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Abstract A purpose-made set-up featuring an automated
fast injector allowed the easy optimization of the in-
jected amount and the adjustment of the separation
length of conventional capillaries from a minimum of
5 cm upward. It was found that a compromise in cap-
illary length for separation efficiency and analysis time
also has to take into account the injected amount, which
in turn affects the sensitivity and hence the detection
limit. The versatility of the system was demonstrated by
the analysis of the major cations and anions in natural
water samples in less than 1 min, the concurrent deter-
mination of a mixture of amino acids and carbohydrates
in 160 s, and of three active ingredients in a pharma-
ceutical preparation in 40 s. Plate numbers were typi-
cally around 50,000 and detection limits down to 1 uM
could be achieved.

Keywords Capillary electrophoresis - Fast separation -
Automated injection - Contactless conductivity
detection

Introduction

The most common detection method in capillary elec-
trophoresis (CE) is UV absorption; however, indirect
techniques with limited sensitivity have to be used for
the non-absorbing metal ions, inorganic anions, and
aliphatic organic ions. Fluorescence, which has high
sensitivity, is largely restricted to species which can be
readily derivatized to render them fluorescent. An
important alternative method was introduced in 1998 by
Zemann et al. and do Lago et al. in the form of con-
tactless conductivity detection (CCD) [1, 2]. The method
may be considered universal in CE as inherently all ions
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can be sensed. Furthermore, this electrochemical detec-
tion method has the robustness of optical detection,
since the electrodes cannot deteriorate (because they are
not in contact with the solution) and the fact that the
entire detection volume is probed and not merely a two-
dimensional interface. For these reasons the method has
attracted considerable attention and the topic has been
reviewed several times [3—5]. Contactless conductivity
detection has, for example, been demonstrated in CE for
small inorganic cations (ammonia and alkali and alka-
line earth ions) [6, 7], small inorganic anions (halides,
oxo-anions) [1, 8, 9], carboxylic acids [10], sulfonates [11,
12], amines [11], organic anions and cations of phar-
maceutical relevance [13], amino acids (without deriva-
tization) [14, 15], carbohydrates (at pH 13) [16], and
other species.

On microfabricated electrophoresis chips the need for
alternative detection methods 1is pressing as UV
absorption has not been successful because of the short
optical path lengths available. Contactless conductivity
detection has therefore also been implemented on this
separation platform (e.g., see ref. [17]). The main
advantage of these devices is the fast analysis times
achieved. Separations in less than a minute are fre-
quently reported for the chip format for analyses which
would require 5-20 min in conventional CE. The reason
for the discrepancy is the length of the separation
channel which is only a few centimeters on chips but
typically 40 cm or more for conventional capillaries. It is
not readily possible to emulate these fast separations in
conventional CE as the commercial instruments are not
designed to be used with very short capillary lengths.
However, several researchers have demonstrated the
utility of short conventional capillaries by employing
UV detection on purpose-made apparatus or commer-
cial instruments modified for injection from the detec-
tion end.

Capillaries of 7.5-cm length have been used by Ze-
mann for the separation of a range of inorganic and
organic anions in less than 1 min [18], and Yang and
coworkers showed the fast determination of inorganic
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anions in capillaries of 13-cm length [19-21]. Bjorns-
dottir and Hansen [22] and Riekkola and coworkers [23]
have demonstrated the determination of illicit drugs in
2 min by using capillaries of 8.5- and 23-cm effective
lengths, respectively. Li and coworkers [24] compared a
conventional capillary of 14-cm length with a micro-
fabricated chip device and found that both systems gave
a similar performance.

The aim of the project reported herein was to eval-
uate the combination of contactless conductivity detec-
tion with short conventional capillaries. We aimed to
achieve fast separations without incurring the compli-
cations of microfabrication, while making use of the
universality of the conductometric detection method.
We expected that the injection time would be critical and
in order to achieve fast and reproducible injections an
automated system was employed.

