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Abstract Thanks to today’s modern imaging examina-
tion techniques and especially to the common use of
intracranial electrodes for localizing seizure foci, more
and more patients with partial epilepsy can be treated
microsurgically. The results of such neurosurgical ther-
apies are very good, particularly in mesial temporal lobe
epilepsy. In recent years, good results (60–70% seizure
freedom) have also been achieved in extratemporal
epilepsy surgery, so that such procedures can now be
recommended for carefully selected patients. In this
review, presurgical evaluations and the different surgical
approaches are presented.
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Introduction

Epilepsy is one of the more common neurological
diseases, with a prevalence of 0.5–1.0% and estimated
lifetime cumulative incidence of 3% [79, 81]. It may arise
from a constitutional predisposition or as a consequence
of acquired cerebral pathology. Specific causes for
epilepsy differ with geographic areas, but idiopathic/
cryptogenic epilepsies are the most frequent type,
accounting for two thirds of all new cases [79, 81]. In
patients with identified etiology for epilepsy, cerebrovas-
cular disease is the most common cause (accounting for
10.9% of new cases), followed by congenital diseases

(8%), trauma (5.5%), neoplasms (4.1%), degenerative
disorders (3.5%), and infections (2.5%) [81].

Approximately 40% of the patients suffer from
generalized seizures and 60% from focal (partial) seizures
[78]. About 55% of focal epilepsies in which seizures
originate from a circumscribed cerebral region are
temporal lobe epilepsies. Epilepsies of the frontal,
parietal, or occipital lobe make up the remaining 45%.
This heterogeneity in the causes and clinical syndromes of
epilepsy is also reflected in the different therapeutic
approaches, which mainly consist of antiepileptic medi-
cation and, in some cases, epilepsy surgery.

Complete seizure control and improvement of quality
of life are the main goals of any treatment. Antiepileptic
drugs are usually given as the first therapeutic step.
However, fewer than 33% of all patients achieve full
control of seizures for 1 year on monotherapy, and only
10–20% of the failures achieve full control of seizures
with two-drug therapy [128, 129, 178, 194, 198, 206,
240].

Interestingly, the percentage of drug-resistant epilep-
sies has not diminished significantly, in spite of the new
antiepileptic drugs [17, 115, 131, 174]. Overall, about 30–
40% of all patients with epilepsy have medically intrac-
table seizures, and 50% of these are candidates for
epilepsy surgery [2, 20, 44, 53, 80, 196]. For the United
States, it has been estimated that there are more than
100,000 candidates for surgical treatment, with 5,000–
10,000 added annually [31, 32, 53]. Despite this large
number of potential surgical candidates, only 2,000
surgical procedures were performed per year in the
United States [53, 80]. This discrepancy in need and
utilization may be explained by:

1. Ignorance among primary care physicians of the recent
advances in safety and efficacy of surgical epilepsy
treatment

2. The fact that some patients prefer to tolerate seizures
and side effects rather than undergo surgery

3. The lack of funding by third-parties for the expensive
presurgical workup and surgical treatment, even
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though several studies have shown their cost effec-
tiveness [18, 56]

In the last decade, however, epilepsy surgery has
gained acceptance, and a large number of patients have
been operated on throughout the world. This new interest
can be explained by the advances in presurgical evalu-
ation and improved surgical techniques. Modern presur-
gical workup includes noninvasive and invasive
telemetric long-term EEG monitoring, quantitative mag-
netic resonance imaging (MRI), functional MRI, positron
emission tomography (PET), single photon emission
tomography (SPECT), MR spectroscopy (MRS), and
magnetoencephalography (MEG).

New surgical techniques have made epilepsy surgery
safer and more effective. For instance, the introduction of
microneurosurgery has allowed more selective operations
such as selective amygdalohippocampectomy [145, 255].
Furthermore, palliative surgical procedures such as mul-
tiple subpial transection and the formerly more common
partial callosotomy have witnessed renewed interest [130,
138, 140, 179, 180, 209, 281]. Some centers have also
evaluated new approaches such as radiosurgery for the
treatment of partial epilepsy [170, 171, 172, 173, 227].

The extent to which today’s possibilities of epilepsy
surgery have changed the neurologist’s daily routine can
be illustrated best with the example of so-called mesial
temporal lobe epilepsy, the most common form of focal
epilepsy. In this type, seizures are generated in the
amygdala and the hippocampal formation. Mesial tem-
poral lobe epilepsy was long reputed to be incurable, and
patients could only be abandoned to their fate. However,
the currently available interventions, anterior 2/3 tempo-
ral lobectomy or the less crude selective amygdalohip-
pocampectomy (specific resection of the two mesial
temporal structures causing the seizures), lead to postsur-
gical freedom from seizures in about 80% of patients [54,
145, 200, 212, 255, 258]. These good operative results,
reached over several decades, now make it clear why
unsuccessful drug therapy for medically refractory mesial
temporal lobe epilepsy should no longer be continued
indefinitely. Rather, such patients should be operated on
as soon as possible.

Whereas the treatment of mesial temporal lobe
epilepsy has been significantly simplified by surgery,
drug-resistant extratemporal epilepsies still constitute a
major challenge to epileptologists and neurosurgeons.
Until about 10 years ago, the results of major epilepsy
centers with this category of patients were rather disap-
pointing, and quite frequently only 40–50% of the
patients showed postsurgical seizure-free outcomes; but
also with extratemporal epilepsies, the development of
imaging procedures has simplified precise seizure local-
ization. Furthermore, improved neurosurgical techniques
have increasingly led to very good operative results, so
that surgical interventions must also be considered as a
therapeutic option for drug-resistant extratemporal epilep-
sies.

Abnormal brain areas involved in interictal
and ictal activity

When epilepsy surgery is considered, presurgical workup
must define the different brain areas that either generate
seizures or are involved in interictal and ictal epileptiform
activity. L�ders proposed a theoretical concept that
distinguishes six brain areas (Table 1) [121, 122, 184].
The identification of these areas allows neurosurgeons
and neurologists not only to tailor the resection but also
predict postoperative deficits to a certain extent. There-
fore, it becomes clear that presurgical evaluation includes
several different types of diagnostic studies.

