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Abstract. Many real problems can be modelled as robust shortest path problems on
digraphs with interval costs, where intervals represent uncertainty about real costs
and a robust path is not too far from the shortest path for each possible configuration
of the arc costs.

In this paper we discuss the application of a Benders decomposition approach
to this problem.

Computational results confirm the efficiency of the new algorithm. It is able
to clearly outperform state-of-the-art algorithms on many classes of networks. For
the remaining classes we identify the most promising algorithm among the others,
depending of the characteristics of the networks.
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1 Introduction

When transportation problems are modelled in mathematical terms, a road network
is usually represented as a weighted digraph, where each arc is associated with a
road and costs represent travel times. In this context, a shortest path problem has
to be solved every time the quickest way to go from one place to another has to be
calculated.
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A similar problem arises in telecommunication when a packet has to be sent
from a source node to a destination node on a network. Also in this case, where the
network is usually modelled as a weighted digraph and costs are associated with
transmission delays, a shortest path problem is faced.

Unfortunately, in reality it is not easy to estimate arc costs exactly, since they
depend on many factors which are difficult to predict, such as traffic conditions,
accidents, traffic jams or weather conditions for the transportation case, network
congestions or hardware failures for the telecommunication case. For this reason
the fixed cost model previously introduced may be inadequate. To overcome this
problem, more complex models have been presented in the literature. In particular
a model where a set of alternative graphs are considered at the same time (scenario
model – see Yu and Jang 1998; Dias and Clímaco 2000) and a model where an
interval of possible values is associated with each arc (interval data model – see
Dias and Clímaco 2000; Karaşan et al. 2001) have been studied. In this work the
interval data model, which will be described in detail in Sect. 2, is considered.

With the interval data model, uncertainty is modelled by associating an interval
of costs with each arc. Each interval represents a range of possible values for the
real cost.

The relative robustness criterion, which will be formally defined in Sect. 2, has
been chosen to drive optimization. This criterion is discussed in Kouvelis and Yu
(1997), a book entirely devoted to robust discrete optimization.

A relative robust shortest path (sometimes referred to as the robust deviation
shortest path) from s to t is a path from s to t which minimizes the maximum
deviation from the optimal shortest path from s to t over all realizations of arc
costs.

In Averbak and Lebedev (2004) it is proven that the relative robust shortest path
problem with interval data is strongly NP-hard.

In the remainder of this paper we will refer to the relative robust shortest path
problem simply as the robust shortest path problem and to a relative robust shortest
path simply as a robust shortest path.

Karaşan et al. (2001) proposed a mixed integer programming formulation for
the problem based on an important theoretical result they gave (see Theorem 1).
An exact algorithm, based on path-ranking, is presented in Montemanni and Gam-
bardella (2004), while a branch and bound approach is described in Montemanni
et al. (2004a) (see also Montemanni et al. 2004b).

In this paper two versions of a novel exact algorithm for the robust shortest path
problem with interval data, based on Benders decomposition, are presented.

In Sect. 2 the robust shortest path problem with interval data is formally de-
scribed. A mixed integer programming formulation for the problem is presented
in Sect. 3. Section 4 is devoted to the discussion of the approaches we propose.
Computational results are presented in Sect. 5, while conclusions are summarized
in Sect. 6.
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Fig. 1. Example of directed graph with interval costs

2 Problem description

A directed graph G = (V , A), where V is a set of vertices and A is a set of arcs
is given together with a starting vertex s ∈ V , and a destination vertex t ∈ V .
We suppose that at least a path from s to t exists in G. An interval [lij , uij ], with
0 ≤ lij ≤ uij , is associated with each arc (i, j) ∈ A. Intervals represent ranges of
possible costs. An example of interval graph is given in Fig. 1.

The robust shortest path problem with interval data can be formally described
by the following definitions:

Definition 1. A scenario r is a realization of arc costs, i.e. a cost cr
ij ∈ [lij , uij ] is

fixed ∀(i, j) ∈ A.

Definition 2. The robust deviation for a path p from s to t in a scenario r is the
difference between the cost of p in r and the cost of the shortest path from s to t in
scenario r .

Definition 3. A path p from s to t is said to be a robust shortest path if it has the
smallest (among all paths from s to t) maximum (among all possible scenarios)
robust deviation.

A scenario can be seen as a snapshot of the network situation, and a robust
shortest path is a path which guarantees reasonably good performance (compared
to optimal solutions) under any possible configuration of travel times over the
network.