Experimental
Instrumentation

The electrophoretic instrument was built in-house and
consists of a fast injector device, a high-voltage supply,
and a contactless conductivity detector. A representa-
tion of the CE system is given in Fig. 1. The injector is
based on a design previously described by Hooker and
Jorgenson [25] for coupling CE to HPLC. It consists of a
clear polycarbonate disk of 4-cm diameter and 1.2-cm
thickness with a cross-shaped channel of 1/16-in. diam-
eter. At all four ends threads for 1/4-in. x 28 type fittings
were cut. Into one of the channels the separation capil-
lary and the capillary which feeds the sample to the cross
were fitted from opposite ends with the help of tubing
sleeves of 395-um i.d. and 1/16-in. o.d. The distance
between the two capillaries in the cross was ca. 0.5 mm.
To the other channel a PEEK-tubing with 0.5-mm i.d.
and 1/16-in. o.d. was fitted for feeding the buffer
solution to the interface and opposite an electrically
grounded piece of stainless steel tubing of 0.75-mm i.d.
and 1/16-in. o.d. was attached through which the solu-
tion flows to waste. All fittings, PEEK-tubings, and
sleeves were obtained from Upchurch Scientific (Oak
Harbor, WA, USA) and the fused silica capillaries were
purchased from Polymicro Technologies (Phoenix, AZ,

Fig. 1 Schematic drawing of

USA; 15, 25, 50, or 75-um i.d., 375-um o.d.). When the
pinch valve (225P081-11, NResearch, West Caldwell,
NJ, USA) is closed, the buffer flow generated by a syr-
inge pump (Bee-Hive system from BAS, West Lafayette,
IN, USA, fitted with a 1,000 Series Gastight, TTL-syr-
inge from Hamilton, Bonaduz, Switzerland) is directed
to the interface and the sample flows to waste. In the
open position, the sample is passed to the interface while
the buffer goes directly to waste.

Injection and separation voltages were produced by a
high-voltage power supply (Spellman CZE 2000; Spell-
man Ltd., Pulborough, UK) at the detection end of the
capillary which was placed in a perspex box for safety.
Injection was effected by switching the valve to open in
order to stop the buffer flowing through the cross and
directing the sample to the interface. At the same time
the high voltage was applied for a specific length of time
to carry out an electrokinetic injection. The standards
and samples were contained in the buffer solution in
order to avoid any stacking effects. The valve and the
high voltage were turned off simultaneously for 1 s to
flush the interface with buffer and finally the separation
voltage was turned on. The valve, pumps, and high
voltage supply were controlled via a purpose-made
interface with a program (LabVIEW, National Instru-
ments, Austin, TX, USA) running on a notebook com-
puter fitted with a multipurpose interface card
(DAQCARD-6042E, National Instrument). The electr-
opherograms were recorded with a MacLab/4e data
acquisition system (AD Instruments, Castle Hill, Aus-
tralia).

Detection was carried out with a high-voltage
contactless conductometric detector similar to the one
described previously and has a gap size of 1 mm un-
less stated otherwise [6, 11]. The detector cell can be
moved readily along the capillary as no window has to
be created in the capillary coating for contactless
conductivity detection. The shortest possible capillary
length from the injection point to the detector cell is
5 cm. Cell excitation was carried out at 720 kHz and
30 V. The pick-up amplifier used in the experiment
was an OPAG606 (Texas Instruments, Dallas, TX,
USA) with a feedback resistor of 1 MQ for the cap-
illaries of 15, 25, and 50-um i.d. and 680 kQ for the
75-um capillary. The detection limits are given for a
signal-to-noise ratio of 3.
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Reagents and methods

All chemicals were of analytical reagent grade. The
inorganic salts, amino acids, and the saccharides were
purchased from Fluka (Buchs, Switzerland). A 20 mM
2-(N-morpholino)ethanesulfonic acid/histidine (MES/
His) buffer (pH 6.1) was used for the fundamental
studies, the determination of inorganic cations and an-
ions, and the separation of the pharmaceutical prepa-
ration. For anion analysis 0.00015% hexadimethrine
bromide was added to the buffer for modification of the
electroosmotic flow. Stock solutions of inorganic anions
and cations were prepared from the potassium and
chloride salts, respectively. The carbohydrates were
separated in a buffer consisting of 10 mM NaOH,
4.5 mM Na,HPO,, and 0.00015% hexadimethrine bro-
mide, and the mixture of carbohydrates and amino acids
in 10 mM NaOH, 4.5 mM Na,HPO,, and 1 mM ce-
tyltrimethylammonium bromide (CTAB). All solutions
were diluted with ultra-pure water (Millipore, Bedford,
MA, USA), degassed and filtered with 0.45-um nylon
filters (BGB Analytik, Bockten, Switzerland).

