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The La-Cr and the La-Cr-O systems are assessed using the Calphad approach. The calculated
La-Cr phase diagram as well as LaO1.5-CrO1.5 phase diagrams in pure oxygen, air, and under
reducing conditions are presented. Phase equilibria of the La-Cr-O system are calculated at
1273 K as a function of oxygen partial pressure. In the La-Cr system reported solubility of
lanthanum in bcc chromium is considered in the modeling. In the La-Cr-O system the Gibbs
energy functions of La2CrO6, La2(CrO4)3, and perovskite-structured LaCrO3 are presented, and
oxygen solubilities in bcc and fcc metals are modeled. Emphasis is placed on a detailed
description of the perovskite phase: the orthorhombic to rhombohedral transformation and the
contribution to the Gibbs energy due to a magnetic order-disorder transition are considered in
the model. The following standard data of stoichiometric perovskite are calculated:
Df ;oxides

�H298KðLaCrO3Þ = � 73:7 kJmol�1, and �S298KðLaCrO3Þ = 109:2 Jmol�1 K�1. The
Gibbs energy of formation from the oxides, Df ;oxides

�GðLaCrO3Þ = � 72:403� 0:0034T
(kJ mol21) (1273-2673 K) is calculated. The decomposition of the perovskite phase by the
reaction LaCrO3 ! 1

2 La2O3 + Cr + 3
4O2ðgÞ " is calculated as a function of temperature and

oxygen partial pressure: at 1273 K the oxygen partial pressure of the decomposition,
pO2ðdecompÞ = 10�20:97 Pa. Cation nonstoichiometry of La1–xCrO3 perovskite is described using the
compound energy formalism (CEF), and the model is submitted to a defect chemistry analysis.
The liquid phase is modeled using the two-sublattice model for ionic liquids.
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1. Introduction

In solid oxide fuel cells (SOFC), the thermodynamic
stability of the cathode is particularly important for efficient
long-term operation. Sr-doped lanthanum manganites
(LSM) with the perovskite structure are used as cathode
materials in SOFC. Diffusion of chromium from the metallic
interconnect with high chromium content into the cathode
leads to the formation of Mn(Cr,Mn)2O4 spinel and Cr2O3

along with a severe cell voltage decrease.[1-4] As the thermal
expansions of LaCrO3-based interconnect and conventional
perovskite cathode materials are similar, and Cr-diffusion
into the cathode from LaCrO3-based interconnects is
significantly lower than from Cr-containing metallic inter-
connects, recently Sr-, V-doped[5] and Zn-doped[6]

La1–xCaxCrO3–d have been considered as promising alter-
native interconnect materials for SOFC. Furthermore alka-
line earth containing LaCrO3 has been proposed as a
cathode material in a recent study by Jiang et al.[7]

The present thermodynamic assessment of the La-Cr-O
system lays the groundwork for extension to a thermody-
namic La-Sr-Mn-Cr-O oxide database that is required to
understand the thermodynamics of SOFC degradation by
chromium. It is also a starting point for extensions to
thermodynamic databases with additional components serv-
ing as dopants in LaCrO3 for SOFC interconnect and
cathode applications.

The assessment of the La-Cr-O system using the Calphad
approach is based on the recently reassessed La-O[8] and
Cr-O subsystems.[9] The lattice stabilities of elements are
adopted from Dinsdale.[10] All available experimental phase
diagram, thermodynamic, and structure-chemical data are
critically assessed, aiming at minimizing the squared errors
between experiments and calculation during the optimiza-
tion of model parameters using the PARROT module of the
Thermocalc[11] software.

2. Literature Review of the La-Cr System

The La-Cr system has a eutectic at 1138 K[12,13] and 3.4
at.% Cr[13] and a monotectic at 1983 K[12] or 2103 K[14] and
96 at.%[12] or 99.1 at.%[14] Cr, as well as a large liquid-
liquid miscibility gap.[12,13] No intermetallic phases were
found in the La-Cr system.[12,13]

Berezutskii et al.[15] determined the partial enthalpy of
mixing in La-Cr liquid with infinite dilution of Cr, D �HCr at
1700 K using high-temperature calorimetry.

As small additions of rare-earth metals essentially
increase the high-temperature corrosion resistance of chro-
mium,[16] modeling of the La-solubility in bcc-structured Cr,
denoted as aCrss, is of technological interest. Small
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solubility of La in aCrss was reported,
[12,14,17] whereas Cr is

almost insoluble in La.[13] The solubility of La in aCrss was
determined in investigations by Savitskii et al.[12] from
1073 K up to the melting of Cr using metallographic and
micro-hardness techniques to be 2.5 at.% at 1983 K.
Svechnikov et al.[14] reported a La solubility of 0.68 at.%
at 2103 K, and Epstein et al.[17] found La< 0.04 at.% in
aCrss at 1533 K. The solubility of La in aCrss decreases
toward lower temperatures.

3. Literature Review of the La-Cr-O System

In the LaO1.5-CrO1.5 system two eutectics were found at
19 at.% Cr2O3 (T = 2243 K)[18] or 12 at.% Cr2O3 (T =
2323± 20 K),[19] and at 84 at.% Cr2O3 (T = 2248 K)[18] or
80 at.% Cr2O3 (T = 2473± 20 K)[19] in argon atmosphere
on either side of the congruently melting perovskite-
structured lanthanum chromite[18-20] (in this study oxides
containing Cr(III) and Cr with higher valencies than three
are denoted as chromite and chromate respectively). The
melting temperature of lanthanum chromite in air,
Tm(air) = 2773 K was determined by Foëx[21] and by
Coutures et al.[20] using a thermal analysis technique
described in more detail in earlier publications.[22-24] The
melting temperature was measured with optical pyrometers.
Tm(argon) = 2703 K was reported by Tresvjatskiy et al.,[18]

but in the graphic presentation of the phase diagram in the
same paper Tm(argon)� 2600 K, and the exact value of the
oxygen partial pressure was not specified. Experimentally
determined special points in the LaO1.5-CrO1.5 quasibinary
system reveal a considerable spread. This is not surprising
as experiments are complicated due to the high investigation
temperatures and evaporation predominantly of Cr.[25,26]

Furthermore deviations between the data from Tresvjatskiy
et al.[18] and Berjoan[19] may partly originate from differ-
ences of the oxygen partial pressure, which in both studies
was not specified exactly. The peritectic phase diagram
proposed by Cassedanne[27] is in gross conflict with the
phase diagram data from the other groups.

Experimental oxygen solubilities in pure Cr and La were
considered in thermodynamic assessments by Povoden
et al.[9] and Grundy et al.,[28] but experiments on oxygen
solubilities in aCrss are missing.

3.1 Lanthanum Chromates

The following lanthanum chromates were documented:
Berjoan[19] reported that orthorhombic La2CrO6 forms at
T > 923 K. Using differential scanning calorimetry (DSC)
he determined the enthalpy change of the reaction

2La2O3 þ Cr2O3 þ
3

2
O2ðgÞ ! 2La2CrO6 ðEq 1Þ

at 1055 K and pO2 ¼ 83; 000 Pa to be -151± 8 kJ mol-1.
The enthalpy of formation of La2(CrO4)3 from the

elements at 298 K was proposed by Tsyrenova et al.[29] to
be -3961±11.7 kJ mol-1. La2(CrO4)3 decomposes by

La2ðCrO4Þ3 ������!
890�1030K

2LaCrO3 þ 0:5Cr2O3 þ 2:25O2ðgÞ "
ðEq 2Þ

An enthalpy change of 231 kJ mol-1 was determined for
this reaction at the average temperature of 960 K.[30]

LaCrO4 has been interpreted as a mixed-valent interme-
diate decomposition product of La2(CrO4)3.