Current indications for epilepsy surgery

Before an indication for the surgical treatment of epilepsy
can be established, the tentative diagnosis of epilepsy
must be verified. This may sound banal but, as the
diagnosis sets the course for possible further diagnostic
procedures, it has an important role. In epileptology, as
elsewhere in clinical medicine, history is also one of the
most important diagnostic tools, because exact observa-
tion allows the differentiation of epileptic seizures from
nonepileptic ones, while an accurate history usually

Table 1 Definition of abnormal brain areas (modified from [121, 122, 184])

Irritative zone Area of cortex that produces interictal spikes Electrophysiological (invasive and noninvasive)

Ictal onset zone Area of cortex from which seizures originates (incl. areas
of early propagation, under certain circumstances)

Electrophysiological (invasive and noninvasive)

Epileptogenic lesion Structural brain abnormality that is the ultimate cause
of the seizures

Structural imaging and tissue pathology

Symptomatogenic zone Portion of the brain that produces the initial clinical
symptomatology

Behavioral observation and patient report

Functional deficit zone Cortical area with functional abnormalities Neurologic examination, neuropsychological
testing, EEG, PET, SPECT

Epileptogenic zone The area of brain that is necessary and sufficient
for initiating seizures and whose removal or disconnection
is necessary for abolition of seizures

Theoretical concept
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provides important clues to seizure origin. The typical
seizure characteristics of partial epilepsies are summa-
rized in Table 2 [12, 25, 55, 96, 186, 188, 189, 190, 201,
202, 260, 263, 268, 269, 270].

When the tentative diagnosis of partial epilepsy has
been made on the basis of history and surgical treatment
is considered because of drug-resistant seizures, the next
step is to evaluate the patients as candidates for epilepsy
surgery according to the following criteria set by Walker
[249]:

1. Progressive neurological disease (e.g., malignant brain
tumor, cerebral vasculitis, multiple sclerosis, etc.)
should be ruled out. Although patients with malignant
tumors can also have epileptic seizures, operations
relating to this cannot be considered epilepsy surgery

(so-called epilepsy surgery sensu strictu), because
primarily they do not represent treatment of epilepsy
but rather of malignant tumors.

2. The resistance to drug treatment has to be ascertained.
Here it is particularly important to make sure that the
formerly used antiepileptic drugs have been carefully
administered up to the limit of “subjective intoxica-
tion.” This means not only that antiepileptic drugs
should be given up to the limit within the therapeutic
range but that individual differences in metabolism be
considered and the drug be given to just below the
blood level at which side effects set in (which may be
far above the maximum therapeutic level). Further-
more, apart from at least two monotherapies, poly-
therapies also should have been tried.

Table 2 Typical seizure characteristics [12, 25, 55, 96, 186, 189, 190, 201, 202, 260, 263, 268; 269, 270]

Frontal lobe
seizures

Brief seizures often in clusters, predominantly nocturnal
Sudden beginning and ending with minimal postictal confusion
Typical features: focal clonic motor activity (march following the motor homunculus), complex and bizarre (gestural)
automatisms (therefore often misdiagnosed as hysteric seizures), forced vocalization (“mumbling”, “shouting”), kicking,
stepping, rocking, or cycling movements
Rapid secondary generalization, often drop attacks and status epilepticus, urinary incontinence common
Based on seizure origin six subtypes of frontal lobe seizures are distinguished: SMA/mesial, orbitofrontal, frontal
convexity, frontopolar, cingulate, opercular (also considered as type of insular seizures)
Supplementary motor area seizures: contralateral lateral abduction and external rotation of the arm at the shoulder,
forceful deviation of the head (“fencing posture”), focal tonic motor signs, speech arrest
Orbitofrontal seizures: abrupt onset of bizarre attacks, motor and gestural automatisms, olfactory hallucinations and
illusions, autonomic signs, screaming, yelling, coughing, laughing, kicking, stepping, rocking, or cycling movements,
sexual automatisms
Frontal convexity (dorsolateral frontal lobe) seizures: tonic or, less common, clonic signs, (contralateral or ipsilateral)
head and eye deviation, rocking
Frontopolar seizures: head and eye deviation, unilateral facial contractions, due to minor motor signs if seizures remain
frontopolar also called “pseudoabsences”
Anterior cingulate gyrus seizures: poorly defined, changes in mood and affect, vegetative signs, gestural automatisms
Frontal opercular seizures: mastication, salivation, laryngeal sensations, swallowing, epigastric sensation with fear and/or
vegetative phenomena, speech arrest and aphasia if seizures confined to the dominant frontal lobe

Temporal lobe
seizures

In up to 80% auras (e.g. Rising epigastric discomfort, d�j� vu, micropsia/macropsia, fear, etc.)
Often alteration of consciousness, loss of consciousness if both temporal lobes are involved
Often secondary generalization
Mesial temporal lobe epilepsy (MTLE) most common type of focal epilepsy
Typical features: rising epigastric discomfort, olfactory and/or gustatory hallucinations,
Nausea, autonomic signs such as pallor, belching, borborygmi, flushing and/or fullness of the face, arrest of respiration,
pupillary dilatation, fear, panic, d�j� vu, d�j� entendu, d�j� v�cu, oro-alimentary automatisms
Neocortical lateral temporal lobe epilepsy (NLTLE)
Typical features: auras of auditory hallucinations or illusions or dreamy state, visual perceptual misperceptions,
disturbances in language if seizures confined to the dominant temporal lobe, vertiginous symptoms

Parietal lobe
seizures

Ictal discharges, clinically often silent
Typical features: contralateral paresthetic (numbness and tingling, “pins and needles”), dysesthetic, and, rarely, painful
seizures
Rare features: apraxias, gustatory hallucinations (parietal operculum), spatial disorientation, feeling of body rotation
(“crise giratoires”), autopagnosia (e.g. Alien hand), asomatognosia, sexual automatism/sensation, disturbances in
language if seizures confined to the dominant parietal lobe, “psychoparetic” seizures with d�j� vu or fear followed by
impairment of consciousness and motor arrest
Unspecific features: nausea, vertigo
Signs of extraparietal propagation: motor arrest, gestural or oral automatisms, asymmetric posturing, visual
hallucinations or amaurosis

Occipital lobe
seizures

Elementary visual hallucinations (e.g., micro-/macropsia, often lateralized), ictal amaurosis (bilateral, hemianopsia,
blackout or whiteout)
Sensation of eye movement or pulling without detectable motion, eyelid flutter, rapid forced blinking
Tonic or clonic eye movement (oculoclonic status epilepticus)
Signs for extraoccipital propagation: focal somatosensory and motor features, asymmetric posturing, complex visual
halluzinations, gestural and oral automatisms
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3. The duration of the disease has to be at least 1–2 years.
However, exceptions are allowed in this respect
(particularly with epilepsies due to structural lesions
or with early-diagnosed mesial temporal lobe epilep-
sy).

