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Abstract As a result of storability restrictions, the price risk management of flow
commodities (such as natural gas, oil, and electrical power) is by no means a
trivial matter.To protect price spikes, consumers purchase diverse swing-type con-
tracts, whereas contract writers try to hedge themselves by appropriate physical
assets, for instance, using storage utilities, through transmission and/or produc-
tion capacities. However, the correct valuation of such contacts and their physical
counterparts is still under lively debate. In this approach, an axiomatic setting to
discuss price dynamics for flow commodity contracts is suggested. By means of
a minimal set of reasonable assumptions we suggest a framework where the stan-
dard change-of-numeraire transformation converts a flow commodity market into
a market consisting of zero bonds and some additional risky asset. Utilizing this
structure, we apply the toolkit of interest rate theory to price the availability of
production capacity on a flow commodity.

Keywords Swing option · Electricity risk · Energy economics · Futures markets ·
Power derivatives

1 Introduction

In the following, electricity pricing will be studied using electrical power as the
primary flow commodity example in this contribution.

In practice, diverse technical problems prevent electricity from being traded as
a conventional commodity. One of the most complicated of these problems is the
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balancing restriction, which requires that the demand and the supply of electricity
be equal at any time. As a result, the electricity market consists of two segments: one
for contract trading on immediate energy production (so–called balancing market,
usually organized following an auction-like principle) and one on future delivery
(effected at futures market, by conventional trading). Within the latter, a remark-
able trading activity can be observed for hourly contracts with delivery within the
following day (the so-called day-ahead market). As a rule, positions taken here
imply physical energy delivery/consumption, which explains why electricity day-
ahead prices are also referred to as spot prices. An electricity retailer is obliged to
cover the random demand of its end consumers at a fixed price. Doing so, retailers
face high risk: in the case that consumer’s demand tops the own supply, the missing
energy is purchased at the balancing market price, which could be markedly high.
One rational way of handling this risk is to accurately predict the demand, in order
to adjust the day-ahead position as precisely as possible. In practice, short-term
demand forecast seems to be a minor problem; apparently, an efficient protec-
tion against undesirable long-term spot price movements turns out to be the more
important issue. Here, long term options written on spot prices are popular. How-
ever, due to difficulties in valuation and hedging of electricity derivatives, option
writers prefer to sell agreements which are, at least approximately, replicated by
appropriate physical assets. As a result, it can be observed that many electricity
derivatives are of a swing type, presenting corresponding financial counterparts of
agreements on production capacities. To give an example, let us discuss the virtual
production capacity.

Consider a power plant where the owner decides for any period (for example,
a day) [tk, tk+1] within a given time interval [0, ϑ] = ∪N−1

k=0 [tk, tk+1] to produce
electrical power at intensity qtk subject to technical constraints

0 ≤ qtk ≤ λ for all k = 0, . . . , N − 1,

N−1∑

k=0

qtk (tk+1 − tk) ≤ � (1)

with given maximal electrical power λ > 0 (MW) and the total amount of energy
� > 0 (MWh). The electricity scheduled for production for the day [tk, tk+1], is
sold on the day-ahead market at the spot price Etk , giving the total revenue

N−1∑

k=0

qtk (Etk − K )+(tk+1 − tk) (2)

where K stands for production costs. Note that here we have assumed that the
payoff for the day [tk, tk+1[ is proportional to (Etk − K )+ meaning that production
runs only if the price covers the production costs. This assumption is unrealistic
for scheduling the plant at a higher time resolution (say, for half-hourly adjusted
dispatch on the balancing market) since we cannot assume that production would
stop immediately when the marginal revenue became negative. However, when
dispatching the plant on the basis of the day-ahead market, revenue (2) subject to
restrictions (1) gives a realistic model. In what follows, we deal with a continu-
ous-time reformulation of the above framework. More precisely, we approximate
dispatch policies with (1) by continuous-time processes (qt )t∈[0,T ] satisfying
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0 ≤ qt ≤ λ for all t ∈ [0, ϑ],
ϑ∫

0

qt dt ≤ � (3)

whereas, the total revenue (2) is replaced by

ϑ∫

0

qt (Et − K )+dt (4)

where (Et )t∈[0,ϑ] denotes a continuous-time analog for the electricity spot price
process. Due to such reformulation, results available for diffusion processes from
financial mathematics and optimal control theory can be utilized.

Suppose now that the ideal power plant described by (3) and (4) is equivalently
transformed to a financial agreement, referred to as virtual production capacity in
the sequel. Denote by Rt := (Et − K )+ the revenue intensity at time t ∈ [0, ϑ].
The holder of a virtual production capacity can opt any exercise policy (qt )t∈[0,ϑ]
obeying (3), whereas the contract writer is obliged to supply a cash-flow at intensity
(qt Rt )t∈[0,ϑ] depending on the opposite party’s exercise policy (qt )t∈[0,ϑ]. Follow-
ing an exercise policy (qs)s∈[0,ϑ] the agent possesses at time t the capacity level
ρ

q
t := � − ∫ t

0 qsds. If the holder decides at this time to sell the virtual production
capacity to another market participant, then for the remaining time [t, ϑ] the new
owner is given the right to exercise the contract by any policy (us)s∈[t,ϑ], subject
to restrictions

0 ≤ us ≤ λ, s ∈]t, ϑ],
ϑ∫

t

usds ≤ ρ
q
t .

to receive a cash flow at intensity (us Rs)s∈[t,ϑ]. In the sequel, we discuss the valu-
ation of virtual production capacity to show that under certain conditions, the fair
initial price of this contract is given by

sup
q

EQ

⎛

⎝
ϑ∫

0

qt Rt/Bt dt

⎞

⎠ (5)

where (Bt )t∈[0,ϑ] denotes the value of a savings account and Q is some risk-neutral
measure. The supremum in (5) arises over a set of policies satisfying (3). Whereas
this supremum-form is obtained in Sect. 4 utilizing arguments from American
put valuation (see Karatzas and Shreve 1998), the major part of our approach deals
with the concept of risk-neutral spot price dynamics. The difficulty here is that flow
commodity spot prices (for example, electricity spot prices) at different times are
not directly related to each other, strictly speaking, Es and Et are to be considered
as prices for different commodities delivered on different dates s �= t . In Sect. 2,
flow commodity price models satisfying a minimal set of reasonable axioms are
studied: (i) the price evolution is described by stochastic processes with appropri-
ate path properties, (ii) the model explains the initial yield curve, (iii) it excludes
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arbitrage opportunities, and (iv) it reflects storability restrictions. We make precise
these requirements and show how to construct stochastic models satisfying them.