[30,31]

Stoichiometries and thermal stability ranges of lantha-
num chromates with complex formulae were reported by
Berjoan et al.[32] However these were in significant dis-
agreement with later results obtained by the same author.[19]

3.2 The Perovskite Phase

Existing experimental data of lanthanum chromite
perovskite structure,[33-45] thermodynamics,[30,33-35,43,46-53]

phase stability,[54] and nonstoichiometry[55,56] along with
the investigation techniques used are listed in Table 1.

3.3 Crystal and Magnetic Structure

LaCrO3 is orthorhombic at room temperature and
transforms to rhombohedral structure at higher tempera-
tures.[20,33-42] Both the rhombohedral and orthorhombic
forms of LaCrO3 are slight distortions of the perovskite
crystal structure. The perovskite structure is primitive cubic
and with the formula ABX3 and has an A atom at the unit
cell origin, (0,0,0), a B atom at the body-centered position
(½, ½, ½), and three X atoms at the face-centered positions,
(½, ½, 0; ½, 0, ½, ½, 0, ½, ½). The body diagonal of the unit
cell, [111], exhibits threefold rotational symmetry and has a
magnitude of 3 ½ [a] where a is the lattice parameter. Any
deviation of this dimension away from 3 ½ [a] retains the
threefold rotational symmetry and the equality of the three
lattice parameters, but reduced the angles between the lattice
parameters to less than 90� for a length >3 ½ [a] or greater
than 90� for a length <3 ½ [a]. Thus the symmetry in either
case becomes rhombohedral. Similarly, if the perovskite
until cell is distorted in such a way that one lattice parameter
is shortened, a second is lengthened, and the third remains
the same with retention of the 90� interaxial angles, the
symmetry becomes orthorhombic. For both distortions, the
atomic loci are retained with La at the cell origin, Cr at
the body-centered site, and O at the three-face centered
positions.[57] In the present paper, the Gibbs energy
expressions for the two different forms are distinguished
by superscripting with r-prv or o-prv.

The temperatures, enthalpy and entropy changes of this
first-order[44] transition taken from the literature are listed in
Table 2 along with the investigation techniques used. The
reported transformation temperatures lie between 503 and
583 K. The determined enthalpy and entropy changes vary
from 277 to 502.08 J mol-1 and 0.5 to 0.96 J mol-1 K-1. A
transformation from rhombohedral to cubic structure at a
temperature close to 1300 K was reported by Ruiz et al.[37]

and Momin et al.,[41] whereas Coutures et al.[20] reported
1923 K using high-temperature X-ray diffraction (HT-
XRD), in agreement with Berjoan[19] (1923± 20 K) using
dilatometry. Berjoan[19] further reported prevailing of the
cubic structure at 2173 K. On the other hand Geller and
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Raccah[38] as well as Höfer and Kock[34] did not observe the
rhombohedral to cubic transition up to T = 1873 K and
T = 1823 K respectively using differential thermal analysis
(DTA).

A magnetic order-disorder transition was documented to
occur at T� 287 K,[35] 289 K,[45] or 295 K.[46]

3.4 Enthalpy of Formation

Cheng and Navrotsky[47] determined the enthalpy of
formation of LaCrO3 by oxide melt solution calorimetry at
1078 K.

3.5 Heat Capacity and Enthalpy Increment Data

The heat capacities of LaCrO3 were measured by
Korobeinikova and Reznitskii[33] from 340 to 900 K using
adiabatic calorimetry, Höfer and Kock[34] (480-610 K) and
Satoh et al.[45] (150-450 K) using DSC, Satoh et al.[45] (77-
280 K) using alternating current calorimetry, Sakai et al.[35]

(100-1000 K) using laser-flash calorimetry, and Sakai and
Stølen[43] (272-1000 K) using adiabatic shield calorimetry.
Enthalpy increments of LaCrO3 at 1090 and 1350 K were
measured by Suponitskii[30] using a high-temperature heat-
conducting calorimeter.

Table 1 Calculated and experiment thermodynamic
data of La-Cr oxides

Rhombohedral LaCrO3

Standard enthalpy

Df ;elements
�HLaCrO3

298K ¼ �1368:2 kJmol�1 this work, calculated

Df ;oxides
�HLaCrO3

298K ¼ �73:7 kJmol�1 this work, calculated

Df ;oxides
�HLaCrO3

975K ¼ �62:35 kJmol�1 this work, calculated

Df ;oxides
�HLaCrO3

1078K ¼ �73:06� 2:79 kJmol�1 Drop solution calorimetry

in 2PbO9B2O3
[46]

Standard entropy
�SLaCrO3

298K ¼ 109:2 Jmol�1 K�1 this work, calculated

Gibbs energy of formation by
3
4 La2O3 þ 1

2 Cr2O3 ! LaCrO3

T ¼ 1273K D�G ¼ �76:75 kJmol�1 this work, calculated

T ¼ 1273K D�G ¼ �30:1� 1:5 kJmol�1[49] solid oxide electrolyte-emf

T ¼ 1273K D�G ¼ �42:29� 0:38 kJmol�1[52] CaF2-based emf

T ¼ 2100K D�G ¼ �79:52 kJmol�1 this work, calculated

T ¼ 2100K D�G ¼ �78:9� 1:1 kJmol�1[53] Knudsen mass

spectrometry

D�G ¼ �72:403� 0:0034T ðkJmol�1Þ; 1273� 2673K this work,

calculated

D�G ¼ �44:45þ 0:002115T � 0:4 ðkJmol�1Þ; 855� 1073K[50]

CaF2-based emf

D�G ¼ �94:758þ 0:08530T ðkJmol�1Þ; 700� 885K[51] CaF2-based emf

Enthalpy increments H � H298K; kJmol�1

T ¼ 1090K

98.19, this work, calculated

94.4[30] HT(high temperature)-calorimetry

T ¼ 1350K

133.05 this work, calculated

139.2[30] HT-calorimetry

Activity of Cr2O3 in LaCrO3

T ¼ 2100K aCr2O3 ¼ 1:11� 10�4 this work, calculated

T ¼ 2100K aCr2O3 ¼ 1:1� 10�4 � 1:1� 10�5[53] Knudsen mass

spectrometry

La2CrO6

Enthalpy of the formation on reaction

La2O3 þ 0:5Cr2O3 þ 1:5O2ðgÞ ! La2CrO6

Df ;oxides
�HLa2CrO6

298K ¼ �73:0 kJmol�1 this work, calculated
�SLa2CrO6

298K ¼ 330 Jmol�1 K�1 this work, calculated

La2ðCrO4Þ3
Df ;elements

�H
La2ðCrO4Þ3
298K ¼ �3845 kJmol�1 this work, calculated

Df ;elements
�H

La2ðCrO4Þ3
298K ¼ �3961� 11:7 kJmol�1, calculated[29]

�S
La2ðCrO4Þ3
298K ¼ 516 Jmol�1 K�1 this work, calculated

Enthalpy of the formation on reaction

La2O3 þ 1:5Cr2O3 þ 2:25O2ðgÞ ! La2ðCrO4Þ3
Df ;oxides

�H
La2ðCrO4Þ3
298K ¼ �372 kJmol�1 this work, calculated

Enthalpy of the dissociation reaction

La2ðCrO4Þ3 ! 2LaCrO3 þ 0:5Cr2O3 þ 2:25O2ðgÞ
DHLa2ðCrO4Þ3

298K ¼ 231 kJmol�1[30] and this work, fitted

Table 2 Calculated and experimental data of the
orthorhombic fi rhombohedral transition of LaCrO3