Given a directed graph and an origin/destination pair (s, t), the robust shortest
path problem is the problem of retrieving a robust shortest path.

The following important result is at the basis of the mathematical formulations
described in Sect. 3.

Theorem 1 (Karaşan et al. 2001). The robust deviation for path p is maximized
at the scenario in which the lengths of all arcs on p are at upper bounds and the
lengths of all other arcs are at lower bounds.
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Fig. 2. Scenario induced by p = {s, 0, t} on the directed graph with interval costs of Fig. 1

Theorem 1 implies that we need to consider only a finite number of scenarios,
namely as many as the number of paths in the graph.

Figure 2 depicts the scenario induced by path p = {s, 0, t} on the graph of
Fig. 1. The robustness cost of p is in this case (2 + 7) − (2 + 1 + 3) = 3.

3 Mixed integer programming formulation

Karaşan et al. (2001) derived a mixed integer programming formulation for the
problem, based on Theorem 1. In this formulation, the y variables have the following
meaning: yij = 1 if arc (i, j) is on the robust shortest path and 0 otherwise. The
length of arc (i, j) is defined by lij + (uij − lij )yij for a given vector y. This is
because when yij = 1 the length of arc (i, j) is at its upper bound on path p defined
by y. All the lengths of other arcs with yij = 0 are at their lower bounds. Variable
xj contains the shortest distance from node s to node j . Variable xt contains then
the length of the shortest path in the graph under the scenario defined by y. The
objective is to find a path p for which the difference between the length of path p

and the length of the shortest path in the graph is the smallest when the lengths of
all arcs on path p are at their upper bounds and the lengths of all other arcs are at
their lower bounds.

(RSP ) min
∑

(i,j)∈A

uij yij − xt (1)

s.t. xj ≤ xi + lij + (
uij − lij

)
yij ∀(i, j) ∈ A (2)∑

(s,k)∈A

ysk −
∑

(i,s)∈A

yis = 1 (3)

∑
(t,k)∈A

ytk −
∑

(i,t)∈A

yit = −1 (4)

∑
(j,k)∈A

yjk −
∑

(i,j)∈A

yij = 0 ∀j ∈ V \{s, t} (5)
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xs = 0 (6)

yij ∈ {0, 1} ∀(i, j) ∈ A (7)

xj ≥ 0 ∀j ∈ V (8)

Constraints (2) specify shortest distances between nodes based on whether arcs
(y variables) are on the path or not. Inequalities (3)-(5) ensure that the resulting y

vector defines a path in the graph, while constraint (6) sets to 0 the distance to the
source node s and prevents an unbounded solution. Constraints (7) and (8) define
the domains of the variables.

Notice that the problem defined by the x variables is the dual of a classic shortest
path problem formulation, where distances on arcs are defined by the y variables
as explained before.

4 A Benders decomposition approach

Benders partitioning method was originally proposed in 1962 in Benders (1962) (see
also Geoffrion 1972). It was initially developed to solve mixed integer programming
problems. Geoffrion and Graves (1974) confirmed that the method is suitable to
solve large scale multicommodity distribution system design models. Many other
applications of Benders decomposition have been proposed since then (see, for
example, Richardson 1976; Magnanti et al. 1986; Cordeau et al. 2000; Cordeau et
al. 2001). Methodologies for improving the performance of the method have been
proposed in McDaniel and Devine (1977) and Magnanti and Wong (1981).

Kouvelis and Yu (1997) derived an algorithm for the scenario version of the
robust shortest path problem (see Yu and Jang 1998) by adapting Benders decom-
position.

In this section we describe the application of Benders decomposition to the
robust shortest path problem with interval data.

4.1 Reformulation of RSP

Let Y be the set of binary vectors for the y variables that satisfy constraints (3)-(5)
and (7) (i.e., vectors of the y variables that describe paths from s to t in G). For
any given vector y ∈ Y , it is possible to define a problem in the x variables only,
starting from the mixed integer program RSP . We will refer to this problem as the
primal subproblem. It is defined as follows:

(P (y))
∑

(i,j)∈A

uij yij

− max xt︷ ︸︸ ︷
+ min −xt (9)

s.t. xj ≤ xi + lij + (
uij − lij

)
yij ∀(i, j) ∈ A (w) (10)

xs = 0 (11)

xj ≥ 0∀j ∈ V (12)
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We now consider the dual of problem P(y), which we will refer to as the dual
subproblem.As observed near the end of Sect. 3 (Karaşan et al. 2001), thex variables
describe the dual of a classic shortest path problem formulation. Consequently,
by dualizing again, we end up with the following classic shortest path problem
formulation on the variables w:

(D(y)) z∗
D(y) =

∑
(i,j)∈A

uij yij − min
∑

(i,j)∈A

(lij + (
uij − lij

)
yij )wij (13)

s.t.
∑

(s,k)∈A

wsk −
∑

(i,s)∈A

wis = 1 (14)

∑
(t,k)∈A

wtk −
∑

(i,t)∈A

wit = −1 (15)

∑
(j,k)∈A

wjk −
∑

(i,j)∈A

wij = 0 ∀j ∈ V \{s, t} (16)

0 ≤ wij ≤ 1 ∀(i, j) ∈ A (17)

Notice that notwithstanding constraints (17), there will be at least an optimal solu-
tion of D(y) where the w variables assume binary values only. This happens since
the constraints matrix of D(y) (i.e., a shortest path problem) is unimodular (see,
for example, Ford and Fulkerson 1962).

Notice that problem D(y) is feasible ∀y ∈ Y , since it is a shortest path problem
on a version of graph G with modified costs, and in Sect. 2 we made the assumption
that at least a path from s to t in G exists.

Let R be the feasible region of the dual subproblem and let PR be the set of
extreme points of R (notice that we have no extreme rays of R because of constraints
(17)).

Note that R does not depend on y (it appears only in the objective function
(13), and R �= ∅ by definition, since we suppose that at least a path from s to t in
G exists (see Sect. 2). Hence, by strong duality, the primal subproblem is feasible
and bounded.

We can observe that D(y) is a linear program, i.e. its optimal solutions are in the
extreme points. We can then rewrite the original problem RSP in a more compact
form as follows:

(RSP ) min
y∈Y

{
z∗
D(y)

}
(18)

By expanding the definition of z∗
D(y) within (18), problem RSP can be further

rewritten as follows:

(RSP ) min
y∈Y




∑
(i,j)∈A

uij yij − min
w∈PR

∑
(i,j)∈A

(lij + (
uij − lij

)
yij )wij


 (19)

We now introduce the additional free variable z and we expand the definition
of Y . We obtain the Benders reformulation of RSP , which we will refer to as the
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master problem M:

(M) min z (20)

s.t. z ≥
∑

(i,j)∈A

uij yij −
∑

(i,j)∈A

(lij + (
uij − lij

)
yij )wij ∀w ∈ PR (21)

∑
(s,k)∈A

ysk −
∑

(i,s)∈A

yis = 1 (22)

∑
(t,k)∈A

ytk −
∑

(i,t)∈A

yit = −1 (23)

∑
(j,k)∈A

yjk −
∑

(i,j)∈A

yij = 0 ∀ j ∈ V \{s, t} (24)

yij ∈ {0, 1} ∀(i, j) ∈ A (25)

z ∈ R+ ∪ {0} (26)

The master problem is in a suitable form for applying the Benders decompo-
sition algorithm, which is described in the following section. Some improvements
to the basic idea will be presented in Sect. 4.3.

4.2 Basic algorithm

The algorithm is based on an iterative mechanism. Let τ represent the iteration
number and let P τ

R represent the restricted set of extreme points of PR available
at iteration τ . The basic Benders decomposition algorithm can be summarized as
follows:

– Initialization step:
Set τ = 1 and P 1

R := ∅.
– Main step:

Solve the following mixed integer problem, Mτ , which is the relaxed version
of the master problem obtained by replacing PR with P τ

R , i.e. by considering
the extreme points available at iteration τ only.
Formally the mixed integer program Mτ is obtained by changing constraints
(21) with the following ones:

z ≥
∑

(i,j)∈A

uij yij −
∑

(i,j)∈A

(lij + (
uij − lij

)
yij )wij ∀w ∈ P τ

R (27)

Let (zτ , yτ ) be an optimal solution of Mτ .
Solve the mixed integer problem D(yτ ). Notice that since this is a classic short-
est path problem, a polynomial time algorithm (see, for example, Ahuja ez al.
1993) can be used to solve it. The use of an ad-hoc shortest path algorithm
instead of directly solving D(yτ ) also prevents optimal fractional solutions,
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which would produce less interesting extreme points. They can exist when sev-
eral optimal integer solutions exist.
It is possible now to observe (see Benders 1962) that z∗

D(yτ ) and zτ are respec-
tively an upper bound and a lower bound of the optimal cost of the original
problem RSP .
If z∗

D(yτ ) ≤ zτ then the optimal solution of RSP has been found, stop.
Otherwise, let wτ be an optimal solution of D(yτ ).
Set P τ+1

R := P τ
R ∪ {wτ }, τ := τ + 1 and repeat the Main step.