Some related research in this field must also be mentioned. The connection
between spot and forward prices for commodities with restricted storability and
valuation of storage opportunities has attracted research interest for a long time.
We emphasize here, among others, the work (Brennan 1958; Fama and French
1987) as well as (Gibson and Schwartz 1990; Schwartz 1997) and a general model
in (Miltersen and Schwartz 1998). Related to this work, the authors of (Eydeland
and Geman 1998, 2003) expose questions of electricity pricing and explain that the
non-storability issue requires a production process model. Another research direc-
tion (see (Barlow 2002; Burger et al. 2003; Hinz et al. 2005; Hinz 2003; Schwartz
and Lucia 2002)) focuses on modeling the stochastic process of spot price, where
the three last contributions also develop a risk-neutral point view on the electric-
ity spot price process. Moreover, a valuation method for electricity swing options
has been considered in (Burger et al. 2003). Finally, the review paper (Carmona
and Durrleman 2003) provides a valuable overview on energy price models and
problems in pricing electricity derivatives.

2 Flow commodity markets under currency change

The methodology here is based on the assumption that there exists a market on
contracts for delivery of a flow commodity at any future date τ ∈ [0, T ]. To avoid
argumentation problems resulting from non-storability, we agree that the prime
(storable) assets of this market are τ -agreements which ensure the delivery of one
commodity unit on future date τ . That is, the price at time t of a τ -agreement is
interpreted as the price for one commodity unit which is paid at t and supplied at τ .
Now we turn our attention to futures. A flow commodity future with the delivery
date τ (τ -future in the sequel) is introduced as a conventional future contract writ-
ten on final τ -agreements price. In this sense, the τ -future prices (Et (τ ))t∈[0,τ ] are
settled as usual prices on futures for storable underlyings. The advantage of this
viewpoint is that for a realistic model, arbitrage opportunities for trading τ -agree-
ments and their derivatives have to be ruled out. This imposes clear requirements
to be satisfied when modeling τ -futures prices.

Suppose that for each τ ∈ [0, T ] there is a τ -future whose price evolution
(Et (τ ))t∈[0,τ ] is assumed to follow a positive-valued adapted stochastic process
realized on a complete filtered probability space (�, F, P, (Ft )t∈[0,T ]). Assume
that at the beginning t = 0 prices E∗

0 (τ ) for all future delivery times τ ∈ [0, T ]
are observed, where the initial yield curve E∗

0 (·) is deterministic and continuous.
Let us write D := {(t, τ ) : 0 ≤ t ≤ τ ≤ T } for chronological time pairs.

Definition 1 A flow-commodity market with parameter (n, E∗(·)) ∈ N × C[0, T ]
is given by (Et (τ ))(t,τ )∈D such that

D → R, (t, τ ) �→ Et (τ ) is continuous for all τ ∈ [0, T ], (6)

the initial yield curve is explained

E0(τ ) = E∗
0 (τ ) for all τ ∈ [0, T ], (7)

arbitrage is excluded
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there exists a risk-neutral measure QF equivalent to P
such that for each τ ∈ [0, T ], (Et (τ ))t∈[0,τ ] follows a QF -martingale,

(8)

changes in the yield curve are possible in the sense that

for all 0 < t < τ0 < τ1 < · · · < τn ≤ T
the Ft − conditional distribution of Eτ0(τ0), Eτ0(τ1), . . . , Eτ0(τn)

posseses almost surely a positive Lebesgue density on [0,∞[n+1
(9)

The assumption (8) is justified by the following consideration. The conven-
tional way to rule out arbitrage opportunities for τ -agreements and their European
derivatives is to postulate price dynamics such that all security prices, expressed in
units of savings account, are martingales with respect to some risk-neutral measure
QF equivalent to P . In this setting, standard arguments (see Karatzas and Shreve
1998) imply that futures prices have to satisfy (8).

Let us explain why the property (9) ensures that there is no deterministic inter-
relation between prices for commodities delivered at different times τ0 < · · · < τn
and so reflects the absolute non-storability of the commodity. Given future dates
0 < t < τ0 < · · · < τn ≤ T , let gt :]0,∞[n+1→ R+ be the Ft -conditional
Lebesgue density of (Eτ0(τ0), . . . , Eτ0(τn)). By assumption, gt (x) > 0 for all
x ∈ [0,∞[n+1 almost surely which implies that for any choice of non-empty open
intervals I0, . . . , In ⊂]0,∞[ the yield curve (Eτ0(τ ))t∈[τ0,T ] at time τ0 passes with
positive probability through ({τk} × Ik)

n
k=0:

P(Eτ0(τ0) ∈ I0, . . . , Eτ0(τn) ∈ In | Ft ) =
∫

In

· · ·
∫

I0

gt (x0, . . . , xn)dx0, . . . , dxn > 0

almost surely. This means that the event {Eτ0(τ0) ∈ I0, . . . , Eτ0(τn) ∈ In} occurs
with a positive probability even if we choose Ik+1 arbitrarily far above Ik (k =
0, . . . , n −1). For a storable commodity, such behavior would be impossible, since
the price of a forward with a delivery date τk+1 cannot exceed the price of a for-
ward with a delivery date τk plus costs for commodity storage during [τk, τk+1].
Further, it shall be pointed out that (9) excludes the deterministic inter-relation
between futures prices. The existing correlation between futures prices with differ-
ent delivery dates which result from seasonalities, long-term reduction in the power
resources, and global market changes are still reflected by the non-factorizing den-
sity gt of the Ft -conditional distribution of (Eτ0(τ0), . . . , Eτ0(τn)).

For practical implementation, n is chosen such that the model fits the real-world
market. For example, the European Energy Exchange lists futures prices for elec-
tricity delivered within each of the next six calender months. That is, choosing the
flow commodity unit equal to 1 MWh steadily supplied within next 30 days, it
suffices to set up a model with n = 6.

To the best of the authors knowledge, all electricity spot price models consid-
ered in the literature do not describe independent price evolution of futures with
different delivery dates in the sense of (9). Actually, the problem here is that on one
hand, we would like to disconnect price dynamics (Et (τ ))t∈[0,τ1], (Et (τ ))t∈[0,τ2]
for different τ1 �= τ2 and on the other hand, we expect that Et1(τ1) is around Et2(τ2)
if (t1, τ1) is close to (t2, τ2). Similar situation appears for zero bond prices and is
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successfully treated by the interest rate theory, whose methodology we transfer
into the framework of flow commodity markets.