4. Patients have to be handicapped by the seizures,
although this may of course differ significantly from
individual to individual. Generally, however, the
indication for surgery should be established rather
cautiously when the seizures consist only of sensory
phenomena without alteration of consciousness, even
if they are frequent.

5. The patients should be motivated for the presurgical
workup and operation and aware, above all, that they
must also take antiepileptic drugs postsurgically.

6. An IQ below 70 strongly suggests diffuse brain
disease, in which case the prospects of success of an
epilepsy surgery intervention are poor and the surgical
indication should be established with caution.

7. Psychiatric diseases are also a contraindication to
epilepsy surgery.

Stages of presurgical evaluation

If there are no contraindications to operative intervention
on the basis of the aforementioned criteria, the patients
normally need further evaluation. This presurgical work-
up of candidates for epilepsy surgery is comprised of
noninvasive (phase I) and invasive (phase II) evaluation.
Phase I consists of a detailed history including review of
past treatment, neurological exam, neuropsychological
testing, psychiatric and psychosocial evaluation, interictal

and ictal EEG recording (including video EEG monitor-
ing), MEG, structural CT and MRI, MRS, fMRI, SPECT,
and PET.

This first phase of presurgical evaluation screens
patients considered for surgery. If the epileptogenic focus
(zone) can be identified during phase I, the recommen-
dation may be made to proceed directly to epilepsy
surgery. In some patients, however, phase I cannot
accurately localize the epileptogenic zone, and an addi-
tional invasive evaluation (phase II) becomes mandatory.
This includes video EEG recording by means of invasive
depth, subdural, and/or epidural electrodes and, if neces-
sary, further neuropsychological control with intra-arterial
amobarbital tests. At the end of phase II, a final decision
can be made whether a patient suffers from a surgically
remediable epilepsy syndrome and thus whether surgery
with or without intraoperative EEG monitoring (phase III)
can be performed (Table 3) [40].

Noninvasive evaluations (phase I)

Scalp electroencephalogram

Scalp (surface) EEG in the waking and sleeping states
with simultaneous video monitoring of seizures is one of
the more important evaluations in phase I. Video EEG
monitoring allows adequate observation not only of
seizures but also of the simultaneously recorded EEGs,
which enables conclusions to be drawn on the origin of
the seizures (lateralization and localization).

Several studies have shown that the repeated incidence
of interictal epileptiform potentials in the same cerebral
region in multiple EEGs correlates very well with the
origin of ictal discharges [5, 213]. Thus, interictal
epileptiform discharges may be recorded in 50% of
patients during routine awake EEG [103, 157, 163, 164,
197, 252]. In temporal lobe epilepsy, the diagnostic
accuracy even increases up to 90% by recording a sleep
EEG [29, 197, 252].

In mesial temporal lobe epilepsy, characteristically
epileptiform potentials are found in basal areas of the
frontal and temporal lobes [260], while in neocortical
temporal lobe epilepsy the correlation with these poten-
tials is of varying strength. In temporal lobe epilepsy, ictal
surface EEG classically reveals rhythmic sinusoidal theta
activity of high amplitude and low frequency [256].

While interictal and ictal surface EEG is very helpful
in mesial temporal lobe epilepsy in terms of localization
and lateralization of seizure origin, its value in extratem-
poral epilepsies is highly variable. In frontal lobe
epilepsy, interictal and ictal surface EEG often reveals
unspecific changes or is completely silent, i.e., abnormal
EEG patterns can be observed in only about 10% of the
patients [96, 163, 270]. The fact that, in frontal lobe
epilepsy with its partially bizarre motor signs, EEG is
often not very helpful makes the diagnosis even more
difficult and explains frequent misdiagnoses of “hysteric,”
“nonepileptic,” or “psychogenic” seizures.

Table 3 Evaluation for epilepsy surgery (modified from [40])

Phase 1: noninvasive

1. Review of past treatment (AED dosages, trough levels, seizure
diaries) and detailed history

2. Medical and neurological examination
3. Neuropsychological testing
4. Psychiatric evaluation
5. Visual field testing (in particular in temporal and occipital lobe

surgery)
6. interictal EEG recording (and review of previous EEG’s)
7. MRI (with T2-weighted coronal views)
8. Ictal video EEG recordings
9. Interictal PET

10. SPECT (ictal studies)

Phase 2: invasive

1. Bilateral carotid angiogram and intraarterial Amytal test (global
and superselective Wada tests)

2. Depth, subdural, and/or epidural electrodes with video-EEG
monitoring of interictal and ictal activity

3. Functional mapping with subdural electrodes

Phase 3: intraoperative

1. Electrocorticography of interictal activity
2. Functional mapping, awake (language, motor, and sensory

areas) or asleep (motor [direct stimulation] and somatosensory
[evoked potentials])
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In contrast to frontal lobe epilepsy, interictal as well as
ictal epileptiform potentials are frequently observed in
epilepsies of the occipital and parietal lobes [11, 202].
Thus parietal epileptiform potentials are found in approx-
imately 65% of patients with parietal lobe epilepsy and
occipital potentials in 79–97% of patients with occipital
lobe epilepsy. At the same time, only 10% and 14% of
patients with parietal and occipital lobe epilepsy, respec-
tively, have normal EEGs [11, 202].

Magnetoencephalography

The basic concept underlying MEG is the measurement of
extracranial magnetic fields generated by the electric
activity of cortical pyramidal cells [3, 48, 136, 181, 193].
Unlike EEG, MEG is reference-free, as it measures
magnetic fields rather than differences in potential.