Notice that problem M1 is a shortest path problem, and its constraints matrix is
consequently unimodular (i.e., M1 is an “easy” integer program). As τ increases,
Mτ progressively looses unimodular characteristics, and it becomes more and more
difficult (and time consuming) to solve in terms of integer programming.

We will then expect the algorithm to perform well on problems for which just a
few iterations are necessary. Computational times (see Sect. 5.2) suggest that this
is the case.

4.3 Improved algorithm

A major difficulty with the algorithm presented in Sect. 4.2 lies in the repeated
solution of master problem Mτ , which, as previously observed, becomes more and
more difficult at the increasing of τ . It is faced at each iteration of the algorithm.

To accelerate the solution process of the master problem, McDaniel and Devine
(1977) suggested relaxing the integrality constraints on the variables of the master
problem and generating cuts from the fractional solutions. This approach can be
adapted to our problem, and the improved Benders decomposition we obtain can
be summarized as follows:

– Preamble:
Run npp iterations of the basic algorithm (see Sect. 4.2) on the relaxed problem
MLR , which is obtained from the mixed integer program M by substituting
constraints (25) with their linear relaxation

0 ≤ yij ≤ 1 ∀(i, j) ∈ A (28)

Notice that since yτ is not necessarily a binary vector now, D(yτ ) can have arc
costs (i.e., coefficients of objective function (13)) that are not at their lower or
upper bounds.

– Initialization step:
Set P 1

R := P τ
R and τ = 1.

The difference from the basic algorithm is that, instead of starting with an empty
set P 1

R , in this case we initialize P τ
R in such a way that it contains the npp cuts

generated for the relaxed problem MLR during the preamble. This should help
to skip some time-consuming problems Mτ .
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– Main step:
Execute the main step of the basic algorithm (see Sect. 4.2).

Notice that the cuts contained in P τ
R at the end of the npp iterations carried out

on MLR during the preamble phase, are feasible also for M , since the relaxation of
constraint set (25) does not affect the dual subproblem polyhedron. For this reason
these cuts can be inserted into P 1

R during the initialization step.
The initial cuts obtained from the linear relaxation MLR are inserted in order

to improve the convergency speed of the algorithm.
It is worth to observe that parameter npp is very important, since too many initial

cuts could end up to slow down the algorithm, since some of them may be useless.
On the other hand, the contribution of the initial cuts should save some iterations
of the main step of the algorithm. Some computational tests (not reported) clearly
suggested that npp ∈ {2, 3} is the best setting for all the problems we will consider.
We will therefore set npp = 2 for the experiments presented in Sect. 5.

5 Computational experiments

In the next sections we summarize some experiments we have carried out on differ-
ent families of networks. The aim is to measure the performances of the two versions
of the Benders decomposition approach we propose, which are also compared with
state-of-the-art algorithms. We also present a comparative study where we identify
relations between the characteristics of the networks and the performances of the
exact algorithms presented so far in the literature.

For all the tests reported, ILOG CPLEX 6.0 (http://www.cplex.com) has been
used to solve linear and mixed integer programs. The algorithm described in Dijkstra
(1959) has been adopted to solve classic shortest path problems.All the experiments
have been carried out on the same Intel Pentium 4 1.5GHz / 256 MB computer.

5.1 Networks

The different families of networks on which the experiments have been carried out
are described in the following paragraphs.

5.1.1 Random networks

This family of networks has been originally proposed in Montemanni and Gam-
bardella (2004) and is composed of random graphs.

A graph of type R-n-c-δ has n vertices and an approximate arc density of δ

(i.e., |A| ∼ δn(n − 1)). Arcs are set up between random pairs of vertices and
interval costs are generated randomly in such a way that uij ≤ c ∀(i, j) ∈ A and
0 ≤ lij ≤ uij ∀(i, j) ∈ A.
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5.1.2 Telecommunication networks

The randomly generated networks of this family have appeared for the first time in
Karaşan et al. (2001). They simulate telecommunication networks.

These graphs are acyclic, layered, and have a small width. We remind the reader
that an acyclic graph is a graph whose arcs do not form any cycle and a layered
graph is a graph whose vertices can be partitioned into a chain of disjoint subsets, in
such a way that the cardinality of each subset is limited by a given constant, called
the width, and arcs exist only from each subset to the following one in the chain.
These graphs are also complete, i.e. each node of a layer of the graph is directly
connected to every node of the following layer.