Let us comment here on a related approach followed in (Gibson and Schwartz
1990; Schwartz and Lucia 2002), and (Miltersen and Schwartz 1998), where au-
thors address commodities with limited storability and apply convenience yield,
which describes the instantaneous flow of services that accrues to the holder of
the physical commodity, but not to the owner of a contract for future delivery (see
Brennan 1958). In (Miltersen and Schwartz 1998), a general model is presented that
connects spot and futures prices via stochastic convenience yield. However, this
methodology does not directly apply to commodities without any storage oppor-
tunity (like electricity) due to the lack of appropriate logical justification logical
for the convenience yield. Our contribution could provide a missing link here: by
establishing an explicit equivalence between flow commodity markets and money
markets in the Heath–Jarrow–Morton (HJM) formulation, we obtain a relation be-
tween futures and spot prices similar to that studied in (Miltersen and Schwartz
1998). Still, in our context, the absolute non-storability reflected by (9) also imposes
additional requirements which have to be respected.

Given the observed yield curve (E∗
0 (τ ))τ∈[0,T ], the crucial task is to model

the entire futures price dynamics (Et (τ ))(t,τ )∈D such that (6–9) are fulfilled. In
other words, we are concerned with the problem of the explicit construction of
flow commodity markets. It turns out that a currency change provides a solution.
Namely, put the new currency unit at time t equal to one commodity unit delivered
at t , then all τ -futures finish at one (exactly as zero bonds), whereas the riskless
asset is transformed to a risky security. That is, such a currency change remodels
our flow commodity market into a bond market equipped with an additional risky
asset (let us call such a market money market in the sequel). On the other hand,
we also learn that a money market is transformed back into a flow commodity
market by the reverse currency change. As a result, we obtain a one-to-one cor-
respondence between flow commodity markets and money markets. Utilizing the
HJM description of money markets, this concept finally yields explicit models of
flow commodity markets. To proceed in this way, the notion of money market is
introduced.

Suppose that for each τ ∈ [0, T ] there exists is a zero bond maturing at this
date whose price evolution is denoted by (pt (τ ))t∈[0,τ ] and is assumed to follow
a positive-valued adapted stochastic process realized on a complete filtered prob-
ability space (�, F, P, (Ft )t∈[0,T ]). We agree that the initial bond curve p∗

0(·) on
[0, T ] is deterministic and continuous and suppose that there exists an additional
risky asset with positive-valued adapted price process denoted by (Nt )t∈[0,T ].

Definition 2 A money market with parameter (n, p∗
0(·), N∗

0 ) ∈ N×C[0, T ]×R+
is given by (pt (τ ))(t,τ )∈D, (Nt )t∈[0,T ] such that

pt (t)=1 for all t ∈ [0, T ] and t �→ Nt , (t, τ )�→pt (τ ) are a.s. continuous, (10)

the initial values are explained

N0 = N∗
0 , p0(τ ) = p∗

0(τ ) for all τ ∈ [0, T ], (11)

arbitrage is excluded
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there exists a positive-valued adapted discounting process (Ct )t∈[0,T ]
and a risk-neutral measure QM equivalent to P such that (Nt/Ct )t∈[0,T ],
(pt (τ )/Ct )t∈[0,τ ] are QM - martingales for all τ ∈ [0, T ],

(12)

and

for all 0 < t < τ0 < τ1 · · · < τn ≤ T the Ft − conditional
distribution of Nτ0 , pτ0(τ1), . . . , pτ0(τn) almost
surely posseses positive Lebesgue density on [0,∞]n+1

(13)

As mentioned above, there is no obvious way for canonical construction of a flow
commodity market, whereas for modeling bond markets, one can rely on a well
established theory of interest rate models. Considering this, we apply part (ii) of
the next theorem to assemble flow commodity markets from money markets. Note
that such an approach seems sufficiently general, since due to (i) of the theorem
below, each commodity market is reached from an appropriate money market.

Theorem 1 (i) Let (Et (τ ))(t,τ )∈D be a flow commodity market with (n, E∗
0 (·)),

then

Nt := Et (t)−1 for all t ∈ [0, T ], (14)

pt (τ ) := Et (τ )Nt for all (t, τ ) ∈ D, (15)

gives a money market with (n, E∗
0 (·)/E∗

0 (0), E∗
0 (0)−1), discounting process

(pt (T ))t∈[0,T ], and risk-neutral measure dQM = ET (T )E0(T )−1dQF .
(ii) Let (pt (τ ))(t,τ )∈D, (Nt )t∈[0,T ] be a money market with (n, p∗

0(·), N∗
0 ), dis-

counting process (Ct )t∈[0,T ], and risk-neutral measure QM . Define

Et (τ ) := pt (τ )/Nt for all (t, τ ) ∈ D, (16)

Then (Et (τ ))(t,τ )∈D gives a flow commodity market with (n, p∗
0(·)/N∗

0 ) and
risk-neutral measure

dQF = NT

CT

C0

N0
dQM (17)

Proof (i) The properties (10) and (11) are consequences of (6) and (7) due to
(14) and (15). To show (13), we introduce the function

� : [0,∞]n+1 → [0,∞]n+1, (y0, . . . , yn) �→
(

1

y0
,

y1

y0
, . . . ,

yn

y0

)
.

satisfying

(Nτ0 , pτ0(τ1), . . . , pτ0(τn)) = �(Eτ0(τ0), . . . , Eτ0(τn)). (18)

Since � is a diffeomorphism (bijection, � and �−1 continously differentia-
ble) and the Lebesgue density of (Eτ0(τ0), Eτ0(τ1), . . . , Eτ0(τn)) exists and
is positive due to (9), the Lebesgue density of (18) also exists and is also
positive.To prove (12), we make use of the change-of-numeraire technique
(see Björk 1996; Geman and El Karoui 1995), in our context it is applied as
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follows: For positive-valued adapted processes (Ht )t∈[0,τ ], (Dt )t∈[0,T ] and
(D′

t )t∈[0,T ] holds
⎧
⎪⎨

⎪⎩

(Ht/Dt )t∈[0,τ ] and (D′
t/Dt )t∈[0,T ] are martingales wit respect to

Q if and only if (Ht/D′
t )t∈[0,τ ] and (Dt/D′

t )t∈[0,T ] are martingales

with respect to Q′ given by dQ′ = D′
T

DT

D0
D′

0
dQ.

(19)

Put now Ht := Et (τ ) for all t ∈ [0, τ ], Dt := 1, D′
t = Et (T ) for all

t ∈ [0, T ]. Then (14), (15) and (19) show that
(

Et (τ )

Et (T )
= pt (τ )

pt (T )

)

t∈[0,τ ]
and

(
1

Et (T )
= Nt

pt (T )

)

t∈[0,T ]
(20)

are martingales with respect to QM .
(ii) The properties (6) and (7) are consequences of (10) and (11) by definition (16).

