
REVIEW

The NADPH oxidase NOX2 plays a role
in periodontal pathologies

Catherine Giannopoulou & Karl-Heinz Krause &

Frauke Müller

Received: 14 April 2008 /Accepted: 27 May 2008 / Published online: 1 July 2008
# Springer-Verlag 2008

Abstract Oxidative stress plays an important role in
periodontal health and disease. The phagocyte nicotinamide
adenine dinucleotide phosphate oxidase NOX2 is most
likely one of the key sources of reactive oxygen species
(ROS) in periodontal tissues. This review will discuss three
clinical aspects of NOX2 function. We will first focus on
oral pathology in NOX2 deficiency such as chronic
granulomatous disease (CGD). CGD patients are thought
to suffer from infections and sterile hyperinflammation in
the oral cavity. Indeed, the periodontium appears to be the
most common site of infection in CGD patients; however,
as periodontitis is also common in the general population, it
is not clear to which extent these infections can be
attributed to the disease. Secondly, the role of oxidative
stress in periodontal disease of diabetic patients will be
reviewed. Diabetes is indeed a major risk factor to develop
periodontal disease, and increased activity of leukocytes is
commonly observed. Enhanced NOX2 activity is likely to

be involved in the pathomechanism, but data remains
somewhat preliminary. The strongest case for involvement
of NOX2 in periodontal diseases is aggressive periodontitis.
Increased ROS generation by leukocytes from patients with
aggressive periodontitis has clearly been documented. This
increased ROS generation is to be caused by two factors:
(1) genetically enhanced ROS generation and (2) oral
pathogens that enhance NOX function. NOX enzymes in
the oral cavity have so far received little attention but are
likely to be important players in this setting. New therapies
could be derived from these new concepts.
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Introduction

The term “periodontal diseases” refers to inflammatory as
well as recessive alterations of the gingiva and periodon-
tium. Clinically, a gingivitis presents as inflammation of the
gums that appear swollen and red, and bleed on touch.
Gingivitis is reversible by simple interventions like oral
hygiene measures but progresses, if untreated, to a
periodontitis that involves permanent loss of soft tissue
attachment and alveolar bone. Untreated periodontitis is
progressive and finally leads to tooth mobility and loss.
Gingivitis and periodontitis are plaque-elicited diseases
caused by specific microorganisms via local opportunistic
infections in an otherwise systemically healthy host.
However, genetic and metabolic factors may play a direct
role in their etiologies or enhance the pathology.

There is a longstanding suspicion that reactive oxygen
species, ROS, are involved in periodontal diseases. Over
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the last years, it has become increasingly clear that a major
source of ROS is the NOX family of ROS-generating
nicotinamide adenine dinucleotide phosphate (NADPH)
oxidases [1]. NOX enzymes are electron transporters that
accept electrons from NADPH inside the cell and transport
them across the membrane to attach it to oxygen. This
reaction leads to the generation of superoxide and down-
stream ROS. The NOX family consists of seven different
genes, coding for seven isoforms referred to as NOX1,
NOX2, NOX3, NOX4, NOX5, DUOX1, and DUOX2. In
this review, we will focus on the present knowledge of the
role of NOX2, the phagocyte NADPH oxidase, in peri-
odontal diseases. Indeed, this enzyme has been known for a
long time; thus, clinical and scientific data on this topic are
available.

Periodontal pathologies in chronic granulomatous
disease

Chronic granulomatous disease (CGD) is caused by NOX2
deficiency. It is a rare genetic disorder characterized by
recurrent severe infections due to the inability of neutro-
phils and macrophages to mount a respiratory burst and kill
invading bacteria. The most common bacterial and fungal
infections include pneumonia, lymphadenitis, liver abscess-
es, osteomyelitis, septicemia, and otitis media [2].

Until now, oral complications of CGD have rarely been
investigated. A first report of a CGD case was published by
Wolf and Ebel [3]. The male patient presented with severe
gingivitis and ulcerous lesions in the buccal mucosa and
palate. Oral hygiene measures improved his condition
greatly, suggesting that the oral symptoms are more likely
associated to the accumulation of plaque than to the CGD.
A further case report described a 5-year-old boy diagnosed
with CGD [4]. At his initial dental examination, the patient
presented severe gingival inflammation and pronounced
marginal erythema. Extensive attachment loss with furca-
tion involvement and gingival recessions, as well as tooth
mobility, were evident in all remaining teeth. Four teeth had
already been lost due to advanced periodontal disease. The
patient was diagnosed with “generalized pre-pubertal
periodontitis,” which the authors suggested to add to the
conditions associated with CGD.