Transition temperature, K

540, this work, calculated

503-583[33] adiabatic calorimetry

544± 1[34] (a) DTA, DSC, thermogravimetry, dilatometry

536[35] (a) adiabatic shield calorimetry, HT-XRD (air and vacuum)

563± 5[36] DTA, dilatometry, HT-XRD, HT-microscopy, HT-X-ray

photography

550[37] HT-XRD

528-533[38] (a) HT-XRD

533± 3[38] (a) DTA

543[39] XRD

533[20] HT-XRD

540± 2[40] (a) HT-XRD, DSC

533± 5[40] (a) HT-XRD, dilatometry

545[41] heating, DSC

535[41] cooling DSC

550[41] HT-XRD

523[42] (a) starting transition, simultaneous DSC-XRD

541[42] (a) completed transition, simultaneous DSC-XRD

533[43] estimated from neutron powder diffraction

509[44] DSC, XRD

Enthalpy change of transition, J mol-1

340, this work, calculated

502.08± 41.84 at 503-583 K[33] calculated from adiabatic calorimetry

277 at 544± 1 K[34] (a) DSC

403.25 at 536[35] (a) calculated from adiabatic shield calorimetry

340± (10-40) at 533± 5[40] (a) DSC

380 at 550 K[41] DSC

310 at 509 K[44] DSC

Enthalpy change of transition, J mol-1 K-1

0.63, this work, calculated

0.96 at 503-583 K[33] calculated from adiabatic calorimetry

0.5[34] (a) calculated from DSC

0.75[35] (a) calculated from adiabatic shield calorimetry

(a) Used for optimization
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3.6 Gibbs Energy of Formation

In order to obtain the Gibbs energy of formation of
LaCrO3, Chen et al.[49] measured electromotive force (emf)
of the solid oxide galvanic cell Pt/Cr, La2O3, LaCrO3/MgO-
stabilized ZrO2/Cr2O3, Cr/Pt at 1273 K. Azad et al.,[50]

Chen et al.,[51] and Dudek et al.[52] measured emf of Pt, O2/
La2O3, LaF3/CaF2/LaF3, LaCrO3, Cr2O3/O2, Pt in pure
oxygen from 855 to 1073 K, 700 to 885 K, and 1273 K
respectively. Peck et al.[53] derived the Gibbs energy of
formation of LaCrO3 from the determination of the ther-
modynamic activity of Cr2O3 in LaCrO3 for the Cr2O3-poor
phase boundary of LaCrO3 in the temperature range from
1887 to 2333 K using Knudsen effusion mass spectrometry.

3.7 Chemical Stability

Nakamura et al.[54] reported no weight loss of lanthanum
chromite at 1273 K from pure oxygen to pO2 ¼ 10�16:1 Pa
using thermogravimetry combined with X-ray diffraction
(XRD). This means that the perovskite phase does not
decompose within this oxygen partial pressure range, and its
oxygen nonstoichiometry is neglectable.

3.8 Cation Nonstoichiometry and Defect Chemistry

Maximum excess Cr in single-phase La1–xCrO3 of 0.38
at.% in furnace-cooled LaCrO3 annealed at 1773 K in air
was reported from Khattak and Cox.[55] Single phase
lanthanum chromite with 0.76-1.28 at.% excess Cr was
prepared at 1773 K in a pure oxygen atmosphere.[56] Iliev
et al.[56] observed an intensity decrease of the high
frequency band in a Raman spectrum of lanthanum chromite
measured after annealing the phase in vacuum at 1273 K.
This feature was assigned to a reduced number of Cr4+ due
to partial removal of oxygen during the annealing of the
originally lanthanum-deficient perovskite phase.

Interpretations of the defect chemistry of the perovskite
phase were made from electrical conductivity measure-
ments: the electrical conduction in lanthanum chromite is
almost purely electronic,[37,58] affirming the lack of oxygen
vacancies in the structure, in line with the results from
thermogravimetry.[54] Ruiz et al.[37] reported that the ionic
transport number in lanthanum chromite is less than 0.05%
up to 1250 K. Akashi et al.[59] measured the isothermal
electrical conductivity of an equilibrated La1–xCrO3-Cr2O3

mixture with 5 vol.% excess Cr2O3 at 1573-1673 K from
pO2 ¼ 1:0� 103 Pa to pO2 ¼ 2:0� 104 Pa. They observed
an extraordinarily slow equilibration of the samples: More
than four months were required to measure the electrical
conductivity at equilibrium state. The conductivity was
proportional to pO2

3=16, the same as reported in an earlier
study.[25] On the other hand a slope of pO2

1=4 from 700 to
1300 K and purely intrinsic conductivity >1600 K stated
by Shvaiko-Shvaikovskii et al.[58] is inconsistent with the
findings from Akashi et al.[58] Shvaiko-Shvaikovskii
et al.[58] deduced n-type conductivity from measurements
of transport number, resistivity and thermo-emf at
pO2 ¼ 1 Pa and pO2 ¼ 102 Pa, the electrical conductivity
being proportional to p�3=8O2

. The transition from reduced to
stoichiometric chromite was accompanied by a decrease of

about 0.1% in weight, thus the presence of interstitial Cr in
reduced chromite was proposed. However n-type conduc-
tivity was not confirmed by any further study.

Several groups[59,60] agree that the electrical neutrality is
maintained by holes and lanthanum vacancies, and that the
carrier is the hole in lanthanum chromite.[25,59-61] Akashi
et al.[59] reported that concentrations of lanthanum vacancies
and holes slightly increase from 1550 to 1700 K. In contrast
to the other authors Shvaiko-Shvaikovskii et al.[58] and
Meadowcroft[25] proposed the occurrence of chromium
vacancies instead of lanthanum vacancies.

4. Thermodynamic Modeling and Optimization

4.1 Metal Phases

In order to account for the solubility of La in aCrss, the
zeroth-order, composition-independent interaction parame-
ter[62] 0LbccCr;La:Va was given a positive value. We chose the
solubility values from Svechnikov et al.[14] for its optimi-
zation, as these data are more comparable to solubilities in
other rare earths-transition elements systems.

Povoden et al.[9] described the solubility of oxygen in
Cr(bcc) using the model Cr(Va,O)3. For the reasons dis-
cussed recently,[63] we reassess the oxygen-solubility in
Cr(bcc) using the model (Cr)(O,Va)1.5, and aCrss is then
given by the two-sublattice description (La,Cr)(Va,O)1.5. The
Gibbs energy of the end-member (Cr)(O)1.5 is defined as

�GðCrÞðOÞ1:5 � HSER
Cr �

3

2
HSER

O ¼ �GCrðbccÞ
½10� þ 3

4
�Ggas½10�

O2

þ Aþ BT ðEq 3Þ

HSER
x is the standard enthalpy of the stable state of element x

at 298.15 K and 105 Pa.[10] A and B are adjustable
parameters; using the PARROT module of the Thermocalc
software[11] A was given the fixed value 0 for the reasons
discussed in an earlier paper,[9] while B and a regular
interaction parameter 0LCr:O;Vawere optimized with the same
experimental data.[9] Due to the lack of experimental data
the oxygen solubility in aCrss was modeled as an ideal
extension of the oxygen solubilities in pure La and Cr.