To show (9), we the same argumentation is applied as in (i) for (13), where
we have to replace � by �−1. Finally, the measure QF in (8) is obtained
from QM in (12) using (17) by change of numeraire (19).

�


3 Market construction with HJM approach

It will be now illustrated how the Gaussian HJM interest rate models provide a
starting point for the construction of flow commodity markets. Let us begin with
complete filtered probability space (�, F, P, (Ft )t∈[0,T ]) where the filtration is
the augmentation (by the null sets in FW

T ) of the filtration (FW
t )t∈[0,T ] generated

by the d-dimensional Brownian motion (Wt )t∈[0,T ]. All processes are supposed to
be progressively measurable. Assume that we have observed the initial curve

(E∗
0 (τ ))τ∈[0,T ] deterministic, absolutely continuous. (21)

Specify the forward rate volatility (σt (τ ))(t,τ )∈D choosing a deterministic function

D → R
d , (t, τ ) �→ σt (τ ) with

T∫

0

τ∫

0

‖σt (τ )‖2dt dτ < ∞ (22)

and define bond volatilities by

σ t (τ ) :=
τ∫

t

σt (s)ds for all (t, τ ) ∈ D (23)

Introduce the initial forward rates

f ∗
0 (t) = − ∂

∂τ
ln E∗

0 (τ ) for all t ∈ [0, T ] (24)

to define for all (t, τ ) ∈ D the forward rates as
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ft (τ ) = f ∗
0 (τ ) +

t∫

0

σs(τ ) ◦ σ s(τ )ds +
t∫

0

σs(τ )dWs, (25)

and the bond price dynamics for all τ ∈ [0, T ] as solution to

d pt (τ )= pt (τ )( ft (t)dt − σ t (τ )dWt ), p0(τ )= p∗
0(τ ) := E∗

0 (τ )/E∗
0 (0). (26)

Moreover, describe the evolution (Nt )t∈[0,T ] of the additional risky asset as

dNt = Nt ( ft (t)dt + vt dWt ) N0 := E∗
0 (0)−1, (27)

with a pre-specified d-dimensional deterministic volatility

(vt )t∈[0,T ] with

T∫

0

‖vs‖2ds < ∞.

Define also

�t (τ ) := −σ t (τ ) − vt for all (t, τ ) ∈ D. (28)

⎧
⎪⎨

⎪⎩

Let n ∈ N be such that for all
0 < t < τ0 < · · · τn ≤ T the functions
[t, τ0] → R

d , s �→ �s(τi ), (i = 0, . . . , n)
are linearly independent.

(29)

Moreover, introduce the discounting process

Ct := exp

⎛

⎝
t∫

0

fs(s)ds

⎞

⎠ for all t ∈ [0, T ]. (30)

Using standard results from interest rate theory, we verify

Theorem 2 For (pt (τ ))(t,τ )∈D, (Nt )t∈[0,T ] from (26), (27) define Et (τ ) := pt (τ)/Nt
for all (t, τ ) ∈ D. Then (Et (τ ))(t,τ )∈D gives a flow commodity market with
(n, E∗

0 (·)) from (29) and (21). Moreover, the risk-neutral measure satisfies

dQF = exp

⎛

⎝
T∫

0

vsdWs − 1

2

T∫

0

‖vs‖2ds

⎞

⎠ dP

and futures prices follow

dEt (τ ) = �t (τ )Et (τ )dW F
t , E0(τ ) = E∗

0 (τ ) (31)

with QF -Brownian motion

W F
t := −

t∫

0

vsds + Wt , t ∈ [0, T ] (32)
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Proof According to the previous theorem, it suffices to show that (26) and (27)
define a money market with parameter (n, E∗

0 (·)/E∗
0 (0), E∗

0 (0)−1), discounting
process (30) and risk-neutral measure QM := P . The assumptions (10) and (11)
hold due to definition (26), where to see pτ (τ ) = 1 for all τ ∈ [0, T ], we use

pt (τ ) = exp

⎛

⎝−
τ∫

t

ft (s)ds

⎞

⎠ for (t, τ ) ∈ D,

(see Lemma 13.1.1, from (Musiela and Rutkowski 1997). Now, we prove (12) by
verifying that (Nt/Ct )t∈[0,] and (pt (τ )/Ct )t∈[0,τ ] are martingales with respect to
QM := P as, by Ito formula, they admit stochastic differentials

d

(
Nt

Ct

)
= vt

(
Nt

Ct

)
dWt , d

(
pt (τ )

Ct

)
= −σ t (τ )

(
pt (τ )

Ct

)
dWt . (33)

Next, we prove (9) for (Et (τ ))(t,τ )∈D. For any delivery date τ ∈ [0, T ], using (26),
(27) and the Ito formula, we see (31)

dEt (τ ) = d

(
pt (τ )

Nt

)
= Et (τ )(−vt ◦ �t (τ )dt + �t (τ )dWt )

= �t (τ )Et (τ )dW F
t , E0(τ ) = E∗

0 (τ ),

and Girsanov theorem shows that (32) is in fact a Brownian motion under

dQF = NT

CT

C0

N0
dQM = exp

⎛

⎝
T∫

0

vsdWs − 1

2

T∫

0

‖vs‖2ds

⎞

⎠ dQM .

Obviously, the solution to (31) is

Et (τ )= E∗
0 (τ ) exp

⎛

⎝
t∫

0

�s(τ )dW F
s − 1

2

t∫

0

‖�s(τ )‖2ds

⎞

⎠ for all s ∈ [0, τ ] (34)

and so the Ft -distribution with respect to QF of the random variable
(
ln Eτ0(τ0), . . . , ln Eτ0(τn)

)
(35)

is Gaussian and non-degenerated due to the linear independence (29), which yields
the assertion (9) since QF is equivalent to P . �

Example 1 Let us illustrate the above construction considering the simplest model
with two-dimensional (d = 2) Brownian motion (Wt = (W 1

t , W 2
t ))t∈[0,T ]. Speci-

fying in (22) the constant and deterministic forward rate volatility

σt (τ ) := [σ ∗, 0] for all (t, τ ) ∈ D with given σ ∗ ∈ [0,∞],
we obtain bond volatilities from (23) as

σ t (τ ) = [σ ∗(τ − t), 0] for all (t, τ ) ∈ D. (36)
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According to (27), the additional risky asset is determined by its volatility pro-
cess (vt )t∈[0,T ]. Suppose here a constant volatility, such that the additional asset
dynamics admits a correlation to bond prices:

vt := [v∗ρ, v∗√1 − ρ2] for all t ∈ [0, T ]

with a given constant volatility parameter v∗ ∈]0,∞[ and a correlation parameter
ρ ∈ [−1, 1]. We determine n as in (29). For 0 < t < τ0 < τ1 <, . . . , < τn ≤ T
we have for all s ∈ [t, τ0]:

�s(τi ) = −σ s(τi ) − vs = −
[
σ ∗(τi − s) + v∗ρ, v∗√1 − ρ2

]
for i = 0, . . . , n.