Results and discussion

Electropherograms for the four inorganic cations
(potassium, sodium, magnesium, and lithium) obtained
in short capillaries of between 5- and 20-cm effective
length from injection to detection are given in Fig. 2.
Clearly, separation of the four ions is possible for all but
the shortest capillary. The separation is achieved in 30 s
in the longest capillary and in about 10 s in the shortest
capillary. Two features are apparent from the electro-
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Fig. 2 Electropherograms for a test mixture of four inorganic
cations in short capillaries of different effective lengths to the
detector: K*, Na™, Mg“, and Li* in this respective order of
elution, all at 0.1 mM. Buffer 20 mM MES/His, pH 6.1; field
strength +850 V em™'; capillary i.d. 50 pm; injection 4 s at 5 kV
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pherograms. Firstly, a slight drift of the baseline towards
higher conductivities is evident in all the electrophero-
grams of Fig. 2, and the more pronounced the drift the
shorter the capillary. The drift was also found to be
stronger for higher applied field strengths and also to be
strongly dependent on the capillary diameter as it was
more pronounced with capillaries of 75-um i.d. The
reason for this is not clear; it might be related to Joule
heating or to some electrical charging phenomenon. In
any case, it was found to be negligible for capillaries
with 25-um internal diameters. It was furthermore found
that the capillary diameter had almost no bearing on the
detection limit. For potassium, for example, the detec-
tion limits for capillaries of 25-, 50-, and 75-pum i.d. were
all found to be between 0.5 and 1 uM. Note that this is
in strong contrast to optical detection methods. The
special behavior in conductometric detection can be
rationalized by considering that the change in diameter
not only leads to a change in signal strength for the
analyte but also for the background signal due to the
buffer ions.

The second feature apparent from the electrophero-
grams of Fig. 2 is the loss of resolution for the second
and the third peaks for the shorter capillaries with the
shorter analysis times. This pattern is of course expected
as the peak separation depends on the length of time the
analyte species are exposed to the field. In order to
achieve fast analysis times in short channels any efforts
to optimize separation must tackle the causes of band
broadening. The main contribution for small ions such
as those used here is generally diffusion, but other causes
are wall interactions, electrodispersion (caused by dif-
ferences in mobility between analyte ions and buffer ions
leading to fronting and tailing of peaks), and Joule
heating. It is also obvious from the traces of Fig. 2 that
these mechanisms are significant on the short time scale
of these separations as the peaks are smaller and broader
for the longer separations.
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Fig. 3 Effect of injection time (at 5 kV) on peak efficiency, peak
height, and peak area. K* 0.1 mM; buffer 20 mM MES/His,
pH 6.1; effective capillary length to detector 20 cm (total 35 cm);
field strength +850 V cm™'; capillary i.d. 25 pm
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A detailed quantitative elucidation and theoretical
modeling of all overlapping causes of band broadening
is very difficult to achieve, in particular when consider-
ing that extracolumn band-broadening effects due the
injection process and the presence of a small residual
hydrodynamic flow can also be expected to play a role.
The study was therefore limited to an optimization of
the parameters which can be readily changed with the
aim of achieving best performance in the application of
the system. An important factor is of course the size of
the sample plug introduced and this indeed has a very
pronounced effect on the efficiency as illustrated by the
plot of plate numbers for the peak of potassium against
injection time shown in Fig. 3. On the other hand, peak
height and area are, of course, also dependent on the
amount injected, and short injections will lead to a low
sensitivity and hence higher limits of detection. It is also
interesting to note that beyond an injection time of 5 s,
the peak height is constant, indicating that any effects
leading to dilution do not reach the center of the sample
plug in this case. Note that the size of the detection
volume also has an effect on the separation efficiency; an
enlargement of the electrode gap beyond the 1 mm
employed for these measurements led to lower plate
numbers. Smaller gaps, on the other hand, are not
readily possible with the cell employed. The results also
clearly demonstrate that better results in terms of effi-
ciency could be obtained with a more sensitive detection
method (such as fluorescence) as then the injected
amount could be further reduced while still achieving
adequate detection limits. In practice a compromise
which satisfies the application at hand has to be made
between separation efficiency and the sensitivity as
determined by the detector employed.