Numerous studies of MEG in medically intractable
epilepsy have shown that it can detect interictal and ictal
epileptiform activity [3, 4, 49, 106, 182, 226, 229]. Many
studies compared localization by MEG with “standard”
localization of the epileptogenic zone as determined by
scalp and invasive EEG as well as MRI [50, 106, 207].
Smith et al. performed MEG in 50 patients being
evaluated for possible surgery [207]. Of them, 56% had
complete agreement between MEG and standard local-
izations, partial agreement in 12%, no agreement in 10%,
lack of spikes in MEG in 16%, and inadequate data in 6%
[207]. In this study, MEG was more effective localizing
epileptogenic zones involving the cerebral convexity
rather than in the deep structures. Other studies led to
similar findings, in particular for extratemporal epilepsies
[104, 106, 134]. Thus, MEG has been shown to be
effective for detecting interictal and ictal epileptiform
discharges.

The primary clinical use of MEG includes neocortical
epilepsies, cases with normal MRI, and patients with large
MRI abnormalities. In these groups, MEG can eliminate
the need for invasive EEG monitoring and thereby reduce
costs and morbidity. However, since MEG is rather
expensive and insurance companies are reluctant to cover
the costs, its use in localizing the foci of epileptic seizures
is mainly limited to scientific issues.

Structural imaging

The evaluation of patients with epilepsy has been
revolutionized by the advent of MRI. It provides the best
anatomic detail of any imaging modality and is the most
sensitive tool for demonstrating large structural lesions.
Because of its superior sensitivity and specificity com-
pared with CT, MRI is the preferred imaging technique in
the presurgical workup of patients with medically refrac-
tory epilepsy [221].

Usually, high-resolution MRI is performed according
to a special epilepsy protocol [9, 22, 34]. In the last
decade, this technique has led to the recognition of

smaller, even tiny epileptogenic lesions. Thus, in addition
to the tumors and vascular malformations that are most
commonly diagnosed today (e.g., cavernous and arterio-
venous malformations), very small abnormalities due to
migration disorders (cortical dysplasia, polymicrogyria,
hamartoma, etc.) can be detected. Apart from these
structural abnormalities, MRI in patients with mesial
temporal lobe epilepsy often reveals mesial temporal
sclerosis, which is characterized by both hippocampal
atrophy seen on T1-weighted images and increased
hippocampal signal intensity seen on T2-weighted spin-
echo images [8, 58, 92, 95, 113, 127, 242]. Although
mesial temporal sclerosis can usually be diagnosed by
visual inspection of the MRI, modern MRI-based quan-
titative volume measurement of the hippocampal forma-
tion has further improved its sensitivity of detection [23,
90, 114].

In 30–40% of patients with extratemporal epilepsies,
epileptogenic tumors are found (ganglioglioma, low-
grade astrocytoma, oligodendroglioma, etc.) [27]. Corti-
cal migration disorders are found with the same frequency
[27]. Rare structural lesions include Sturge-Weber syn-
drome, postnatal injuries (porencephalic cysts), scars, etc.
Such intracerebral lesions nearly always match with the
epileptogenic zones, and patients—provided the further
results of noninvasive studies can be explained by the
lesion—can be directly passed on to the neurosurgeon
[37, 105, 231]. However, in approximately 20% of
patients, the most modern MR techniques fail to detect
any lesions. Although these surgical candidates are
among the most difficult patients to treat, it has been
found that epilepsy surgery may yield good seizure
outcome in these cases as well [205].

New MRI techniques such as fluid attenuated inver-
sion recovery (FLAIR) sequence and diffusion and
perfusion MRI may further help to localize seizure origin
[162]. The FLAIR MRI produces images in which
parenchymal lesions have a high signal and CSF has a
low signal [162]. Thus, FLAIR imaging improved the
identification of hippocampal sclerosis and lesions but not
of heterotopias [7, 265]. Diffusion-weighted imaging was
initially implemented for the identification of acute
cerebral infarcts but has also been reported to be sensitive
enough for the detection of epileptogenic foci [42, 111,
266]. Though diffusion and perfusion MRI have been
found to be very sensitive, their use in presurgical workup
still has to be tested.

Functional magnetic resonance imaging

More recent applications of the magnetic resonance
technique include fMRI and MRS [152, 191, 192]. The
former provides high-resolution, noninvasive measure-
ments of neural activity by means of a signal dependent
on the blood oxygen level [63, 64, 87, 93, 239, 250].
Thus, fMRI can supply the neurosurgeon with informa-
tion about cortical areas that must be spared in the
planned resection and, if they are not to be spared, about
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the neurological deficits to be expected postoperatively.
Even though some of the initial data are very encourag-
ing, at present fMRI has not yet taken over the role of
functional mapping with intracranial electrodes in presur-
gical evaluation for epilepsy surgery. Triggering by EEG
may increase the use of this new technique [107, 230,
250].

Magnetic resonance spectroscopy

The only noninvasive technique capable of measuring
chemicals within the body, MRS measures chemical
changes in the examined cerebral areas by application of
the principle that every chemically distinct nucleus in a
compound resonates at a slightly different frequency [33,
191]. In patients with epilepsy, MRS performed in vivo
has mainly examined the 31P and 1H nuclei. Conventional
MRS software distinguishes short- and long-echo time
acquisitions. The latter produces spectra including N-
acetyl aspartate (NAA), choline-containing compounds
(Cho), phosphocreatine plus creatine (Cr), and lactate [33,
191]. Short-echo time acquisitions include the same
metabolites and, in addition, myoinositol, glutamate and
glutamine, alanine, glucose, scylloinositol/taurine, and
proteins/lipids [10, 28, 86, 137, 161].

Because NAA is located primarily inside neurons and
precursor cells, its reduction indicates neuronal loss or
dysfunction. Conversely, Cho and Cr are found in both
neurons and glial cells. Yet, MRS has been performed
mainly in patients with temporal lobe epilepsy, in 60–
90% of whom lower NAA concentrations could be
observed in the hippocampus [112]. In extratemporal
lobe epilepsy, there are only a few studies on the
localizing value of MRS. Stanley et al. reported on 20
patients with nonlesional extratemporal epilepsy in whom
the relative NAA resonance intensities (i.e., NAA/Cr,
NAA/Cho, and NAA/Cr+Cho) were all significantly
reduced, particularly in the regions of seizure origin
[225]. However, the usefulness of MRS in extratemporal
epilepsy has not been confirmed yet.