This shows that n = 1 since we can choose two i = 0, 1 and not more than two
linearly independent functions (s �→ �s(τi ))s∈[t,τ0]. At least, the model is able to
capture transitions between backwardation and contango in the flow commodity
market.

4 Production in a complete market

Suppose that we are given a flow commodity market constructed with HJM meth-
odology as in the previous section with (σt (τ ))(t,τ )∈D, (vt )t∈[0,T ]. Assume that the
money short rate (rt )t∈[0,T ] is non-negative and introduce (Bt =exp(

∫ t
0 rsds))t∈[0,T ]

as the savings account. For any process (Ft )t∈[0,T ] we agree to write (F̂t :=
Ft/Bt ))t∈[0,T ] for prices expressed in units of savings account. Let us consider
a case where for the availability time [0, ϑ] of the virtual production capacity, the
agent is able to select flow commodity futures with delivery dates τ1 < · · · < τd ∈
[ϑ, T ] to capture all price uncertainties by appropriated investments in these assets.
More precisely, we focus on the case where for given 0 < ϑ < τ1 < · · · < τd ≤ T

�t (τ1), . . . , �t (τd) are linearly independent for Lebesgue-almost all t ∈ [0, ϑ].
(37)

Example 2 For two-factor model of the Example 1, the property (37) is fulfilled
since for arbitrary 0 < ϑ < τ1 < τ2 ≤ T we see that

�t (τ1) =
[
σ ∗(τ1 − t) + v∗ρ, v∗√1 − ρ2

]
,

�t (τ2) =
[
σ ∗(τ2 − t) + v∗ρ, v∗√1 − ρ2

]

are linearly independent for all t ∈ [0, ϑ].
For the reminder of this section, we suppose that (37) holds and introduce for

almost all t ∈ [0, ϑ] the invertible matrix �t whose rows consist of vectors

�t (τ1), . . . , �t (τd).
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Then Lemma 6.7, p. 24 from (Karatzas and Shreve 1998) ensures that for each
QM -martingale (x + Mt )∈[0,ϑ] starting at x ∈ R there exists a R

d -valued process
π(M) := (πt = (π1

t , . . . , πd
t ))t∈[0,ϑ] such that

x + Mt = x +
t∫

0

πs�sdW F
s t ∈ [0, ϑ]. (38)

On the other hand, interprete π(M) such that

pi
s := π i

s Bs Es(τi )
−1, i = 1, . . . , d

are positions in futures contracts at time s ∈ [0, ϑ]. With this interpretation, we
see that starting with initial capital x , the wealth of such a strategy at time t is

X x,π(M)
t = Bt

⎛

⎝x +
d∑

i=1

t∫

0

pi
s B−1

s d Es(τi )

⎞

⎠ = Bt (x + Mt )

meaning that for any centered QF-martingale M = (Ms)s∈[0,ϑ] there exists futures
trading strategy π(M) such that

X̂ x,π(M)
t = x + Mt , t ∈ [0, ϑ]. (39)

Moreover, given centered martingale M , the positions πt (M) at any time t ∈ [0, ϑ]
are determined from the past values (Ms)s∈[0,t] More precisely, we emphasize that
M �→ π(M) is non-anticipating. (A mapping J acting on adapted processes is non-
anticipating, if for all t ∈ [0, ϑ] and for arbitrary h, h′ in the domain of J from
I[0,t]h = I[0,t]h′ it follows that I[0,t] J h = I[0,t] J h′, here I[0,t] stands for a stochastic
process whose paths are indicator functions of the interval [0, t] ⊆ [0, T ].)

Now we turn to valuation of production capacity. Let us point out that in the
framework of HJM-modeling, the total discounted return of virtual production
capacity

R :=
ϑ∫

0

R̂sds is integrable with respect to QF , (40)

since, according to (21), we have

ϑ∫

0

EQF (R̂s)ds =
ϑ∫

0

EQF ((Es(s) − K )+/Bs)ds ≤
ϑ∫

0

EQF (Es(s))ds

=
ϑ∫

0

E∗
0 (s)ds < ∞.
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For given λ,� ∈ [0,∞], we choose the set of progressively measurable processes

U = {q = (qt )t∈[0,ϑ] : [0, λ] − valued, with

ϑ∫

0

qsds ≤ �}

to represent all admissible exercise policies.

Proposition 1 Under the assumptions of this section holds: if the initial price of
production capacity is different from

x0 = sup

⎧
⎨

⎩EQF

⎛

⎝
ϑ∫

0

qs R̂sds

⎞

⎠ : q ∈ U
⎫
⎬

⎭ , (41)

then there exists an arbitrage opportunity.

Proof Suppose that the production capacity is offered at a price x ′
0 < x0. Then

there is a long arbitrage: the agent enters a long position at x ′
0 and exercises the

contract by a policy q∗ ∈ U with

x ′
0 < x∗

0 := EQF

⎛

⎝
ϑ∫

0

q∗
t R̂t dt

⎞

⎠ ≤ x0

which ensures a cash-flow at intensity (q∗
t Rt )t∈[0,ϑ]. Simultaneously, the agent

writes a contingent claim promising the same cash-flow. Due to replication prop-
erty (39), the market will pay x∗

0 for this claim. Thus, the agent takes the arbitrage
x∗

0 − x ′
0 > 0.

If the contract is asked at a price x ′
0 > x0, then there is a short arbitrage. The

crucial point is to show that

Lemma 1 There exists a correspondence u �→ Mu mapping U into the set of
centered martingales on [0, ϑ] which is non-anticipating and fulfills

t∫

0

us R̂sds ≤ x0 + Mu
t for all t ∈ [0, ϑ] for each u ∈ U . (42)

Using this result (for proof, see Appendix), we find a short arbitrage as follows:
the agent enters a short position to receive x ′

0, then the part x0 with 0 < x0 < x ′
0 of

this capital is used to start futures trading strategy π(Mu) whose discounted wealth
equals to the right-hand side of (42). Note that the wealth of this strategy covers all
agents liabilities by the inequality in (42) and that π(Mu) is tractable in the sense
that its asset allocation at any time t depends on the long party’s exercise policy
(us)s∈[0,t] until t , since u �→ Mu �→ π(Mu) is non-anticipating. As a result, the
agent takes arbitrage x ′

0 − x0 > 0. �
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5 Valuation of a hydro-electric power plant

To illustrate the use of our approach, we focus on the virtual production capacity
and show that for the case of zero production cost, the volatility of the additional
asset does not enter the price. This is a useful simplification, meaning that for the
case of hydro-electric power plant (where K = 0), we merely need to estimate the
forward rate volatility.