It was found that the peak efficiency in terms of plate
numbers was also strongly dependent on the type of ion.
For example with a capillary of 50-um diameter and 20-
cm effective length, plate numbers of 15,700, 62,500,
65,700, and 86,000 were determined for K™, Na™,
Mg?", and Li", respectively. A close examination of
Fig. 2 also reveals fronting for the earlier species but
none for Li ™", the last peak. Evidently, electrodispersion,
due to a non-perfect match with the mobility of the
buffer cation, is an important contributor to band
broadening for these ions. This is perhaps exacerbated in
conductivity detection as the buffer has to be of low
conductivity to give a good signal-to-noise ratio. The
MES/His buffer solution employed has been used fre-
quently for conductivity detection of small ions and
represents a good compromise for good detection sen-
sitivity and limited electrodispersion so that further
optimization in this regard appears not readily possible.
An increase in the electric field strength (for constant
effective separation distances) was found to show a
tendency to higher plate numbers, but the overall effect
was slight. Presumably any reduction in band-broaden-
ing effects for the higher field strengths are offset by the
shorter period of time available for separation. How-
ever, the capillary diameter is important. For 75-um

capillaries the plate numbers are consistently lower then
for capillaries of 50 pm and 25 um which in turn showed
no systematic difference between them. For Li*, for
example, a plate number of 9,200 was found (for a field
strength of 600 V cm ™', 20-cm effective capillary length,
and an injection time of 4 s for 5 kV), but in 50- and 25-
um capillaries these were determined to be as high as
69,600 and 64,300, respectively. This tendency coincides
with the preference for narrow diameters to reduce
baseline drifts as discussed above.

The highest plate number of approximately 90,000
was thus found for Li™ using a capillary of 50-um i.d.
and a field strength of 800 V cm™' for a capillary of 20-
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Fig. 4 a Electropherograms for a standard mixture of cations (a)
and of a sample of Rhine water (b). Concentrations in ¢ 0.1 mM;
buffer 20 mM MES/His, 1 mM 18-crown-6, pH 6.1; effective
capillary length 23 cm (total 38 cm); field strength +600 V ecm™!;
capillary i.d. 50 pum; injection 3 s at 5 kV. b Electropherograms of a
standard mixture of anions (a) and of a sample of Rhine water (b).
Concentrations in ¢ 0.1 mM; buffer 20 mM MES/His, 0.00015%
hexadimethrine bromide; effective capillary length 25 cm (total
45 cm); field strength —670 V ecm™'; capillary i.d. 50 pm; injection
3sat —5kV



cm effective length. For 10- and 5-cm effective lengths
the plate numbers obtained for this ion were 34,000 and
12,800, respectively. Incidentally, the separation effi-
ciencies and the analyses times achieved with the system
reported herein compare well to results obtained on
electrophoresis chips. Zhang and Manz [26] obtained
plate numbers between 5,000 and 7,000 for the separa-
tion of the small ions fluorescein and fluorescein-5-iso-
thiocyanate in a 2.8-cm channel in a study on the effects
of injection parameters. Higher plate numbers have been
reported, for example, Obeid et al.[27] detected DNA
fragments in a 6-cm separation channel with plate
numbers of 70,000; however, these have been achieved
with large molecules, for which diffusional band
broadening is minimal. Tanyanyiwa et al. [12] have
investigated the determination of different kinds of small
organic ions in chips with channels of 8-cm effective
length using contactless conductivity detection. Plate
numbers between 2,000 and 4,200 were obtained.