4.2 Solid Oxides

4.2.1 Lanthanum Chromates. The Gibbs energy func-
tion of La2CrO6 was based on the sum of the Gibbs energy
functions of La2O3, Cr2O3, and O2 in proper stoichiometries
and A + BT parameters that were fitted to the enthalpy of
formation from the oxides, Eq 1 as well as thermal stability
data. The thermal stability of La2CrO6 is slightly influenced
by the thermodynamics of the intermediate, mixed-valent
chromates mentioned above. In order to refine the model
parameters of La2CrO6, it was thus necessary to consider
these mixed-valent chromates in a provisional version of the
thermodynamic La-Cr-O database in spite of their arguable
stoichiometries, and to optimize their model parameters with
phase diagram data.[19,32] The formation of chromates that
contain mixed Cr valences may be explained by gradual
reduction of Cr6+ in La2CrO6 as the temperature increases.
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These chromates can be interpreted as intermediate products
in the scope of a sluggish decomposition of La2CrO6, which
starts at 1153 K[19,32] and is completed at 1473 K[32] or
1523 K.[19] The simplified decomposition reaction reads

La2CrO6 ��������������!
mixed�valent chromates½19;32� 1þ x

2
La2O3 þ La1�xCrO3

þ 1:5� ð1:5xÞ
2

O2ðgÞ "

ðEq 4Þ

Slight differences of the oxygen partial pressure during
experiments may be reflected by a variable extent of Cr-
reduction, and consequently ambiguous stoichiometries of
mixed-valent intermediate chromates. These lanthanum
chromates with conflicting stoichiometries[19,32] are not
included in the presented thermodynamic database.

The Gibbs energy function of La2(CrO4)3 was formulated
using the same strategy as for La2CrO6. The model
parameters were fitted to the experimental enthalpy and
temperature of decomposition.[30] The enthalpy of formation
from the elements[29] was not used as it is a calculated value.

We go along with the interpretation of LaCrO4 being an
intermediate reaction product during the decomposition of
La2(CrO4)3 by Eq 2 and do not include this phase in the
modeling.

4.2.2 The Perovskite Phase. GVCR4O and GLCR4O
stand for the Gibbs energy functions of the completely
oxidized neutral endmember. GVCR4O and GLCR4O are
set equal for orthorhombic and rhombohedral perovskite at
the transition. Stoichiometric perovskite: The Gibbs energy
function of stoichiometric rhombohedral LaCrO3 with the
sublattice formula (La3+)(Cr3+)ðO2�Þ; �Gr�prv

LaCrO3
is given by

�Gr�prv
LaCrO3

�HSER
La �HSER

Cr � 3HSER
O ¼ �GLa3þ:Cr3þ:O2�

¼ GRPRV¼ 1

2
�GCr2O3

½9� þ 1

2
�GLa2O3

½8� þGmag þAþBT

þCT lnT ðEq 5Þ

The parameters A, B, and C are optimized using the enthalpy
of formation from Cheng and Navrotsky,[47] activity-data of
Cr2O3 in LaCrO3 from Peck et al.,[53] heat capacity-data
obtained by adiabatic calorimetry from Sakai and Stølen,[35]

and enthalpy increment-data measured at high tempera-
tures.[30] A phase diagram with congruent melting of
lanthanum chromite and two eutectics[18,19] cannot be
reproduced by using the emf-experiments.[49-52] Thus these
data were excluded from the optimization.

A + BT parameters of the low-temperature orthorhombic
perovskite phase were optimized with those tempera-
tures,[34,35,38,40,42] enthalpies[34,35,40] and entropies[34,35] of
transition having been obtained by combined investigation
techniques and being internally most consistent. The
rhombohedral to cubic transformation at high temperatures
is not considered in the model, as there is no existing
thermodynamic data for this transition.

Cation-nonstoichiometric perovskite: to choose a proper
model for nonstoichiometric perovskite the following con-
siderations are made: the formation of interstitial Cr in

lanthanum chromite proposed by Shvaiko-Shvaikovskii
et al.[58] is unlikely due to the densely-packed perovskite
structure, and oxygen nonstoichiometry can be excluded
from thermogravimetry[54] and electrical conductivity[37,59]

measurements. Thus the defects in n-type conducting[58]

lanthanum chromite are ambiguous and were not considered
in the model.

B-site vacancies are energetically less favored than A-site
vacancies in the perovskite structure.[64,65] This means that
the simplest sublattice model to describe cation nonstoi-
chiometric La1–xCrO3 reads (La3+,Va)(Cr3+,Cr4+)(O2-)3.
While this model results in a satisfying reproduction of
experimental data, irreconcilable trouble is encountered at
the extension to the LaO1.5-MnO1.5-CrO1.5 system required
for SOFC applications due to diversities between the model
descriptions of lanthanum chromite and lanthanum manga-
nite.[66] These are solved by allowing Va on the B-site and
the anion sublattice of lanthanum chromite just like in
lanthanum manganite[66] leading to the appropriate sub-
lattice formula (La3+,Va)(Cr3+,Cr4+,Va)(O2-,Va)3. The opti-
mization of selective model parameters listed in Table 3
resulted in negligible concentrations of Va on the B-site
and the anion sublattice, and the perovskite formula
essentially remains La1–xCrO3. Using the compound
energy formalism (CEF)[67-69] the molar Gibbs energy of
La1–xCrO3 reads

�Gprv
m ¼

X

i

X

j

X

k

yiyjyk
�Gi:j:k

þ RT
X

i

yi ln yi þ
X

j

yj ln yj þ
X

k

yk ln yk

 !

þ EGprv
m þ Gmag ðEq 6Þ

where yi is the site fraction of Va and La3+ on the
A-sublattice, yj is the site fraction of Cr3+, Cr4+ and Va on
the B-sublattice, and yk is the site fraction of O2- and Va
on the anion sublattice of the perovskite A1–xBO3.
R = 8.31451 J mol-1 K-1. The third-last term accounts
for the configurational entropy of mixing. The second-last
term describes the excess Gibbs energy of mixing due to
interactions of ions in the mixture. These are accounted for
by the optimization of interaction parameters. The last term
designates the magnetic contribution to the Gibbs energy.
For the magnetic part of the Gibbs energy a magnetic
ordering-model proposed by Inden[70] and simplified by
Hillert and Jarl[71] was used. A short summary of this
model can be found in Chen et al.[72] The magnetic
parameters Tc and b were fitted to the Cp-data around
the magnetic transition temperature from Sakai and
Stølen.[35]

Figure 1 is a visualization of the Cr-containing part of the
model the authors use to describe the cation nonstoichiom-
etry of lanthanum chromite. The parameters of the com-
pound energy formalism are the Gibbs energies of the not
necessarily neutral 12 end-member compounds �Gi:j:k , with
the 8 Cr-containing compounds being the corners of the
cube. Only compounds inside the neutral plane can exist on
their own.
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Table 3 Model descriptions and Gibbs energy functions (a)

Liquid (liq)

ðLa3þ;Cr2þ;Cr3þÞpðO2�;Vaq�Þq
p ¼ 2yO2� þ qyVa; q ¼ 3yLa3þ þ 2yCr2þ þ 3yCr3þ
�Gliq

La3þ :Vaq�
� HSER

La ¼ GLALIQ[8]

�Gliq

La3þ :O2� � 2HSER
La � 3HSER

O ¼ GLA2O3LIQ[8]

�Gliq

Cr2þ :Vaq�
� HSER

Cr ¼ GCRLIQ[10]