Functional imaging

Aside from structural imaging for the detection of
cerebral lesions, functional imaging constitutes a helpful
extension of the presurgical diagnostic workup. Thus,
SPECT and PET both exploit the circumstance that an
epileptogenic focus in the interictal state receives a
smaller blood supply (hypoperfusion in SPECT) and also
metabolizes less glucose than normal brain tissue (hypo-
metabolism in PET) [21, 72, 75, 76]. In the ictal state, the
contrary applies, i.e., the epileptogenic focus receives a
larger blood supply (hyperperfusion in SPECT) and
metabolizes more glucose (hypermetabolism in PET)
[21, 72, 75, 76].

The most commonly used tracers for both interictal
and ictal SPECT are technetium 99m hexamethyl-propy-

lene amine oxime (HMPAO) and technetium 99m
ethylene cysteinate dimer (ECD). In ictal SPECT, the
tracer is administered intravenously at the beginning of
the clinical and/or electroencephalographic seizure onset.
A physician or nurse who injects the tracer and video
EEG surveillance are needed for this procedure [232].
Even though it appears very complicated and time-
consuming, the usefulness of ictal SPECT examination is
enormous and justifies the effort, especially in extratem-
poral epilepsy.

Interictal SPECT in temporal lobe epilepsy has a
sensitivity of about 50% and is therefore only of limited
value for presurgical workup [72, 232]. In extratemporal
lobe epilepsy, its localizing accuracy is even lower [91,
126]. Conversely, ictal SPECT is a very useful tool in
presurgical evaluation. In mesiotemporal lobe epilepsy,
its sensitivity ranges from 90% to 97% [41, 84, 217]. In
extratemporal lobe epilepsy, the localizing accuracy of
ictal SPECT depends mainly on the injection delay. The
sensitivity in extratemporal lobe epilepsy was 81–90% in
various studies [45, 46, 47, 77, 83, 117, 125, 126]. The
localizing value of SPECT can be notably improved by
coregistration of the interictal and ictal SPECT images,
which yields an “ictal difference image” that may be
coregistered with a patient’s MRI [117, 147].

Interictal and (rarely performed) ictal PET have been
carried out mainly with [18F] fluorodeoxyglucose and
[11C] flumazenil [82, 110, 233, 234]. In temporal lobe
epilepsy, interictal PET demonstrates hypometabolism in
about 60–90% of patients and therefore can be used in
presurgical diagnosis [82]. However, PET is less sensitive
in extratemporal lobe epilepsies (about 45–60%) and
provides few useful data in these forms of epilepsy [82].
For example, its role in localizing the epileptogenic focus
in MRI-negative frontal lobe epilepsy is not well estab-
lished. Although PET may detect frontal focal hypome-
tabolism, the abnormality detected may not correspond to
the epileptogenic focus. The hypometabolism may even
be found in regions outside the frontal lobe [82].

Neuropsychological evaluation

Every patient with temporal or extratemporal epilepsy
needs thorough preoperative neuropsychological exami-
nation. The following functions are generally tested:
memory (mainly a function of the temporal lobe),
learning, IQ, language lateralization, motor skills, visuop-
erceptive and visuoconstructive functions, attention and
concentration, and verbal and nonverbal fluency [102,
154, 168]. Although the test batteries may vary from
center to center, some, such as IQ testing with the
Wechsler Adult Intelligence Scale, are generally accepted
and established [97, 98, 251]. In addition, some tests are
administered to find cognitive deficits of the lobe from
which seizures originate. Tests for assessing frontal lobe
functions include the Wisconsin Card Sorting, Design
Fluency, Stroop, tower, trail-making, finger-tapping, and
Purdue or Grooved Pegboard tests [19, 43, 69, 102, 118,
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135, 158, 175, 224, 228, 235]. The Rey-Osterrieth
Complex Figure Test and somatosensory tests such as
two-point discrimination are used to assess parietal lobe
function [71, 98, 118, 153, 177]. Memory tests focus on
learning and retention of both verbal and nonverbal
material. The most commonly administered test is the
original or revised Wechsler Memory Scale [98]. Apart
from word pairs and story recall, a list learning test such
as the California or the Rey Auditory verbal learning tests
is often used [98]. Tests for the assessment of language
skills include the Western Aphasia Battery, Boston
Diagnostic Aphasia Examination, and Boston Naming
tests [98, 102, 236]. The last named is also used to assess
function of the temporal neocortex [98, 99, 100, 102,
236].

Invasive evaluations (phase II)

If the seizure characteristics and results of phase I
evaluations are concordant, patients can be directly
passed on to neurosurgery. In the case of mesial temporal
lobe epilepsy, this can be done more and more often,
thanks to modern imaging procedures [37, 105, 231].
However, when noninvasive presurgical workup fails to
delineate the epileptogenic zone adequately, invasive
EEG may become necessary. In addition, if the side and
site of seizure origin imply overlap with an eloquent
speech and/or memory area, an amobarbital (Wada) test
may become necessary.

Invasive electroencephalographic recording

The proportion of patients undergoing intracranial elec-
trode implantation varies among epilepsy centers [148,
183, 216, 279]. The following indications for invasive
monitoring are currently applied: lack of a potentially
epileptogenic structural lesion as revealed by MRI,
multiple putative epileptogenic lesions (zones), scalp
EEG with multifocal or no interictal epileptiform dis-
charges, surface EEG with indeterminate or multifocal
seizure onset, discordant phase I findings, and seizure
origin as identified by noninvasive procedures appearing
diffuse or proximate to an eloquent area (e.g., perirolan-
dic, Wernicke’s, or Broca’s area). Based on these
indications, invasive EEG recording has been performed
in 5–20% and 40–70% of temporal and extratemporal
lobe epilepsy surgery patients, respectively [218].

If there is reason to assume that the seizures originate
in mesiotemporal structures, intracranial EEG can be
recorded by means of semi-invasive foramen ovale
electrodes [257, 259, 261]. If phase I findings, however,
point to an extratemporal or temporal neocortical seizure
onset, invasive monitoring is performed by strip and/or
grid electrodes and, less often, by depth electrodes. Strip
and/or grid electrodes are laid under the dura subsequent-
ly to a small craniotomy, while depth electrodes are

placed stereotactically by means of a small craniotomy
[120, 148, 149, 216].

The accuracy of invasive electrodes depends not only
on the type used but also on the cause of epilepsy and
seizure origin. Spencer and Lee analyzed the accuracy of
different electrodes in 53 patients with different types and
causes of epilepsy (Table 4) [219]. In their study,
localization accuracy for lesional and neocortical (in
particular frontal) cases was higher with grids than with
strip electrodes. The latter, however, localized seizure
origin more precisely in nonlesional and mesial cases.
These findings are in agreement with numerous other
studies [176, 215, 216, 222].