Suppose we are given a flow commodity market constructed from Gaussian
HJM-model such that (37) holds.

Proposition 2 The initial price (41) for the virtual production capacity with strike
price K = 0 is given by

x0 = E∗
0 (0) sup

q∈U

ϑ∫

0

EQM (qt/Ct )dt (43)

Proof Due to Fubini theorem, it suffices to verify for each t ∈ [0, ϑ] that

EQF (qt Et (t)) = E∗
0 (0)EQM (qt/Ct ) for any Ft -measurable bounded qt .

This equality is derived using HJM-construction as

EQF (qt Et (t)) = EQF

(
qt

Nt

)
= EQM

(
qt

Nt

NT

CT

C0

N0

)

= C0

N0
EQM

(
qt

Nt

Nt

Ct

)
= E∗

0 (0)EQM

(
qt

Ct

)
(44)

�

As an illustration of the above result, we discuss the value of the virtual hydro
power plant for the two-factor model of the Example 1. Here, the forward rate
equals to fs(s) = f0(s) + 1

2σ ∗2s2 + σ ∗W 1
s for all s ∈ [0, T ]. Hence,

C−1
t = exp

⎛

⎝−
t∫

0

fs(s)ds

⎞

⎠ = p∗
0(t) exp

⎛

⎝−
t∫

0

1

2
σ ∗2s2 + σ ∗W 1

s ds

⎞

⎠

= E∗
0 (t)

E∗
0 (0)

exp(−σ ∗tWt ) exp

⎛

⎝
t∫

0

σ ∗sdW 1
s − 1

2

t∫

0

(σ ∗s)2ds

⎞

⎠

Using the Girsanov transform, introduce the new measure Q̆ and a Q̆-Brownian
motion by

dQ̆ = exp

⎛

⎝
T∫

0

σ ∗sdW 1
s − 1

2

T∫

0

(σ ∗s)2ds

⎞

⎠ dQM ,

W̆t = W 1
t −

t∫

0

σ ∗sds for all t ∈ [0, T ],
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to rewrite (44) as

E∗
0 (0)EQM

(
qt

Ct

)
= EQ̆

(
qt E∗

0 (t) exp

(
−σ ∗2

2
t3 − σ ∗t W̆t

))
.

That is, the initial price of hydro storage is

x0 = sup
q∈U

EQ̆

⎛

⎝
ϑ∫

0

qt H(t, W̆t )dt

⎞

⎠ (45)

with function H given by

H(t, w) = E∗
0 (t) exp

(
−σ ∗2

2
t3 − σ ∗tw

)
for all t ∈ [0, ϑ], w ∈ R.

Suppose now that there exists a sufficiently smooth V : [0, T ] × [0,�] × R → R

representing the so-called value function as

V (t, ρ, W̆t ) = sup

⎧
⎨

⎩EQ̆

⎛

⎝
ϑ∫

t

qs H(s, W̆s)ds |Ft

⎞

⎠ : q ∈ U,

ϑ∫

t

qsds ≤ ρ

⎫
⎬

⎭. (46)

With this assumption, the price for the virtual power plant is x0 = V (0, �, 0). The
corresponding Hamilton-Bellman-Jacobi equation on ]0, T [×]0,�[×R is

max
q∈{0,λ} q

(
H(t, w) − ∂V

∂ρ
(t, ρ, w)

)
+ ∂V

∂t
(t, ρ, w) + 1

2

∂2

∂w2 V (t, ρ, w) = 0

(47)

subject to boundary conditions

V (T, ρ, w) = 0 for all (ρ, w) ∈ [0, �] × R,
V (t, 0, w) = 0 for all (t, w) ∈ [0, T ] × R.

Since no closed-form solution to (47) is available, let us elaborate on the corre-
sponding trinomial tree model.

Consider within [0, ϑ] discrete equidistant times (kϑ/N )N−1
k=0 and approximate

in distribution the Brownian motion (W̆t )t∈[0,ϑ] on these times by a random walk

W̆k ϑ
N

≈
√

ϑ

N

3

2
w̆(k) for k = 0, . . . , N − 1 (48)

such that w̆(0) = 0 with independent increments (w̆( j)− w̆( j − 1)N−1
j=0 uniformly

distributed on {−1, 0, 1} each. Let us restrict ourselves to consider admissible
policies (q(k))N−1

k=0 taking a finite number (L + 1) ∈ N of values

{0, λ/L , . . . , Lλ/L} ⊂ [0, λ]
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and adapted to the filtration generated by the left-hand side of (48). That is, in the
discrete-time model we have to replace U by

UN :={(q(k))N−1
k=0 : (Gk)

N−1
k=0 − adapted, {0, . . . , L}−valued,

N−1∑

k=0

q(k)=ρmax},

(49)

where (Gk)
N−1
k=0 is the filtration generated by the right-hand side of (48) and ρmax

is the integer part of �L N/(λϑ), which comes from the constraint (3), in discrete-
time model transformed to

N−1∑

k=0

q(k)
λ

L

ϑ

N
≤ �.

With these conventions, we approximate the integral in (45) by

x N
0 := sup

{
E

(
N−1∑

k=0

q(k)H N (k, w̆(k))

)
: (q(k))N−1

k=0 ∈ UN

}
(50)

where H N is given by

H N (k, w) := λ

L

ϑ

N
H

(
ϑ

N
k,

√
ϑ

N
w

)
k = 0, . . . , N − 1, w = −k, . . . , k.

Obviously, (50) defines a standard discrete-time optimal control problem. The cor-
responding value function

V N (k, ρ,w) = sup

⎧
⎨

⎩E

⎛

⎝
N−1∑

j=k

q( j)H N ( j, w̆( j)) | w̆(k) = w

⎞

⎠ :
N−1∑

j=k

q( j) = ρ

⎫
⎬

⎭

for k = 0, . . . , N − 1, w = −k, . . . , k, ρ = 0, . . . , ρmax

(51)

solves (50) by V N (0, ρmax, 0). The values (51) are obtained from the following
recursion for k = 1, . . . , N

V N (k − 1, ρ,w) = max
l=0,...,L∧ρ

⎛

⎝l H N (k − 1, w) + 1

3

1∑

j=−1

V N (k, ρ − l, w + j)

⎞

⎠

(52)

started at

V N (N , w, ρ) = 0 for all w = −N , . . . , N , ρ = 0, . . . , ρmax.