In a larger cohort, patients with CGD presented a
significantly higher prevalence of oral ulcerations and
gingival inflammation in comparison to control subjects
[5]. These findings were supported by a report from the
same year on five 17- to 32-year-old patients diagnosed
with CGD [6]. All presented ulcerative lesions on the palate
and alveolar mucosa. Detailed examination of the perio-
dontium revealed that three of the five patients showed
gingivitis, one patient had localized early periodontitis, and

a further one had generalized early-to-moderate periodonti-
tis. Despite the limited number of patients, the severity of the
periodontal disease increased with age and local etiologic
factors such as poor fillings or crowns. In spite of the
leukocyte defects, none of the patients was diagnosed with
juvenile, severe, or rapidly progressing periodontitis [6].

In a more recent survey of 368 patients with CGD, only
nine were diagnosed with gingivitis and/or mild periodon-
titis [7]. No cases of oral infections were reported in a
Japanese survey of 221 patients with CGD [8]. Equally, no
oral infections were found over a 25-year observation
period in the dental records from a series of pediatric
patients with CGD [9]. Carnide and coworkers [10]
reported that out of 18 patients with pneumonia, which is
the most common manifestation of CGD, only two had
gingival abscesses. Recently, a prospective controlled
multicenter study was conducted in Italy on clinical
symptoms and disease progress in 60 patients with CGD
[2]. For the 1-year follow-up, 47 patients were available.
Interestingly, stomatogingivitis was present in 35% of the
patients and had an incidence of 0.12 per year. Thus,
stomatogingivitis appears to be the most common organ
manifestation in CGD patients, more frequent than pneu-
monia (0.09/year), GI tract infections (0.06/year), and
septicemia (0.026/year).

In conclusion, most studies have shown that gingivitis
and oral ulcers are common in patients with CGD, but
periodontitis, which is commonly found in patients with
leukocyte adhesion deficiency type I, seems unusual in
CGD patients [11]. However, the available evidence is
incomplete. Most reports are cohort studies that lack a
control group. Periodontal diseases show also a high
prevalence in epidemiological studies of the healthy
population. Especially adolescents are known for a high
prevalence of gingivitis [12]. In a national survey, only
1.5% of 15-year-old Germans had healthy oral tissues,
85.5% of the adolescents had gingivitis, and 13.4%
periodontitis [13]. In the same survey, 26.2% of the 35- to
44-year-old adult population presented with gingivitis and
73.2% with periodontitis. Thus, the lack of control groups
makes the data on CGD patients very difficult to interpret.
Indeed, a simple comparison with the general population
would even suggest a lower rate of periodontal disease in
CGD patients. This is probably not the case, but it points
toward methodological weaknesses of the presently avail-
able evidence.

NOX enzymes and diabetes

Strong evidence exists on the relationship between diabetes
mellitus and periodontal disease. Diabetes patients show
greater prevalence, incidence, severity, and extent or
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progression of periodontal disease in comparison to non-
diabetic patients [14]. Furthermore, it seems that severe
periodontitis increases the risk of poor glycemic control and
that, in return, periodontal treatment has a positive effect
[15–17].

The mechanisms by which diabetes influences the
periodontal tissues share common characteristics with those
involved in its classic complications such as retinopathy,
nephropathy, macrovascular disease, and altered wound
healing. The subgingival microbiota between diabetic and
non-diabetic patients with periodontitis is very similar,
suggesting that alterations of the host immunoinflammatory
response to several pathogens play a predominant role [18,
19]. Early studies have shown that diabetes leads to
impaired adherence, chemotaxis, and phagocytosis of
neutrophils, which are the first line of host defense [20,
21]. While these initial studies suggested hypofunctional
neutrophils, most studies suggest hyper-responsive phag-
ocytes, resulting in increased production of pro-inflammatory
cytokines and mediators in the gingival crevicular fluid
[22, 23].

Recently, it has been shown that hyperglycemia may
cause periodontal destruction through several pathways.
For example, the non-enzymatic reaction of glucose may
lead to both extra and intracellular accumulation of
irreversible advanced glycated end products, which can
modulate the cellular function and alter the tissue structure
[24, 25].