The rate of morbidity when using intracranial elec-
trodes is low (1–2%) and largely restricted to patients
with wound infections or, more rarely, hematoma [57, 60,
215, 218]. Due to intracranial subdural electrodes and
depth electrodes, the extratemporal origin of seizure can
be determined in approximately 70–80% of implanted
patients, who can then be considered for operation.
Invasive re-evaluation is occasionally necessary after an
unsuccessful first evaluation [204].

Amobarbital (Wada) test

Since 1960, intracarotid amobarbital testing (Wada test)
has been part of the standard preoperative evaluation of
candidates for epilepsy surgery in order to lateralize
language and memory function [247]. The intra-arterial
injection of sodium amobarbital into the carotid artery
(global Wada test) or, more selectively, into the anterior
choroidal artery (selective or superselective Wada test)
may provide further information on dysfunctional hemi-
spheres so that the risk of postoperative memory deficits
can be assessed [223, 247, 262]. While the Wada test is a
crucial tool in the presurgical evaluation of temporal lobe
epilepsy (particularly when the operation is planned on
the speech-dominant side), it does not play an important
role in extratemporal epilepsy [101].

Table 4 Accuracy of different intracranial electrodes in localiza-
tion of seizure origin (modified from [219])

Diagnosis Grid (%) Strip (%) Depth (%)

Lesional 6/11 (55) 3/11 (27) 2/11 (18)
Nonlesional 13/42 (31) 28/42 (67) 1/42 (2)
Medial location 1/23 (4) 20/23 (87) 2/23 (9)
Lateral location 15/26 (58) 10/26 (39) 1/26 (4)
Regional 10/21 (48) 10/21 (48) 1/21 (5)
Focal 9/32 (28) 21/32 (66) 2/32 (6)
Temporal 8/23 (35) 14/23 (61) 1/23 (4)
Extratemporal 11/30 (37) 17/30 (57) 2/30 (7)
Parietal 0 3/3 (100) 0
Frontal 9/17 (53) 8/17 (47) 0
Occipital 2/10 (20) 6/10 (60) 2/10 (20)
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Surgical treatment of medically refractory epilepsies
(phase III)

If a patient has undergone presurgical evaluation and,
having met the criteria detailed above, is still a candidate
for epilepsy surgery, the optimal neurosurgical interven-
tion should be discussed in an interdisciplinary seizure
conference including epileptologists, neuropsychologists,
psychiatrists, and neurosurgeons. Epilepsy surgery inter-
ventions are generally divided into the following cate-
gories according to indications, underlying pathology, and
method and extent of resection:

1. Procedures are classified as causal or palliative. Causal
operations (e.g., anterior 2/3 temporal lobectomy or
resection of cavernous malformations) have the pur-
pose of removing an epileptic focus so that seizure-free
outcome can be achieved. Palliative procedures (e.g.,
callosal section), on the other hand, aim at either an
interruption of seizure spread pathways or resection of
secondary epileptogenic pacemakers. Surgical out-
come is understandably not as good with palliative
operations as with causal operations.

2. On the basis of radiologic findings, a distinction is also
made between lesional and nonlesional interventions.
The former apply for the removal of radiologically
detected structural lesions (so-called lesionectomies of,
e.g., tumors, cavernous malformations, etc.), while the
latter are performed in patients whose MRIs are
normal or show only nonspecific pathology.

3. Furthermore, epilepsy operations may be classified as
either resective or nonresective (disconnective). In
resective intervention, a variable amount of cerebral
tissue is removed (as in lesionectomies or amygdalo-
hippocampectomies). Nonresective (disconnective)
operations include callosotomy and multiple subpial
transection. The implantation of a vagal nerve stimu-
lator is also a type of nonresective surgery.

4. Finally, procedures are divided into those strictly
limited to the removal of epileptogenic foci (individ-
ually tailored resections such as partial cortical frontal
resection) and those involving more extensive, stan-
dard resection (e.g., standard anterior 2/3 temporal
lobectomy) independent of the size of the epileptoge-
nic focus. One clearly prefers to minimize the volume
of brain resected—even though this means a few
patients will require second operation because of
unsatisfactory seizure outcome. The more common
neurosurgical procedures for epilepsy and their asso-
ciated seizure outcomes are discussed individually
below.

Temporal lobectomy

Removal of the anterior temporal lobe is the most
frequent and most successful type of epilepsy surgery.
The most common version of this operation is standard
anterior temporal lobectomy, which is, however, difficult

to define because of subtle variations from center to
center. Some neurosurgeons prefer the Falconer approach,
which consists of en bloc resection of the temporal lobe
(usually 4.5–6.5 cm from the temporal pole, depending on
the side of operation, i.e., a smaller resection is performed
on the speech-dominant hemisphere) including the amyg-
dala and hippocampus [35, 59, 241, 248] (Fig. 1). Other
surgeons remove variable amounts of the temporal lobe
on the basis of intraoperative electrocorticographic find-
ings [68, 237, 238].

The success rate for seizure control following stan-
dardized temporal lobectomy performed for strict indica-
tions is up to 80% [51, 52, 94, 95, 210, 212]. Surgical
outcome in patients with neocortical temporal lesions
may be complicated by the presence of dual pathology in
as many as 30% [24, 116, 119]. Major operative
complications from standard temporal lobectomy are
rare. More common complications include subquadrantic
or quadrantic visual field deficits (in >50% of patients),
supraquadrantic or hemianopic visual field deficits (2–
4%), transient or persistent hemiparesis (4% and 12%,
respectively), infections (meningitis or abscess) and
epidural hematoma (<0.5% each), transient III or IV
nerve palsy (<0.1%), transient anomia for 4–7 days
(>20%), persistent dysphasia (1–3%), global memory
deficits (1%), and transient psychosis or depression (2–
20%) [159, 160]. The mortality of standard anterior
temporal lobectomy is <1% [159, 160].