As an application, we shall discuss the dependence of energy price on the electrical
power of production capacity.
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Fig. 1 The dependence of energy price x N
0 (λ)/� for N = 40 and � = 1 on the maximal electri-

cal power λ, calculated for the forward rate volatilities σ ∗ = 2 (upper curve) and σ ∗ = 1 (lower
curve)

Example 3 In practice, electricity retailers are obliged to cover the random de-
mand of their final customers at a fixed price. To fulfill such agreements, they
purchase appropriate physical and/or virtual production capacities. A common
problem hereby is to estimate the sensitivity of the plant’s value with respect to
electrical power λ. The qualitative behavior is obvious: for fixed energy amount �
and availability period ϑ , the higher the electrical power λ, the more flexible and
thus more valuable the contract. However, only a reliable quantitative estimate can
finally answer the question, if by upgrading the plant (say, through a costly instal-
lation of additional turbines), the producer can increase λ such that all investments
are fully rewarded by the market. for example, a large Swiss power producer was
restricted to run a turbine at 25 MW, which is 5 MW below its nominal power of
30 MW, in order to respect noise protection for a residential house nearby. In this
case, what needs to be determined is the maximum purchase price for the house,
which would be still acceptable for producer.

We use the trinomial tree model from above for an exemplary discussion. Sup-
pose we are given a virtual hydro electric power plant for ϑ = 1 year (365 × 24 h)
with the total amount of energy � = 365×24 MW. Assume that the yield curve is
constant at E∗

0 (τ ) = 30 EURO/MW for the entire year τ ∈ [0, ϑ] in advance and
suppose, for simplicity, that the interest rate is zero. If the maximal electrical power
equals to 1 MW (365×24 MWh/year), then the total value of the virtual power plant
is x0 = EQ(

∫ ϑ

0 λÊt (t)dt) = λ
∫ ϑ

0 E∗
0 (τ )dτ = 365×24×30 EURO, with electric-

ity price x0/� = 30 EURO/MWh within this contract. Now we gradually increase
the electrical power λ from 1 to 40 MW and calculate the electricity price within
the corresponding contracts. Figure 1 illustrates the dependence λ �→ x0(λ)/�
for two choices of forward rate volatilities σ ∗ = 1, 2, (a statistical estimation of
parameter σ ∗ presented in (Hinz et al. 2005) yields forward rates in this order of
magnitude.) The dots in the graph mark calculated values, which we interpolate by
straight lines. The calculation is based on (52) with N = 40.

Appendix

Let us compose standard results from the optimal control theory to verify Lemma 1.
Remember that I[0,t] denotes a stochastic process whose paths are indicator
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functions of the interval [0, t] and then let us introduce the value function of the
policy u ∈ U at time t ∈ [0, ϑ] as

V u
t :=sup

⎧
⎨

⎩EQF

⎛

⎝
ϑ∫

t

ws R̂sds|Ft

⎞

⎠ : w ∈ U, such that I[0,t]w = I[0,t]u

⎫
⎬

⎭ (53)

and consider

Zu
t :=

t∫

0

us R̂sds + V u
t , t ∈ [0, ϑ]. (54)

The main step is to see that for each u ∈ U
(Zu

t )t ∈ [0, ϑ] is a supermartingale of class D starting at x0,
such that t �→ EQF (Zu

t ) is right-continuous (55)

which admits (see Theorem 3.13 and Theorem 4.10 in Karatzas and Shreve 1997)
the Doob–Meyer decomposition

Zu
t = x0 + Mu

t − Au
t t ∈ [0, ϑ] (56)

where (Mu
t )t∈[0,ϑ] is a uniformly integrable martingale and (Au

t )t∈[0,ϑ] is natural
non-decreasing process, both satisfying Mu

0 = Au
0 = 0. The decomposition (56)

yields immediately the assertion of Lemma 1 due to V u
t ≥ 0, Au

t ≥ 0 for all
t ∈ [0, ϑ]. Thus, we have to prove

Lemma 2 For each u ∈ U holds:

(i) (Zu
t )t∈[0,ϑ] is a supermartingale,

(ii) {Zu
τ : τ is a stopping time 0 ≤ τ ≤ T } is uniformly integrable,

(iii) t �→ EQF (Zu
t ) is right-continuous on [0, ϑ].

First, we prepare some notations and facts needed in the proof. Given u ∈ U , we
write

Uu
t := {w ∈ U : I[0,t]w = I[0,t]u} for all t ∈ [0, ϑ]

to denote the set of admissible continuations of the exercise policy u ∈ U after t .
Introduce the revenue of production capacity, expected after t for applying policy
u ∈ U :

Y u
t := EQF

⎛

⎝
ϑ∫

t

us R̂sds | Ft

⎞

⎠ .

Let us utilize the concept of the essential supremum
∨ W for a family W of random

variables (see Karatzas and Shreve 1998, Appendix A), to ensure that the value
function in (53) is well-defined by

V u
t :=

∨
{Y q

t : q ∈ Uu
t }. (57)
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Moreover, we will need the fact that for each t ∈ [0, ϑ] and u ∈ U the set

{Y q
t : q ∈ Uu

t } (58)

is closed under pairwise maximization

for Y q
t , Y w

t with q, w ∈ Uu
t there exists h ∈ Uu

t with Y h
t = Y q

t ∨ Y w
t . (59)

Indeed, given q, w ∈ Uu
t the composed policy

hs = I[0,t](s)us + 1{Y q
t >Y w

t }I]t,ϑ](s)qs + 1{Y q
t ≤Y w

t }I]t,ϑ](s)ws s ∈ [0, ϑ]
obviously meets (59). According to (Karatzas and Shreve 1998), Lemma A.2, the
Property (59) ensures that (57) is the limit of an almost surely converging non-
decreasing sequence in (58) which finally implies that for any σ–algebra G ⊂ F
we have

EQF (V u
t | G) =

∨
{EQF (Y q

t | G) : q ∈ Uu
t } for all t ∈ [0, ϑ] and u ∈ U .