�Gliq

Cr3þ :Vaq�
� HSER

Cr ¼ 2GCRLIQ½10� � GCR2O3 L½9� � 3GCR1O1 L½9�

�Gliq

Cr3þ :O2� � 2HSER
Cr � 3HSER

O ¼ 5GCR1O1 L� 179638þ 79:923T ½9�

�Gliq

Cr2þ :O2� � 2HSER
Cr � 2HSER

O ¼ 2GCR1O1 L½9�

Interaction terms

Lliq
Cr2þ :O2� ;Vaq�

¼ Lliq
Cr3þ :O2� ;Vaq�

¼ 121000[9]

Lliq
Cr2þ ;La3þ:Vaq�

¼ 61397� 5:23T þ ð65393� 23TÞðyCr2þ � yLa3þ Þ
Lliq
Cr2þ ;La3þ:O2� ¼ �101850� 39016ðyCr2þ � yLa3þ Þ

Lliq
Cr3þ ;La3þ:O2� ¼ �101850� 39016ðyCr3þ � yLa3þ Þ

Bcc A2 phase

ðLa;CrÞðVa;OÞ1:5
�Gbcc

Cr:Va � HSER
Fe ¼ GHSERCR[10]

�Gbcc
La:Va � HSER

La ¼ GLABCC[10]

�Gbcc
Cr:O � HSER

Cr � 3
2H

SER
O ¼ GHSERCR½10� þ 3

4
�GðO2ðgÞÞ½10� þ 113:17755T

�Gbcc
La:O � HSER

La � 3
2H

SER
O ¼ GLABCC½10� þ 3

4
�GðO2ðgÞÞ½10� � 855000þ 142:5T [28]

LbccCr:Va;O ¼ �355151:422
LbccCr;La:Va ¼ 99571

p = 0.4[9]

Tbcc
c ¼ �311:5yCr[9]

bbcc ¼ �0:008yCr[9]

La1�xCrO3 perovskite

ðLa3þ;VaÞðCr4þ;Cr3þ;VaÞðO2�;VaÞ3
�Go�prv

La3þ :Cr3þ :O2� � HSER
La � HSER

Cr � 3HSER
O ¼ GOPRVþ Gmag

�Gr�prv
La3þ :Cr3þ :O2� � HSER

La � HSER
Cr � 3HSER

O ¼ GRPRVþ Gmag
�Go�prv

La3þ :Cr4þ :O2� � HSER
La � HSER

Cr � 3HSER
O ¼ 5=6GS4O½73� þ GOPRV� GS3V½73� þ 1=6GS4V½73� þ Gmag

�Gr�prv
La3þ :Cr4þ :O2� � HSER

La � HSER
Cr � 3HSER

O ¼ 5=6GS4O½73� þ GRPRV� GS3V½73� þ 1=6GS4V½73� þ Gmag
�Go�prv

La3þ :Cr3þ :Va
� HSER

La � HSER
Cr ¼ GOPRV� 1:5�GðO2ðgÞÞ½10� þ Gmag

�Gr�prv
La3þ :Cr3þ :Va

� HSER
La � HSER

Cr ¼ GRPRV� 1:5�GðO2ðgÞÞ½10� þ Gmag
�Go�prv

La3þ :Cr4þ :Va
� HSER

La � HSER
Cr ¼ 5

�

6GS4O½73� � GS3V½73� þ 1
�

6GS4V½73� þ GOPRV� 1:5�GðO2ðgÞÞ½10� þ Gmag
�Gr�prv

La3þ :Cr4þ :Va
� HSER

La � HSER
Cr ¼ 5

�

6GS4O½73� � GS3V½73� þ 1
�

6GS4V½73� þ GRPRV� 1:5�GðO2ðgÞÞ½10� þ Gmag
�Go�prv

Va:Cr3þ :O2� � HSER
Cr � 3HSER

O ¼ GOPRVþ 1:5GVCR4Oþ 0:5GVVV½65� � 2GLCR4Oþ 0:75�GðO2ðgÞÞ½10� � 1:41263T þ Gmag
�Gr�prv

Va:Cr3þ :O2� � HSER
Cr � 3HSER

O ¼ GRPRVþ 1:5GVCR4Oþ 0:5GVVV½65� � 2GLCR4Oþ 0:75�GðO2ðgÞÞ½10� � 1:41263T þ Gmag
�Go�prv

Va:Cr3þ :Va
� HSER

Cr ¼ GOPRVþ 1:5GVCR4Oþ 0:5GVVV½65� � 2GLCR4O� 0:75�GðO2ðgÞÞ½10� � 1:41263T þ Gmag
�Gr�prv

Va:Cr3þ :Va
� HSER

Cr ¼ GRPRVþ 1:5GVCR4Oþ 0:5GVVV½65� � 2GLCR4O� 0:75�GðO2ðgÞÞ½10� � 1:41263T þ Gmag
�Go�prv

Va:Cr4þ :O2� � HSER
Cr � 3HSER

O ¼ �Gr�prv
Va:Cr4þ :O2� � HSER

Cr � 3HSER
O ¼ 2GVCR4Oþ 1=3GVVV½66� � 4=3GLCR4Oþ 0:5�GðO2ðgÞÞ½10� þ 4:35056T þ Gmag

�Go�prv
Va:Cr4þ :Va

� HSER
Cr ¼ �G

r�prv
Va:Cr4þ :Va

� HSER
Cr ¼ 2GVCR4Oþ 1=3GVVV½66� � 4=3GLCR4O� �GðO2ðgÞÞ½10� þ 4:35056T þ Gmag

Interaction term

Lprv
La3þ :Cr3þ;Va:O2� ¼ Lprv

La3þ :Cr4þ;Va:O2� ¼ 250000

Magnetic contribution

To�prv
c ¼ T r�prv

c ¼ 291:35yi:j:kb
o�prv ¼ br�prv ¼ 0:894yi:j:k

i ¼ La3þ;Va

j ¼ Cr4þ;Cr3þ

k ¼ O2�; Va

La-Chromates

La2CrO6

ðLa3þÞ2ðCr6þÞðO2�Þ6
�GLa2CrO6

La3þ :Cr6þ :O2� � 2HSER
La � HSER

Cr � 6HSER
O ¼ GLA2CRO6

La2ðCrO4Þ3
ðLa3þÞ2ðCr6þÞ3ðO2�Þ12
�G

La2ðCrO4Þ3
La3þ :Cr6þ :O2� � 2HSER

La � 3HSER
Cr � 12HSER

O ¼ GLA2CR3O12
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�Gprv

ðLa3þÞðCr4þÞðO2�Þ3
and �Gprv

ðLa3þÞðCr4þÞðVaÞ3
are given in

Table 3. These endmembers of nonstoichiometric perovskite
have been fixed firmly by a sufficient number of consistent
experiments in the LaO1.5-SrO-CrO1.5 system.[73] Thus the
authors adopted �Gprv

ðLa3þÞðCr4þÞðO2�Þ3
and �Gprv

ðLa3þÞðCr4þÞðVaÞ3
from Povoden.[73] The neutral Cr4+-containing endmembers

�Gprv
VaCrO2

� HSER
Cr � 2HSER

O

¼ 2

3
�GVa:Cr4þ:O2� þ 1

3
�GVa:Cr4þ:Va þ 3RT

2

3
ln
2

3
þ 1

3
ln
1

3

� �

¼ GVCR4O ¼ 1

2
�G

½9�

Cr2O3
þ 1

4
�Ggas½10�

O2
þ Gmag þ Aþ BT

ðEq 7Þ

Table 3 continued

Functions

Perovskite

Stoichiometric orthorhombic perovskite

GOPRV ¼ 0:5GLA2O3A½8� þ 0:5GCR2O3½9� � 73931þ 3:01T � 0:68T lnT

Stoichiometric rhombohedral perovskite

GRPRV ¼ 0:5GLA2O3A½8� þ 0:5GCR2O3½9� � 73591þ 2:38T � 0:68T lnT

Neutral nonstoichiometric perovskite endmembers

GS4O½72� ¼ �597648þ 213:38T � 47:56T lnðTÞ � 0:00307T2 þ 190000T�1 þ 0:5GCR2O3½9� þ 0:25�GðO2ðgÞÞ½10�

GS3O½72� ¼ �472704þ 191:7186T � 47:56T lnðTÞ � 0:00307T2 þ 190000T�1 þ 0:5GCR2O3½9�

GVCR4O ¼ 0:5GCR2O3½9� þ 0:25�GðO2ðgÞÞ½10� � 291802� 250T

GLCR4O ¼ 1=3GLA2O3A½8� þ 0:5GCR2O3½9� þ 0:25�GðO2ðgÞÞ½10� � 200000

Perovskite reference[73]

GS4V½72� ¼ �607870þ 268:9T � 47:56T lnðTÞ � 0:00307T2 þ 190000T�1 þ 0:5GCR2O3� 1:25�GðO2ðgÞÞ½10�

La2CrO6

GLA2CRO6 ¼ GLA2O3A½8� þ 0:5GCR2O3½9� þ 0:75�GðO2ðgÞÞ½10� � 72615� 4:5T

La2(CrO4)3
GLA2CR3O12 ¼ GLA2O3A½8� þ 1:5GCR2O3½9� þ 2:25�GðO2ðgÞÞ½10� � 371557þ 205T

(a) All parameters are in SI units: J, mol, K. R = 8.31451 J mol-1 K-1

Fig. 1 Representation of the Cr-containing part of the model for nonstoichiometric lanthanum chromite. The thin lines margin the neu-
tral plane. The neutral compounds used for the optimization are marked by the black spots
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and

�Gprv
La2=3CrO3

�2
3
HSER

La �HSER
Cr �3HSER

O

¼2

3
�GLa3þ:Cr4þ:O2� þ1

3
�GVa:Cr4þ:O2� þRT 2

3
ln
2

3
þ1
3
ln
1

3

� �

¼GLCR4O¼1

2
�G½9�Cr2O3

þ1
3
�G½8�La2O3

þ1
4
�Ggas½10�

O2
þGmagþA

ðEq8Þ

and reciprocal relations which were set zero in analogy to
Grundy et al.[66] were used to obtain �Gprv

ðVaÞðCr3þÞðO2�Þ3
,

�Gprv

ðVaÞðCr4þÞðO2�Þ3
, �Gprv

ðVaÞðCr3þÞðVaÞ3
, and �Gprv

ðVaÞðCr4þÞðVaÞ3
. The

configurational entropy-term in Eq 7 describes random
mixing of O2- with Va on the anion sublattice. In Eq 8 it
describes random mixing of La3+ and Va on the A-site.

The parameters A and B of Eq 7 and A of Eq 8 are
optimized using experimental data of excess Cr in perov-
skite.[56] Furthermore the temperature dependence of lan-
thanum vacancy and hole concentrations from Akashi
et al.[59] was considered in the optimization. As cation
diffusion in La1–xCrO3 is extremely slow even at high
temperatures, the Cr-overstoichiometry in a furnace-cooled
specimen reported by Khattak and Cox[55] does most likely
not represent the overstoichiometry at an intermediate
temperature and was not used for the optimization.
�Gprv

ðLa3þÞðCr3þÞðVaÞ3
results from a reciprocal relation which

was set zero in analogy to Grundy et al.[66]:

�Go�prv;r�prv
LaCrVa3

� HSER
La � HSER

Cr

¼ �GLa3þ:Cr3þ:Va ¼ Go�prv;r�prv
LaCrO3

� 3

2
�GðO2ðgÞÞ

½10� ðEq 9Þ

Using Eq 5 to 8 and adopting the Gibbs energies of the
remaining endmembers �Gprv

ðLa3þÞðVaÞðO2�Þ3
, �Gprv

ðLa3þÞðVaÞðVaÞ3
,

�Gprv

ðVaÞðVaÞðO2�Þ3
, and �Gprv

ðVaÞðVaÞðVaÞ3
from Grundy et al.,[66] the

12 endmembers of the compound energy formalism of the
perovskite phase are defined. The introduction of positive
interaction parameters 0Lprv

La3þ;Va:Cr3þ:O2� and 0Lprv
La3þ;Va:Cr4þ:O2�

that were given the same values circumvents too high Cr4+

contents at low temperatures that would be in conflict with
the experiments.

4.3 The Liquid Phase

The two-sublattice model for ionic liquids[74,75] was used
for the description of the liquid phase of the La-Cr-O system.
It was based on the liquid descriptions of the binary
subsystems. The chromium species considered in the liquid
are Cr2+ and Cr3+. Higher oxidation states are unlikely to
exist in the liquid at normal oxygen partial pressures. The
liquid is thus given by the model description
(La3+,Cr2+,Cr3+)p(O

2-,Vaq-)q. The experimentally deter-
mined temperatures and liquid compositions[13,14] at the
eutectic and monotectic in the metallic La-Cr system and the
partial enthalpy of mixing of Cr, D �HCr

[15] in La-Cr liquid
were used to optimize the temperature-dependent regular

0Lliq
Cr2þ;La3þ:Va

and subregular 1Lliq
Cr2þ;La3þ:Va

interaction param-

eters to account for interactions between La and Cr. Further-

more the two regular interaction parameters 0Lliq
Cr3þ;La3þ:O2� ¼

0Lliq
Cr2þ;La3þ:O2� and the two subregular 1Lliq

Cr3þ;La3þ:O2� ¼
1Lliq

Cr2þ;La3þ:O2� were optimized. It was assumed that the

interactions between Cr2+-La3+ and Cr3+-La3+ are of the
same order of magnitude in the oxide melt, thus the two
regular interaction parameters were set equal to each
other, as were the two sub-regular interaction parameters.
Using the following data for their optimization led to the
lowest error between experiments and calculation: the
composition and temperature of the eutectic at the La-rich
side and the composition of the eutectic at the Cr-rich
side in the oxide LaO1.5-CrO1.5 system from Tresvjatskiy
et al.,[18] the temperature of the eutectic at the Cr-rich
side from Berjoan,[19] and the congruent melting temper-
ature of the perovskite phase from Coutures et al.[20] and
Foëx.[21] Berjoan[32] and Tresvjatskiy et al.[18] did not
specify the value of the prevailing oxygen partial pressure
during their phase diagram experiments conducted in an
argon atmosphere. As a value of the oxygen partial
pressure is required for the optimization, we defined
pO2 ¼ 1 Pa:

5. Results and Discussion

5.1 The La-Cr System

The calculated phase diagram of the La-Cr system is
presented in Fig. 2, together with experimental phase
diagram data.[12-14,17]. The positive value of 0LbccCr;La:Vaused
to model the bcc phase results in a large miscibility gap
between the La-rich and Cr-rich metals, which is tantamount
to a small solubility of La in aCrss in agreement with the
experiments.[14,17] The model description of the bcc phase
results in a tiny solubility of Cr in La(bcc), denoted as cLass,
of 2� 10�3 at.% at 1134 K, the lowest temperature of
stable cLass, which further decreases as a function of
increasing temperature. The calculated enthalpies of mixing
are shown in Fig. 3 together with the experimentally deter-
mined value[15] that is well reproduced by the calcula-
tion. Considerable deviations of the calculated liquidus
from experiments at the Cr-rich side of the system can be
ascribed to the problem of two different melting tempera-
tures for Cr cited in the literature, which are 2180
and 2130 K. The higher value was favored by Dinsdale[10]

and is adopted in this study, whereas the lower melting tem-
perature was chosen by Savitskii et al.[12] and Svechnikov
et al.[14]