A graph of type K-n-c-d-w (where 0 < d < 1) has n vertices; each interval cost
[lij , uij ] is obtained by generating a random number cij ∈ [1, c] and by randomly
selecting lij in [(1 − d)cij , (1 + d)cij ] and uij in [lij , (1 + d)cij ]; w is finally the
width of the graph.

For these graphs the origin s is always node 1, while the destination t is always
node n.

5.1.3 Real road networks

The networks belonging to this family represent real road networks, and the interval
costs associated with arcs are realistic. The following graphs have been analyzed:

– Sottoceneri: this graph models the main roads of the Sottoceneri region, which
is the southern part of Canton Ticino (Switzerland). It has 387 vertices and 1038
arcs and has been provided by Pina Petroli SA (http://www.pina.ch);

– Lugano: this graph models the road network of the city of Lugano (Switzerland).
It has 576 vertices and 1327 arcs and has been provided by CRTL (Commissione
Regionale dei Trasporti del Luganese);

– Stuttgart: this graph models the (aggregated) road network of the Stuttgart area
(Germany). It has 2490 vertices and 16153 arcs and has been provided by PTV
(Planung Transport Verkehr) AG (http://www.ptv.de).

– Padua: this graph models the road network of the city of Padua (Italy). It has
1522 vertices and 2579 arcs and has been provided by Comune di Padova
(http://www.comune.padova.it).

5.2 Results

For each combination network/algorithm considered we report the average com-
putation time (in seconds) over the same 20 instances (with random origins and
destinations for random networks and real road networks). In each table, the first
column contains the names of the graphs. In the other columns the results achieved
by the different algorithms considered are reported. Column KPY contains the
results obtained by the algorithm described in Karaşan et al. (2001) (i.e., directly
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Table 1. Random networks 1. Computation times (in seconds)

Basic Improved
Networks KPY MG MGD Benders Benders

decomp. decomp.

R-500-100-0.001 0.249 0.466 0.258 0.033 0.033
R-500-100-0.010 1.668 0.789 0.465 0.444 0.310
R-500-100-0.100 7.215 2.052 0.204 1.614 1.495

R-900-1000-0.010 8.051 33.089 25.099 4.830 2.678
R-900-1000-0.200 63.69 – 33.911 272.148 30.091
R-900-1000-0.500 857.155 – 48.316 862.168 140.141
R-900-1000-0.900 – – 185.648 – 266.799

Table 2. Random networks 2. Computation times (in seconds)

Basic Improved
Networks KPY MG MGD Benders Benders

decomp. decomp.

R-500-10-0.010 2.164 0.169 0.229 0.304 0.289
R-500-100-0.010 1.668 0.789 0.465 0.444 0.310
R-500-1000-0.010 2.521 1.528 1.320 0.396 0.337

R-900-100-0.010 10.819 45.091 2.255 2.120 2.107
R-900-1000-0.010 8.051 33.089 25.099 4.830 2.678
R-900-30000-0.010 4.646 52.816 33.456 5.681 2.910

solving formulation RSP ), while column MG and MGD summarize the perfor-
mances of the methods presented in Montemanni and Gambardella (2004) and
Montemanni et al. (2004a), respectively. The last two columns are devoted to the
new algorithms discussed in this paper. Entries marked with “–” correspond to
combinations for which the algorithm failed to find the optimal solution for at least
one instance within the time limit of 3600 seconds.

The results of the first set of experiments are summarized in Table 1. The study
is about the impact of changes in arc density over random networks. From the ex-
periments it clearly emerges that the Benders decomposition approach is the best
one for networks with low arc density, while the branch and bound method MGD

is the most promising while the arc density increases. It is however interesting to
observe that the Benders decomposition algorithm maintains reasonably good per-
formances over all the problems considered. The situation is different for methods
KPY and MG, that present really inadequate performances when the arc density
becomes high.

The aim of the study presented in Table 2 is to understand how the changes
in the maximum interval width affect the performances of the algorithms. The
results indicate that algorithms MG and MGD present a substantial performance
degradation when the maximum interval width is increased. On the other hand,
method KPY seems to benefit from this change (second set of experiments). The
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Table 3. Random networks 3. Computation times (in seconds)

Basic Improved
Networks KPY MG MGD Benders Benders

decomp. decomp.