The application of the system with optimized condi-
tions to the determination of the major alkali and
alkaline earth metal ions and ammonium in water
samples is illustrated in Fig. 4. Clearly baseline separa-
tion can be achieved in less than 1 min for these ions.
The same applies to the inorganic anions which can be
separated in less than 40 s, as is also shown in Fig. 4.
These ions could also be quantified successfully with
detection limits of 1 pM.

Contactless conductivity detection is not restricted to
inorganic species. The fast separation of five carbohy-
drates is shown in Fig. 5. The detection of these species
in electrophoresis, as well as in HPLC, is generally
difficult as they are not UV-absorbent; conductometric
detection is therefore an interesting proposition.
Note that a highly alkaline buffer is necessary to cause
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Fig. 5 Electropherogram for a mixture of carbohydrates (all
1 mM). Buffer 10 mM NaOH, 4.5 mM Na,HPO,, 0.00015%
hexadimethrine bromide, pH >12; effective capillary length to
detector 20 cm (total 35 cm); field strength + 570 V ecm™'; capillary
i.d. 15 um; injection 2 s at —7 kV
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Fig. 6 Electropherogram for a mixture of amino acids and
carbohydrates: / threonine, 2 methionine, 3 leucine, 4 fructose, 5
glucose, 6 galactose, 7 sucrose, all 1 mM; buffer 10 mM NaOH,
4.5 mM Na,HPO,, ]| mM CTAB, pH >12; effective capillary
length to detector 25cm (total 40 cm); field strength
4500 V ecm™'; capillary i.d. 15 pm; injection 2 s at 20 kV

ionization of the carbohydrates. The buffer solution was
frequently replaced to preclude any effects which might
arise from the absorption of CO,; from air. Joule heating
caused by this buffer of relatively high conductivity is
not significant with the small internal capillary diameter
of 15 um employed. The high background conductivity
also leads to negative-going deviations from the base-
line, which is however not a problem. The peaks in
Fig. 5 have been plotted in the conventional mode.
Another group of important analytes which mostly
cannot be detected by direct UV absorption are the
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Fig. 7 Electropherogram for a pharmaceutical preparation: /
sodium, 2 0.16 mM ephedrine, 3 0.06 mM doxylamine, 4
0.13 mM dextomethorphane; buffer 20 mM MES/His, pH 6.1;
effective capillary length to detector 15 cm (total 35 cm); field

strength +850 V em™'; capillary i.d. 25 pm; injection 7 s at 10 kV
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amino acids. These may be determined as cations at
strongly acidic pH values or as anions at high pH [15].
The basic conditions suitable for the analysis of the
carbohydrates are also suitable for the amino acids such
that both classes of analytes may also be determined in
combination: this application is illustrated in Fig. 6 for a
model mixture of three amino acids and four sugars.

The concurrent detection of inorganic and organic
compounds in sample of pharmaceutical preparation is
shown in Fig. 7. The formulation contains three active
ingredients, ephedrine, doxylamine, and dextomethor-
phane, which are amine bases and cationic at neutral pH
value, and a high concentration of sodium ions. The
four compounds could easily be baseline-separated in
less than 40 s. Although the concentration of sodium in
the sample is not known, the wide dynamic range of the
conductometric detection method is nicely illustrated by
the figure and its inset.

Conclusion

Rapid separations with a performance, in terms of
analysis time and separation efficiency, similar to that
reported for electrophoretic chip devices have been ob-
tained with short conventional capillaries. The arrange-
ment has the advantage of higher flexibility. Generally
three parameters may be varied to achieve optimum
compromise conditions in terms of sensitivity and anal-
ysis time, namely, separation voltage, separation length,
and injection volume. With our set-up, in contrast to
electrophoresis chips, the channel length in particular
can be extended and optimized should it not be adequate
for the task at hand, as the detector can easily be moved
along the capillary. Note, however, that this is not pos-
sible with commercial capillary electrophoresis instru-
ments because of constraints imposed by the design.
With contactless conductivity detection this adjustment
can be made in an instant, since it is not necessary to
remove the polyimide coating on the fused silica capil-
lary to create an optical window as for UV absorption
and fluorescence detection. Furthermore, higher sensi-
tivities are possible with contactless conductivity detec-
tion on conventional capillaries than on chips because of
limitations on electrode placement on the latter.