A satisfying reproduction of the experimental data was
obtained by considering a moderate temperature dependence

of 0Lliq
Cr2þ;La3þ:Va

and 1Lliq
Cr2þ;La3þ:Va

. This is unfortunately

associated with an inverse liquid-liquid miscibility gap with
a minimum at x(Cr) = 0.25 and T� 5000 K that is of course
unphysical.
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5.2 The La-Cr-O System

5.2.1 Phase Equilibria. Calculated LaO1.5-CrO1.5 phase
diagrams in pure oxygen at pO2 ¼ 105 Pa, in air at pO2 ¼
21; 278 Pa, and under reducing conditions at pO2 ¼ 1 Pa
representing the typical oxygen partial pressure in argon
atmosphere are shown in Fig. 4 together with experimen-
tal data.[18-21]

Excess Cr in lanthanum chromite is favored at high
oxygen partial pressures. A decrease of Cr4+ during
annealing of an originally lanthanum-deficient perovskite
phase under reducing conditions is predicted by the model,
reflected by the disappearance of Cr overstoichiometry. This
is in line with the interpretations of Raman spectra from
Iliev et al.[56] Be it that the reported thermodynamic data of
La2CrO6

[19] and La2(CrO4)3
[30] are correct, lanthanum

chromite is expected to be metastable at room temperature,
and orthorhombic perovskite is stable only at pO2 � 102 Pa.
La2CrO6 is stable within a wide temperature-range in pure
oxygen, whereas it does not form in air and argon
atmosphere.

Due to the ambiguous oxygen partial pressure of phase
diagram experiments[18,19] and the conflicting data on the
melting temperature of lanthanum chromite in argon atmo-
sphere[18] the presented liquid description is rather tentative.
Under oxidizing conditions Cr3+ is favored over Cr2+ in the
liquid. Analogous to Fe in the La-Fe-O system[63] this
oxidation of Cr2+ to Cr3+ governs shifts of eutectic
compositions and temperatures and the increase of the
melting temperature of the perovskite phase on increasing
the oxygen partial pressure. On the other hand a significant
amount of Cr3+ in the ionic liquid is reduced to Cr2+ under
reducing conditions, and the liquid stability increases
considerably at the Cr-rich part of the system leading to a
considerably lowered eutectic temperature. The liquid
description using the two-sublattice model for ionic liquids
also resulted in a significantly larger decrease of the melting
temperature of lanthanum chromite at pO2 � 1 Pa than the
given values in argon atmosphere.[18] Despite this discrep-
ancy we did not go for an alternative liquid model for the
sake of consistency with our previously assessed systems.

In Fig. 5 calculated phase equilibria of the La-Cr-O
system at 1273 K are shown as a function of oxygen partial
pressure. It is obvious that no mutual solubilities of La and

Fig. 2 Calculated phase diagram of the La-Cr system with data from the literature included (symbols)

Fig. 3 Calculated partial enthalpies of mixing of La and Cr in
La-Cr liquid, and integral enthalpies of mixing as a function of
composition, with the experiment from Berezutskii et al.[15] at
1700 K included (symbol with error-bar)
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Cr in bcc metal in equilibrium with oxides are expected. The
same oxygen solubility in Cr as in the assessment by
Povoden et al.[9] was obtained using the new model

description (Cr)(O,Va)1.5. At pO2 ¼ 10�34:04 Pa metallic
liquid forms at the lanthanum-rich side of the phase
diagram.

Fig. 4 Calculated phase diagrams of the LaO1.5-CrO1.5 system in pure oxygen, air atmosphere, and under reducing conditions repre-
senting argon atmosphere at pO2 ¼ 1 Pa with experimental data included (symbols)

Fig. 5 Calculated phase equilibria of the La-Cr-O system at T = 1273 K as a function of oxygen partial pressure
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5.2.2 Thermodynamic Data. Calculated thermody-
namic data of solid oxides are listed together with exper-
imental data from the literature in Table 1. Calculated and
experimental data on the orthorhombic to rhombohedral
transition of LaCrO3 are listed in Table 2. Table 3 is a
compilation of the Gibbs energy functions and model
descriptions of the phases in the La-Cr-O system obtained in
this study.

5.2.3 Lanthanum Chromates. Testing an optimization
of model parameters of La2(CrO4)3 by using all available
thermodynamic data[29,31] resulted in gross disagreement
between optimized and reported values. The considerable
error might be explained by experimental difficulties to
reach equilibrium at the low investigation temperatures, and/
or by significant deviations between the thermodynamic
standard data used for the calculation of the enthalpy of
formation from the elements[29] and assessed values.[8-10]

Anyway the model parameters were fitted to the experi-
mental data,[30] whereas the calculated standard enthalpy of
formation from the elements[29] was rejected, bearing in
mind the high degree of uncertainty of the resulting
description. The perovskite phase: the calculated heat
capacities of LaCrO3 are compared with experiments from
the literature in Fig. 6. The calculated Cp-curve extrapolates
well to high temperatures. The use of Cp-data from Sakai
and Stølen[35] along with enthalpy increment-data from
Suponitskii[30] to optimize the parameter CT ln T of the
Gibbs energy of stoichiometric perovskite resulted in the

lowest error between experiments and calculation. As
CT ln T was set equal for o-prv and r-prv, their Cp is the
same. The experimentally determined Cp-peak around
545 K caused by the first-order transition o-prvM r-prv is
in fact a discontinuity which cannot be implemented in the
model. The calculated transition temperature of 540 K is
shown by the broken line in Fig. 6. The calculated Cp-peak
at 290 K reflects the temperature of the magnetic order-
disorder transition, the transition temperature being in
agreement with the experiments. Two values for the
magnetic parameter p are possible depending on the crystal
structure, p = 0.28 and p = 0.4, whereby the proper p-value
for structures other than bcc, fcc, and hcp is not available in
the literature. The Cp-anomaly is equally well reproduced by
the model[70,71] using p = 0.28 or p = 0.4. For the sake of
compatibility with the recent assessment of the La-Fe-O
system[63] we chose p = 0.28. Experimental enthalpy incre-
ments[30] are well reproduced by the calculation (see
Table 1). Due to the consistency between both groups of
calorimetric experiments[30,35] the term CT ln T is fixed
firmly. A small peak which was found around 855 K can be
explained most likely by the decomposition of an unde-
tected impurity phase.[35]

The calculated Gibbs energies of the formation of
LaCrO3 from the oxides

1

2
La2O3 þ

1

2
Cr2O3 ! LaCrO3 ðEq 10Þ

Fig. 6 Calculated heat capacities of LaCrO3 as a function of T with experimental data included (symbols). The dashed line marks the
temperature of the o-prv M r-prv transition
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are listed as a function of temperature together with data
from the literature[49-53] in Table 1. The resulting Gibbs
energies of formation from emf-measurements are remark-
ably less negative than the Gibbs energies of formation
derived from Knudsen mass spectrometry.[53] Only the use
of the latter data for the optimization resulted in the proper
phase diagram with congruent melting of the perovskite
phase and two eutectic. It needs to be clarified why all of
the emf-measurements are problematic: Azad et al.[50]

stated that the Gibbs energy of formation of LaCrO3

cannot be studied properly using the solid oxide electrolyte
method due to experimental difficulties in measuring the
low oxygen potentials encountered in a mixture of
coexisting LaCrO3-La2O3-Cr. Yet it is obvious that the
CaF2-based emf-technique is neither suitable for the
determination of thermodynamic data of lanthanum chro-
mite, as it unavoidably leads to emf that are too low. A
possible explanation is found in a study by Akila and
Jacob:[76] Fine precipitates of CaO can form on the surface
of CaF2 in water- or oxygen-containing atmosphere. In this
case the emf depends on the activity of CaO at the
electrode/electrolyte interface, and changing activity of
CaO at the electrode/electrolyte interface can alter the
chemical potential of fluorine at this electrode and thus the
emf across the electrolyte.