Selective amygdalohippocampectomy

Seizure discharges in the most common form of focal
epilepsies, mesial temporal lobe epilepsy, arise almost
exclusively from the amygdala, the hippocampus, and, to
some extent, the parahippocampal gyrus [256]. This fact
immediately suggests that a resection limited to these
structures might abolish the seizures. The first selective
resections of these mesial temporal lobe structures go
back to Paolo Niemeyer [145]. In 1958, he reported on the
selective removal of the amygdala and hippocampus
through a transcortical approach. Although the results
were promising, this method of operation fell into
oblivion because of other developments.

Then, in 1975, selective amygdalohippocampectomy
by a trans-sylvian approach was developed in Zurich by
the neurosurgeon Yasargil and the epileptologist Bemoul-
li, whose initial work was continued by Wieser [255]
(Fig. 1). In this procedure, after removal of the amygdala,
the anterior part of the hippocampus and part of the
parahippocampal gyrus are removed. In addition to these
mesial structures, the most important afferent pathway
(entorhinal area) and the pathways of seizure spread
(uncinate fasciculus, anterior commissure) are interrupt-
ed, which also contributes to the good postoperative
results [200]. In a retrospective study of 369 patients with
selective amygdalohippocampectomy followed up for at
least 12 months (average 85.2), 67% were seizure-free or
had auras only. A further 11% had no more than one or
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two seizures per year, and 15% showed reductions in
seizure frequency of at least 90%; however, 8% obtained
no substantial improvement [264]. Similar results have
been reported in other studies analyzing seizure outcome
after amygdalohippocampectomy with different ap-
proaches [85, 108, 150, 155, 156, 210, 278, 282]. Factors
correlating with good outcome were the presence of a
structural lesion (particularly severe hippocampus sclero-
sis), history of febrile convulsions, extensive resection of
the hippocampus and especially of the parahippocampal
gyrus, presurgical lack of contralateral epileptogenic foci,
brief seizures (particularly with origin in the most anterior
part of the mesial structures), and—in ictal discharges
with contralateral propagation—late propagation to the
contralateral hemisphere [199, 200, 259].

Extratemporal resections

In contrast to the commonly applied, standard, anterior 2/
3 temporal lobectomy discussed above, complete removal
of the frontal, parietal, or occipital lobes is nowadays
hardly ever carried out (Fig. 1). The current surgical
treatment of extratemporal epilepsy mainly includes
partial cortical resection of the frontal, parietal, or

occipital lobe and is limited to the epileptogenic focus
[166].

In a large series of 75 patients operated on for frontal
lobe epilepsy, 64% were postsurgically seizure-free, 12%
had only rare seizures, 16% showed worthwhile reduc-
tions in seizure frequency, and 12% showed no worth-
while reduction [195]. The 26 patients with tumors (only
two malignant) as the cause of seizures had the best
results (81% seizure-free). In contrast, only 50% of the
patients without lesions became seizure-free. Similar
results have been reported by other centers [61, 62, 144,
187, 208, 253, 283].

In 39 patients with parietal lobe epilepsy surgery, 52%
were postsurgically seizure-free and 30% had seizure
frequencies reduced more than 90% [151]. Complications
included transient sensorimotor deficits or mild aphasic
syndromes (in 20% of the patients), permanent sensori-
motor deficits (in 12%), and worsening of preoperative
sensory deficits (in 15%) [189, 190]. Rare complications
following parietal lobe surgery are transient lower
quadrantal visual field deficits and right-left disorienta-
tion and a partial Gerstmann’s syndrome [189, 190].

In 30 patients with occipital lobe epilepsy, 71% were
seizure-free after the operation, and 18% had seizure
reduction of more than 90% [151]. Visual field deficit is

Fig. 1A–D Different types of
epilepsy surgery. A Temporal
lobectomy, B selective amyg-
dalohippocampectomy, C fron-
tal lobectomy, and D
anatomical hemispherectomy

9



the major complication following occipital lobe surgery
[186]. Homonymous hemianopsia was present in 76% of
cases, over two thirds of whom had partial visual field
deficits preoperatively [186].

Compared with nonlesional cases, lesionectomies have
a greater likelihood of producing seizure freedom, in
particular if they include margin resection [16, 26, 203].
However, epilepsy surgery in patients with negative MR
scans (nonlesional cases) may also yield good seizure
outcome. In a study by Siegel et al., 20 of 25 patients with
nonlesional neocortical, mainly extratemporal epilepsy
became postsurgically seizure-free or had only rare
seizures following cortectomy [205].

Callosotomy

Transection of the corpus callosum is probably the best
example of a palliative operation. Callosotomy is intend-
ed to interrupt the pathways of seizure spread or
interhemispheric synchronization [15]. Van Wagenen
made the observation that epileptic patients who subse-
quently sustained a stroke involving the corpus callosum
often had improvement in their seizure disorders; and in
1940 he and Herren reported a series in which the corpus
callosum was intentionally divided for the treatment of
intractable epilepsy [243]. In the early 1960s, Bogen
reported a small series of similarly operated patients with
encouraging results [12, 13, 14], and Luessenhop de-
scribed comparable success in three of four children [123,
124]. In 1971, Wilson chose this procedure as an
alternative to hemispherectomy in a 9-year-old boy with
infantile hemiplegia and began compiling a series of 20
patients that ultimately revealed the efficacy of the
procedure, warranting its wider application [74, 169,
271, 272, 273, 274, 275].

Callosal section may either be limited to the anterior
half (or 2/3) of the corpus callosum or include some or all
of the posterior half. Total callosotomy is rarely per-
formed (in one- or two-stage operation) to avoid compli-
cations such as mutism, apraxia, and frontal lobe
dysfunction [179, 180]. In the early years of callosotomy,
division of additional structures important for interhemi-
spheric seizure propagation, such as the anterior com-
missure, fornix, and posterior hippocampal commissure,
was performed in the same operation [179, 180]. The
indications for this palliative intervention are infantile
hemiplegia, Lennox-Gastaut syndrome, Rasmussen’s en-
cephalitis, and multifocal bilateral epilepsy [65, 66, 67,
179, 180, 211, 214, 280].

As far as seizure types, status epilepticus and drop
attacks respond especially well to callosotomy. Our own
study of 104 callosotomy patients at the Dartmouth-
Hitchcock Medical Center, New Hampshire, USA found
that 66% of patients with status epilepticus and 52% of
those with drop attacks prior to surgery had none after the
callosotomy [179, 180]. Complications of callosotomy
included acute disconnection syndrome lasting days to
weeks (in 90% of patients), sensory disconnection

(>90%), split brain syndrome (30% transitory and 3%
persistent), paresis or apraxia of the left arm or leg (about
15%), disorder of written language and/or mutism (6–
15%), and cognitive deficits (about 10%) [159].