R-500-100-0.010 1.668 0.789 0.465 0.444 0.310
R-100-100-0.010 0.034 0.004 0.020 0.004 0.005
R-900-100-0.010 10.819 45.091 2.255 2.120 2.107

R-900-1000-0.010 8.051 33.089 25.099 4.830 2.678
R-1600-1000-0.010 73.292 428.654 87.751 41.428 9.553
R-2500-1000-0.010 159.111 844.545 245.385 286.552 56.114
R-4000-1000-0.010 697.271 – – – 211.181

Table 4. Telecommunication networks. Computation times (in seconds)

Basic Improved
Networks KPY MG MGD Benders Benders

decomp. decomp.

K-30-20-0.9-2 0.007 0.015 0.020 0.019 0.016
K-60-20-0.9-2 0.038 5.008 3.047 0.632 0.714
K-122-20-0.9-5 0.774 32.3547 – 1.124 0.586
K-152-20-0.9-5 1.799 – – 11.219 10.823

Benders decomposition approach is almost not affected by changes in the parameter
under investigation. It proves also to be the best method over the problems reported
in the table (that however have low arc density).

The results of our last set of experiments on random networks are reported
in Table 3. The aim here is to understand how the methods scale up when the
number of nodes is increased. It turns out that the new approach based on Benders
decomposition scales up better. Among the other methods, KPY is the only one
able to solve all the problems considered, notwithstanding its performance is clearly
worse than those of the novel algorithm presented in this paper.

The analysis of Table 4 suggests that, for the particular telecommunication
networks considered, approach KPY clearly dominates the others. It is however
interesting to observe that Benders decomposition is the only algorithm, among the
ones here examined, to maintain acceptable performances over all the problems
reported in the table (that have low arc density by definition), being also the fastest
approach on one problem (K-122-20-0.9-5). On the other hand, algorithms MG

and MGD do not seem to scale up efficiently when the dimension of the networks
increases.

Experiments on real road networks (see Table 5) indicate that the Benders
decomposition approach is the most appropriate for this family of graphs. It is
the fastest one on two of the four problems. Good performances on three of the
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Table 5. Road networks. Computation times (in seconds)

Basic Improved
Networks KPY MG MGD Benders Benders

decomp. decomp.

Sottoceneri 0.096 0.078 0.073 0.009 0.073
Lugano 1.299 0.191 0.117 0.141 0.137
Stuttgart 9.648 3.129 1.752 5.952 4.906
Padua 21.138 73.785 – 19.499 17.648

problems are achieved also by method MGD, but it fails (within 3600 seconds) to
solve some of the instances over the Padua network.

From the experiments we can conclude that an algorithm able to clearly domi-
nate the others does not exist. Moreover, the choice of the most appropriate approach
is strictly connected with the characteristics of the problem to be solved. In fact, we
observed that the ranking based method MG is the less competitive of the pool, and
should be consequently avoided in general. On the other hand, the mixed integer
programming based algorithm KPY should be used for networks of type K , i.e.
for a particular family of telecommunication networks. For general problems the
choice should be between the remaining two algorithms, and should be driven by
the arc density of the network under investigation. MGD is the most promising
method for graphs with a high arc density, while Benders decomposition is clearly
the fastest approach when arc density is low.

It is however important to observe that the new algorithm based on Benders
decomposition algorithm is, in its improved version, the only one able to obtain
reasonable performances over all the problems considered, proving to be the most
robust of the pool.

The results also suggest that the improved Benders decomposition algorithm
described in Sect. 4.3 guarantees a substantial improvement over the basic Benders
decomposition method (see Sect. 4.2) in terms of average execution time. It is
however interesting to observe that on some problems (namely R-100-100-0.010,
K-60-20-0.9-2 and Sottoceneri) the improved algorithm is slower than the basic
approach. This happens because the initial cuts obtained during the preamble are
dominated by other cuts, and consequently the algorithm does not take advantage
of them, while, on the contrary, it pays the extra complexity introduced by handling
them within integer problems Mτ .

6 Conclusion

Benders decomposition has been applied to the robust shortest path problem with
interval data. In particular, two versions of the resulting algorithm have been pre-
sented.

Computational results on a wide range of benchmarks have also been presented.
The experimental study suggests that the new Benders decomposition algorithm is
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able to outperform state-of-the-art methods on many classes of networks. It is also
able to obtain reasonably good results on all the problems considered, proving to
be particularly robust.

Finally, a guideline for the selection of the most promising algorithm, given a
network to be investigated, has been presented.
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