5.2.4 Chemical Stability of the Perovskite Phase. The
calculated oxygen partial pressure for the decomposition of
lanthanum chromite by the reaction

LaCrO3 !
1

2
La2O3 þ aCrþ 3

4
O2ðgÞ " ðEq 11Þ

is pO2 ¼ 10�20:97 at 1273 K. The calculated decomposition
of the perovskite phase by Eq 11 is plotted as a function of
temperature and oxygen partial pressure in Fig. 7.

5.2.5 Defect Chemistry of the Perovskite Phase. Apply-
ing a defect chemistry analysis of La1–xCrO3 in equilibrium
with Cr2O3 the following defect reaction for its oxidation can

be written in the sublattice form, if ½Va000Cr� and ½Va��O � are
assumed to be negligible according to Akashi et al.:[59]

ðLa3þÞðCr3þÞðO2�Þ3þ
1

4
O2ðgÞ ! ðLa3þ2=3Va1=3ÞðCr

4þÞðO2�Þ3
ðEq 12Þ

Using Kröger-Vink notation this defect reaction reads

LaxLaþCrxCrþ3Ox
Oþ

1

4
O2ðgÞ !

2

3
LaxLaþ

1

3
Va000LaþCr�Crþ3Ox

O

ðEq 13Þ

and the equilibrium constant of the oxidation reaction is

Kox ¼
½Va000La�

1=3½LaxLa�
2=3½Cr�Cr�½Ox

O�
3

½LaxLa�½CrxCr�½Ox
O�

3p1=4O2

ðEq 14Þ

For small oxidation extent ½LaxLa�, ½CrxCr�, and ½Ox
O� can be

considered to be 	1, and charge neutrality is maintained by

½Va000La� ¼
1

3
½Cr�Cr� ðEq 15Þ

Substituting this into Eq 14 gives the proportionalities
½Va000La�; ½Cr�Cr� / p3=16O2

.
The concentrations of the defects LaxLa;Va

000
La;Cr

x
Cr;

and Cr�Cr in La1–xCrO3 correspond to the site fractions
yprvALa3þ

,yprvAVa,y
prv
BCr3þ

, and yprvBCr4þ
in the compound energy for-

malism. yprvALa3þ
,yprvAVa, y

prv
BCr3þ

, yprvBCr4þ
and the tiny fractions yprvBVa

and yprvOVa are plotted logarithmically as a function of log pO2

at 1073 and 1673 K in Fig. 8 for lanthanum chromite in
equilibrium with Cr2O3. The line for yprvALa3þ

at 1073 K
cannot be seen as it is very close to 1. At 1073 K a constant
slope of 3/16 of the defect concentrations ½Va000La� and ½Cr�Cr�
shown in the triangle, is calculated from very high to very
low oxygen partial pressures. This slope is fixed by the
defect reaction Eq 12. At 1673 K the slope of 3/16 of
½Va000La� and ½Cr�Cr� is reproduced by the calculated slope
using the compound energy formalism at 105 >

pO2 > 10�8 Pa; hence oxidation of LaCrO3 to La1–xCrO3

governs the electrical conductivity of perovskite with fixed
activity of Cr2O3 at unity between pO2 ¼ 105 and 10-8 Pa at
this temperature. The calculated slopes of ½Va000La� and ½Cr�Cr�
are equal to the slope of the electrical conductivity from
1573 to 1673 K between pO2 ¼ 1:0� 103 Pa and pO2 ¼
2:0� 104 Pa determined by Akashi et al.[59] The conflicting
data from Shvaiko-Shvaikovskii et al.[58] may be explained
by problems of reaching equilibrium due to extraordinarily
slow cation diffusion in lanthanum chromite. In Fig. 9 the
calculated slopes of Va000La and Cr�Cr are compared with
slopes of ½Va000La� and ½Cr�Cr� determined by Akashi et al.[59]

as a function of reciprocal temperatures. The calculated
concentrations agree well with the data derived from
electrical conductivity measurements.[59] The calculated

Fig. 7 Calculated decomposition of lanthanum chromite as a
function of temperature and oxygen partial pressure
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Fig. 8 Calculated site fractions of species in La1–xCrO3 in the thermodynamic equilibrium with Cr2O3 logarithmically plotted at
1073 K and 1673 K as a function of pO2 . The slope of 3/16 of the calculated defect concentrations is indicated in the triangle

Fig. 9 Calculated defect concentrations in La1–xCrO3 in the thermodynamic equilibrium with Cr2O3 (solid lines) logarithmically plotted
as a function of reciprocal temperature along with the data from Akashi et al.[59] derived from electrical conductivity measurements
(symbols with error-bars, broken lines)
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amount of ½Va000La� relative to ½Cr�Cr� is fixed by the criterion
for charge neutrality, Eq 15, as calculated ½Va000Cr� and ½Va��O �
are very small. The calculated relative defect concentrations
are in line with those proposed by Akashi et al.[59]

The presented defect chemistry calculations are still
rather tentative, as the temperature and oxygen partial
pressure dependence of excess Cr in La1–xCrO3 has not been
investigated systematically so far.

6. Conclusions

Model parameters of the presented thermodynamic
La-Cr-O database were optimized with assessed thermody-
namic and phase diagram data.

The thermodynamic descriptions of lanthanum chro-
mates and the liquid phase are rather tentative due to humble
or sketchy experimental information.

The thermodynamic modeling of lanthanum chromite
was based on experimental thermodynamic data reported by
Peck et al.[53] and Cheng and Navrotsky,[46] as the use of
these data for the optimization of model parameters resulted
in a proper reproduction of the phase equilibria derived from
experiments. The orthorhombic to rhombohedral transition
in lanthanum chromite and the magnetic order-disorder
transformation are well reproduced by the model.

Using the new database the stability limits of lanthanum
chromite in function of temperature and oxygen partial
pressure can be quantified.

The proposed existence of lanthanum vacancies and
holes to maintain charge neutrality in lanthanum chromite
with excess Cr is reproduced by the model, and the
calculated slopes of defect concentrations in function of
oxygen partial pressure and temperature are in line with the
slopes derived from electrical conductivity measurements.
However the amounts of excess Cr in La1–xCrO3 used for
the optimization of the cation nonstoichiometry are pre-
liminary, and further work on the temperature dependence
of excess Cr as a function of temperature and oxygen partial
pressure would allow a more accurate quantification of the
defect chemistry of lanthanum chromite.
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22. M. Foëx, Measurement of the Solidification Points of Several
Refractory Oxides, Sol. Energy, 1965, 9(1), p 61-67
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