Hemispherectomy and multilobar resections

Further therapeutic options in patients with severe drug-
resistant epilepsy and large multilobar or hemispheric
epileptogenic lesions include multilobar resection and
hemispherectomy. The latter is a surgical procedure in
which a cerebral hemisphere is either anatomically
removed or made nonfunctional by disconnection. Ana-
tomic hemispherectomy involves a complete hemispheric
corticectomy with or without removal of the basal
ganglia, sparing both the hypothalamus and the dien-
cephalon [109, 132, 245, 254, 276] (Fig. 1). Anatomic
hemispherectomy has been performed both as a single
operation and in multiple sittings [36, 70, 109, 146, 167].
After superficial cerebral hemosiderosis was recognized
as a late, severe complication of anatomic hemispherec-
tomy, other surgical techniques were developed [1, 39,
89, 165, 167, 244, 245, 277] (Table 5).

At present, porencephalic cysts and hemimegalen-
cephaly, large cortical dysplasias, Rasmussen’s enceph-
alitis, and the Sturge Weber syndrome are considered to
be indications for multilobar resection and hemispherec-
tomy. Furthermore, the latter is almost exclusively
performed in patients who already have major preoper-
ative deficits such as hemiplegia. In this subset of
patients, seizure freedom can be achieved in over 90–
95% of cases [245, 246, 277]. A series of 68 patients with
hemispherectomies yielded very good results: 80% were
postsurgically seizure-free (more than half no longer
needed antiepileptic drugs) and 14% had seizure reduc-
tion of more than 90%. Despite these excellent results, the
decision to perform such large resections should only be
made cautiously. Furthermore, extensive presurgical
evaluation must be carried out to lessen the likelihood
of major postoperative deficit (e.g., pronounced hemiple-
gia).

Multiple subpial transection

Multiple subpial transection (MST) is a relatively new
palliative surgical technique developed for medically

Table 5 Different techniques for hemispherectomy (modified from
[245])

Anatomical hemispherectomy [36, 109, 254]
Modified hemispherectomy [1]
Functional hemispherectomy [167]
Hemidecortication [89]
Hemicorticectomy [277]
Hemispherotomy [39]
Peri-insular hemispherotomy [244]
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refractory partial epilepsy emanating from an eloquent
region such as the speech area or motor sensory cortex
[88, 139, 140, 143]. The technique of MST requires a
special knife-like instrument with which tangential intra-
cortical fibers mediating seizure propagation are inter-
rupted, while vertical afferent and efferent connections
subserving essential cortical functions are preserved
[139]. The MST can also be combined with cortical
resection. In a series of 100 patients with MST, 48% were
postsurgically seizure-free, 13% had only rare seizures,
20% had worthwhile improvement in their seizure
situations, and 19% had no benefit. Other studies yielded
similar results [88, 141, 143, 185, 220]. In 16 patients
with Landau-Kleffner syndrome treated with MST and
resective surgery, 75% became seizure-free and 44% had
recovered age-appropriate language [143]. Predictors for
good seizure outcome were the diagnosis of Landau-
Kleffner syndrome and the combination of MST with
simultaneous partial cortical resection [209, 281]. In a
series of 97 patients, permanent complications occurred in
4% and included basal ganglia hemorrhage in one patient,
hemorrhagic infarct with dysphasia in another, infarction
of the precentral region in a third, and foot drop in a
fourth. Transient complications occurred in 7% and
included mild contralateral weakness in five patients,
cortical sensory loss in one, and dyslexia in another [142].

Vagal nerve stimulation

The rationale of electric stimulation of the vagal nerve
(VNS) for palliative epilepsy therapy is based on findings
from animal experiments. Electric impulses are generated
in a stimulator device, similar to a pacemaker, which is
implanted underneath the clavicle and conducted through
a wire electrode directly onto the vagal nerve in the neck
[133, 267]. The VNS is indicated in patients with
medically refractory partial epilepsy who are not good
candidates for resective surgery. A large, multicenter
study found that 37–43% of the patients had more than
50% reduction in seizures with VNS [30, 38, 133]. This
technique seems to be particularly effective after prior
callosotomy (Roberts and Siegel, unpublished data).
Complications of VNS included voice alteration, in-
creased coughing, paresthesia, dyspnea, dyspepsia, and
laryngismus [6, 73].

Gamma knife radiosurgery

Stereotaxic radiosurgery using the gamma knife has been
performed for the last 40 years in the treatment of
vascular malformations and brain tumors. Recently,
radiosurgery has also made an entrance in epilepsy
surgery, particularly for mesial temporal lobe epilepsy
syndrome. In the latter, gamma knife surgery delivers a
focused dose of radiation to the mesial temporal struc-
tures. A recent study analyzed 25 patients treated with the
gamma knife instead of open neurosurgical amygdalo-

hippocampectomy [173]. Of the 16 patients with suffi-
cient follow-up observation, 13 (81%) became seizure-
free.

While gamma knife treatment might be useful in
patients who would otherwise undergo mesial temporal
lobe resection, it does not yet play an important role in the
treatment of extratemporal epilepsy. Today, the gamma
knife probably has its major application in the treatment
of hypothalamic hamartoma, in which the postsurgical
results of a multicentric study are very promising: 80%
seizure freedom or improvement [173]. While the
advantage of gamma knife—avoiding craniotomy—is
obvious, its problem lies in the fact that seizure freedom
or reduction usually does not set in till nearly a year after
the procedure. This obviously makes it more difficult for
the treating physician to recommend, as he must offer
patients the choice between operation with usually instant
reduction of or freedom from seizures and therapy
avoiding craniotomy but after which the seizures persist
for at least several months.

Conclusion

Thanks to today’s modern imaging examination tech-
niques and especially to the common use of intracranial
electrodes for localizing seizure foci, more and more
patients with partial epilepsy can be treated microsurgi-
cally. The results of such neurosurgical therapies are very
good, particularly with mesial temporal lobe epilepsy. In
recent years, good results (60–70% seizure freedom) have
also been achieved in extratemporal epilepsy surgery, so
that such procedures can now be recommended for
carefully selected patients.
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