Hyperglycemia is the major factor responsible for the
activation of oxidative stress, which is the imbalance
between the antioxidant defence and the production of
ROS, leading to tissue damage [26, 27]. The main source
of ROS is the NADPH oxidase family of enzymes, essential
to the phagocyte bactericidal activity. Of particular interest is
the NOX2 NAPDH oxidase, which is predominately
expressed in phagocytes [28]. Recently, Karima et al. [29]
have shown that neutrophils from diabetic subjects exhibit
increased activity of protein kinase C, increased amounts of
diglyceride, and enhanced phosphorylation of p47phox during
cell stimulation, leading to increased O2 stimulation. In
addition, they reported a significant correlation between
glycemic control and the severity of periodontitis, suggesting
that the increased risk of periodontitis in diabetes is linked to
increased inflammation and oxidative stress mediated by the
neutrophil. The role of polymorphonuclear neutrophils in
mediating diabetic tissue damage to the periodontium was
investigated in a novel model of chronic hyperglycemia, the
Akita mouse [30]. Exaggerated IL-6 response and reduced
polymorphonucleocyte (PMN) chemotaxis was observed in
the Akita mice as compared to the control mice (wild type,
WT). Furthermore, intra-vital microscopy of the gingival
vessels showed that leukocyte rolling and attachment to the
vascular endothelium was enhanced in periodontal vessels of

Akita mice. The authors suggested that chronic hyperglyce-
mia predisposes to exaggerated inflammatory response and
primes leukocytes for marginalization and superoxide pro-
duction but not for transmigration. The leukocyte defects in
hyperglycemia impairs the innate immune response to
periodontal pathogens and increases the free radical load in
the periodontal environment, thus contributing to periodontal
tissue destruction.

Taken together, diabetes is a clear risk factor for the
development of periodontal disease. And there are some
indications that enhanced ROS generation by NOX
enzymes might play a role. However, the evidence remains
largely indirect.

NOX enzymes and aggressive periodontitis

Aggressive periodontitis (formerly termed juvenile perio-
dontitis, early onset periodontitis, or rapidly progressive
periodontitis) is characterized by a rapid and severe
destruction of the periodontal tissues mostly in the first
molar and the incisor teeth. Mainly, adolescents and young
adults are concerned. Altered neutrophils functions, such as
abnormalities in adherence, chemotaxis, superoxide gener-
ation, phagocytosis, and bactericidal activity are known to
play a role in the prevalence, progression, and severity of
aggressive periodontitis.

During the last decades, special attention has been given
to the role of ROS in the pathogenesis of aggressive
periodontal disease. Most studies on ROS production by
neutrophils in periodontal disease are based on peripheral
blood neutrophils.

After stimulation with Staphylococcus aureus, neutro-
phils from juvenile periodontitis patients exhibited greater
ROS production than the matched control subjects [31–34].
Significant differences were found in FcγR-stimulated ROS
production between periodontitis patients and healthy
subjects, suggesting a hyperactivity of peripheral neutro-
phils in periodontitis [35–38]. Furthermore, in successfully
treated patients with aggressive periodontitis, it was
demonstrated that hyperactivity was present before and
after treatment, thus supporting the hypothesis that ROS
hyper-responsiveness is constitutional rather than reactive
[39]. However, studies on ROS generation via zymosan/
CR3 (complement receptor 3) failed to show an alteration
of ROS generation in periodontal disease [40].

Several studies have been investigating the effect of the
chemotactic peptide fMetLeuPhe on ROS generation in both
chronic and aggressive forms of periodontal disease. Results
are inconsistent with increased, decreased, and similar levels
of ROS between periodontitis and periodontally healthy
controls [41, 42]. Thus, the most consistent finding from
studies on peripheral neutrophils in periodontitis is that
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disease is associated with an increased ROS response to Fcγ
stimulation. Interestingly, crevicular leukocytes of patients
with periodontitis showed a heightened response compared
to those from healthy subjects [43]. Comparison of cell
responses isolated from blood with those from diseased,
treated, and healthy tissues within patients suggested that
ROS generation was lower in diseased sites [44]. It seems
that neutrophils isolated from diseased sites are either
inhibited from responding or that in vivo activation and
ROS generation have reduced their ability to respond in
vitro. Recently, peripheral neutrophils from chronic perio-
dontitis patients and age-/sex-/smoking-matched healthy
control subjects were assayed for total ROS generation and
extracellular ROS release, with and without stimulation (Fcγ
receptor and Fusobacterium nucleatum) [45]. Neutrophils
from patients produced higher mean levels of ROS after Fcγ
stimulation as compared to healthy individuals, but no
differences were observed in unstimulated ROS generation.
In contrast, patients’ cells demonstrated greater baseline
extracellular ROS release, thus suggesting that peripheral
neutrophils from periodontitis patients exhibit hyperactivity
after stimulation and hyperactivity in terms of excess ROS
release, in the absence of exogenous stimulation. Recently,
Johnstone et al. [46] compared the generation of oxygen
radicals in peripheral PMNs from patients with refractory
aggressive periodontitis (RAP), chronic periodontitis, and
periodontally healthy subjects after stimulation with phorbol
myristate acetate (PMA) and phagocytosis via the comple-
ment and Fcγ receptors. Increased phagocytosis and PMA-
induced oxygen radical production was observed in the RAP
group as compared to the two others, accounting in part for
the continued periodontal breakdown observed in these
patients despite periodontal treatment.