Acknowledgements The authors are grateful to the Swiss National
Science Foundation for financial support (grant number 2000—
67830).

References

1. Zemann AJ, Schnell E, Volgger D, Bonn GK (1998) Anal
Chem 70:563-567
2. Fracassi da Silva JA, do Lago CL (1998) Anal Chem 70:4339—
4343
. Tanyanyiwa J, Leuthardt S, Hauser PC (2002) Electrophoresis
23:3659-3666
. Zemann AJ (2003) Electrophoresis 24:2125-2137
. Zemann AJ (2001) Trends Anal Chem 20:346-354
. Tanyanyiwa J, Hauser PC (2002) Electrophoresis 23:3781-3786
. Mayrhofer K, Zemann AJ, Schnell E, Bonn GK (1999) Anal
Chem 71:3828-3833
. Tanyanyiwa J, Leuthardt S, Hauser PC (2002) J Chromatogr A
978:205-211
9. Kuban P, Karlberg B, Kuban V (2002) J Chromatogr A
964:227-241
10. Laugere F, Guijt RM, Bastemeijer J, van der Steen G, Berthold
A, Baltussen E, Sarro P, van Dedem GWK, Vellekoop M,
Bossche A (2003) Anal Chem 75:306-312
11. Tanyanyiwa J, Galliker B, Schwarz MA, Hauser PC (2002)
Analyst 127:214-218
12. Tanyanyiwa J, Abad-Villar EM, Hauser PC (2004) Electro-
phoresis 25:903-908
13. Tanyanyiwa J, Hauser PC (2004) Electrophoresis 25:3010-3016
14. Coufal P, Zuska J, van de Goor T, Smith V, Gas B (2003)
Electrophoresis 24:671-677
15. Tanyanyiwa J, Schweizer K, Hauser PC (2003) Electrophoresis
24:2119-2124
16. Carvalho AZ, da Silva JAF, do Lago CL (2003) Electropho-
resis 24:2138-2143
17. Tanyanyiwa J, Hauser PC (2002) Anal Chem 74:6378-6382
18. Zemann AJ (1997) J Chromatogr A 787:243-251
19. Yang WP, O’Flaherty B, Cholli AL (2001) J Environ Sci
Health A 36:1271-1285
20. Yang WP, Zhang ZJ (2002) Int J Environ Anal Chem 82:353—
360
21. Yang WP, Zhang ZJ (2003) Anal Lett 36:465-477
22. Bjernsdottir I, Hansen SH (1999) J Biochem Biophys Methods
38:155-161
23. Hyotyldinen T, Siren H, Riekkola ML (1996) J Chromatogr A
735:439-447
24. Rodriguez I, Zhang Y, Lee HK, Li SFY (1997) J Chromatogr
A 781:287-293
25. Hooker TF, Jorgenson JW (1997) Anal Chem 69:4134-4142
26. Zhang C-X, Manz A (2001) Anal Chem 73:2656-2662
27. Obeid PJ, Christopoulos TK, Ioannou PC (2004) Electropho-
resis 25:922-930

~N N A w

[ee]



	Sec1
	Sec2
	Sec3
	Fig1
	Sec4
	Sec5
	Fig2
	Fig3
	Fig4
	Fig5
	Fig6
	Fig7
	Sec6
	Ack
	Bib
	CR1
	CR2
	CR3
	CR4
	CR5
	CR6
	CR7
	CR8
	CR9
	CR10
	CR11
	CR12
	CR13
	CR14
	CR15
	CR16
	CR17
	CR18
	CR19
	CR20
	CR21
	CR22
	CR23
	CR24
	CR25
	CR26
	CR27

