated their per-
formance in terms of accuracy, validity and variable selec-
tion. The experiments reported in the paper show that SCPs
are valid and nicely exploit the sparsity of the model when
the sample size is larger than the number of variables (i.e.,
when n > p). We also provided a way to adopt these sparse
predictors to the case p ≥ n through a pair of rules we called
Early Stopping and N Previous Neighbors rules. It turns out
that a 2 Previous Neighbors rule is really attractive. Indeed,
even in a high dimensional setting, it allows to achieve good
performance for all of the criteria: validity, accuracy and se-
lection.

Several extensions of this work can be explored such
as the construction of SCP with Adaptive LASSO (Zou
2006) or the adaptation of SCPs in the generalized l1 reg-
ularized linear model, using algorithmic developments pre-
sented for instance by Park and Hastie (2007). These top-
ics, as well as the combination of the conformal predic-
tors with other sparsity inducing procedures, such as the
exponentially weighted aggregate (Dalalyan and Tsybakov
2007, 2008) or grouped variable Lasso (Yuan and Lin 2006;
Chesneau and Hebiri 2008), are interesting avenues for fu-
ture research. �
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