The respiratory burst of neutrophils may be modulated
by cytokines: For example, TNF-α can prime ROS
generation by neutrophils from patients with chronic and
aggressive periodontitis, as well as in periodontally healthy
individuals [33, 37, 42, 47]. On the contrary, IL-8 can
prime for fMLP-stimulated ROS production in healthy
individuals and in chronic disease but not in rapidly
progressive disease [33].

Genetic aspects in aggressive periodontitis

Periodontitis is not only caused by bacteria, but it is also a
genetic disease. The identification of genes contributing to
the pathogenesis of periodontitis has been the target of
several studies of the last years [48, 49].

Recent data have shown that host hyperactivity has a
genetic basis. In a blinded study, in 224 patients with
confirmed diagnosis of aggressive periodontitis and 231
persons with a healthy periodontium, the genotypes for
p22phox NADPH oxidase, FP, Fcα, and Fcγ receptors were

analyzed from blood samples [50]. Statistically significant
differences for NADPH oxidases p22phox C242T and the
NA1 allele of Fcγ polymorphisms were found between
aggressive periodontitis patients and control subjects. These
results corroborate the neutrophils hyperactivation theory,
in particular the increased release of superoxide. This
further supports the hypothesis that it is not only bacteria
but also the host genetic predisposition that causes the
tissue damages in aggressive periodontitis. Furthermore, as
the p22phox is an important component of the NADPH in
osteoclasts [51], the combination of the increased PMN and
osteoclast activity may lead to a more rapid and more
severe bone loss in subjects with a genetic predisposition.

Microbiological aspects in aggressive periodontitis

Opsonized bacteria associated with periodontal disease are
capable of stimulating peripheral neutrophils from patients
with both chronic and aggressive forms of periodontal
disease to generate enhanced ROS. In healthy subjects
unopsonized F. nucleatum induced increased production of
oxygen radicals, cytokines, and elastase from peripheral
leucocytes activated in vitro [52]. Porphyromonas gingiva-
lis is protected against oxidative stress by the cytoplasmic
protein rubrerythrin [53]. These features allow P. gingivalis
to proliferate in animals that possess a fully functional
oxidative burst response. In other words, the host oxygen-
dependent bactericidal system is not only ineffective in
combating P. gingivalis infection but appears to exacerbate
significantly the host tissue damage induced by the
infection [53].

In conclusion, aggressive periodontitis is characterized
by neutrophil hyperactivity with enhanced ROS generation.
This hyperactivity seems to be determined by two factors:
(1) genetic predisposition as evidenced by association with
NOX polymorphisms and (2) oral pathogens that stimulate
NOX2 and—at the same time—are resistant to its micro-
bicidal activities.

Perspectives

As shown in this review article, it becomes increasingly
clear that the phagocyte NADPH oxidase plays a role in
oral health and disease. Enhanced ROS generation is clearly
involved in the pathomechanisms of periodontal disease.
Possibly, decreased ROS generation is also a risk factor, but
this is less well documented. There are basically two ways
in which the increased ROS generation in periodontal
disease occurs: host factors, in particular genetic predispo-
sition and altered metabolism (diabetes), and microorgan-
isms of the oral cavity, which can directly or indirectly
activate NOX2. These elements are relatively well under-
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stood for the aggressive periodontitis. It is, however, very
likely that they also participate in age-related development
of peridontitis. Indeed, age-related periodontitis is an
extremely frequent disease that affects the majority of the
elderly population and is an important cause of tooth loss,
caries, and subsequent malnutrition. Thus, understanding
the involvement of NOX enzymes in this pathology will be
an important challenge for the future.

In this review, we have focused on the phagocyte
NADPH oxidase NOX2 in the oral cavity. It is, however,
likely that other NOX enzymes also are important in this
context. Indeed, NOX1 and NOX4 are highly expressed in
the vascular system. NOX4 also plays an important role in
fibroblasts and in osteoclasts. DUOX1 is thought to play a
role in the host defence by salivary glands [54], and NOX1
is thought to contribute to radiation-induced salivary gland
apoptosis [55]. Thus, future research will have to address
also these other NOX isoforms, and their potential role in
oral pathologies.

Presently, there are no NOX inhibitors available for
clinical use; however, there are efforts to develop drugs in
this domain. NOX2 inhibitors might find their place in the
treatment of periodontal diseases.
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