(60)

Now, the optimality principle

V u
t0 ≥ EQF

⎛

⎝
t∫

t0

us R̂sds | Ft0

⎞

⎠ + EQF ( V u
t | Ft0)

(61)
for all 0 ≤ t0 ≤ t ≤ ϑ, u ∈ U

is deduced from

V u
t0 =

∨
⎧
⎨

⎩EQF

⎛

⎝
ϑ∫

t0

ws R̂sds | Ft0

⎞

⎠ : w ∈ Uu
t0

⎫
⎬

⎭ ,

≥
∨

⎧
⎨

⎩EQF

⎛

⎝
ϑ∫

t0

ws R̂sds | Ft0

⎞

⎠ : w ∈ Uu
t

⎫
⎬

⎭ , since Uu
t0 ⊇ Uu

t

≥
∨

w∈Uu
t

⎛

⎝EQF

⎛

⎝
t∫

t0

ws R̂sds | Ft0

⎞

⎠ + EQF

⎛

⎝
ϑ∫

t

ws R̂sds | Ft0

⎞

⎠

⎞

⎠

≥ EQF

⎛

⎝
t∫

t0

us R̂sds | Ft0

⎞

⎠ +
∨

w∈Uu
t

EQF

(
Y w

t | Ft0

)

≥ EQF

⎛

⎝
t∫

t0

us R̂sds | Ft0

⎞

⎠ + EQF (V u
t | Ft0)

where for the last step we have used (60). Now we prove Lemma 2.
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Proof (i) is an immediate consequence of the optimality principle (61).
(ii) By definition (54) and due to (40), we obtain a dominating martingale

(Zt )t∈[0,ϑ] as

Zt := λEQF (R | Ft ) ≥ Zu
t ≥ 0, t ∈ [0, ϑ],

which gives for all a > 0 and each stopping time τ the estimate

EQF (1{|Zτ |>a}|Zτ |) ≥ EQF (1{|Zu
τ |>a}|Zu

τ |). (62)

On the other hand, Lemma VI.29.6 from (Rogers and Williams 1994) ensures
the uniform integrability of

{Zτ = EQF (Zϑ |Fτ ) : τ stopping time, 0 ≤ τ ≤ T },
hence (62) implies (ii).

(iii) The argumentation is based on two inequalities, where the first is

|EQF (V u
t )−EQF (V w

t )|≤λEQF (D(ρu
t , ρw

t )R) for all u, w∈U , t ∈[0, ϑ] (63)

with notation

ρ
q
t := � −

t∫

0

qsds for q ∈ U , t ∈ [0, ϑ]

for the capacity level, remaining after following policy q ∈ U until t . The difference
D(ρu

t , ρw
t ) in capacity levels is measured by

D(
, 
′) :=

⎧
⎪⎨

⎪⎩

1 − 


′ if 
 < 
′

1 − 
′



if 
 > 
′

0 if 
 = 
′
for all 
, 
′ ∈ [0,�]

with the property that

for non-decreasing sequences (
(i))i≥1, (

′(i))i≥1 ⊂ [0,�]

holds lim
i→∞ D(
(i), 
′(i)) = D( lim

i→∞ 
(i), lim
i→∞ 
′(i)). (64)

The natural interpretation of (63) is that in expectation, the revenue difference of
best possible continuations of u and w depends only on their residual capacity
levels at t . The other estimation we require claims that for each u ∈ U , t0 ∈ [0, ϑ[
and ε > 0 there exist w ∈ Uu

t0 such that

|EQF (V u
t0 ) − EQF (V w

t )| ≤ λ(t − t0)EQF (R) + ε for all t ∈ [t0, ϑ]. (65)

Both inequalities are used to prove the right–continuity of t �→ EQF (V u
t ) as

follows: combining (65) with (63), we conclude that for a given ε > 0 there exists
w ∈ Uu

t0 such that

|EQF (V u
t0 ) − EQF (V u

t )| ≤ λ(t − t0)EQF (R) + ε + λEQF (D(ρu
t , ρw

t )R). (66)
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For each non-increasing sequence (ti )i≥1 ⊂ [t0, ϑ] converging to t0 we have the
non–decreasing sequences (ρu

ti )i≥1 and (ρw
ti )i≥1 in [0,�] with

lim
i→∞ ρu

ti = ρu
t0 , lim

i→∞ ρw
ti = ρw

t0 where ρu
t0 = ρw

t0 since w ∈ Uu
t0 .

By dominated convergence and (64), we deduce that the limiting behavior of (66)
is

lim sup
ti ↓t0

|EQF (V u
t0 ) − EQF (V u

ti )| ≤ ε for all ε > 0.

This gives the assertion of (iii), since the other summand t �→ ∫ t
0 us Rsds in (54)

is obviously continuous.
Now we prove (65). The idea is to approximate the policy w̃ ∈ Uw

t on [t, ϑ]
by appropriate policy ũ ∈ Uu

t constructed as

ũs := usI[0,t](s) + w̃s1{ρw
t ≤ρu

t }I]t,ϑ](s) + ρu
t

ρw
t

w̃s1{ρw
t >ρu

t }I]t,ϑ](s), s ∈ [0, ϑ]

with the interpretation to trace a foreign policy w̃ ∈ Uw
t by the own policy ũ ∈ Uu

t
using the following strategy: if the own capacity level ρu

t is greater or equal to
the foreign level ρw

t , then we just mimic w̃. Otherwise, we have to follow w̃ at a
reduced intensity ρu

t /ρw
t . As a result, we obtain the estimation

Y w̃
t − Y ũ

t =
ϑ∫

t

w̃s R̂sds −
ϑ∫

t

ũs R̂sds =
(

1 − ρu
t

ρw
t

)
1{ρw

t >ρu
t }

ϑ∫

t

w̃s R̂sds

≤ λ

(
1 − ρu

t

ρw
t

)
1{ρw

t >ρu
t } R.

Taking the expectation, we deduce

EQF (Y w̃
t ) − EQF (Y ũ

t ) ≤ λEQF

((
1 − ρu

t

ρw
t

)
1{ρw

t >ρu
t } R

)
(67)

and passing through supremum, we conclude that

EQF (V w
t ) − EQF (V u

t ) ≤ λEQF

((
1 − ρu

t

ρw
t

)
1{ρw

t >ρu
t } R

)
.

Interchange now u and w in the above argumentation, to obtain the reverse estimate

EQF (V u
t ) − EQF (V w

t ) ≤ λEQF

((
1 − ρw

t

ρu
t

)
1{ρu

t >ρw
t } R

)
. (68)
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Combining (68) and (67) finally yields (63) by

|EQF (V w
t ) − EQF (V u

t )| ≤ λEQF

((
1 − ρu

t

ρw
t

)
1{ρw

t >ρu
t } R

)

+λEQF

((
1 − ρw

t

ρu
t

)
1{ρu

t >ρw
t } R

)

≤ λEQF

(((
1 − ρu

t

ρw
t

)
1{ρw

t >ρu
t }

+
(

1 − ρw
t

ρu
t

)
1{ρu

t >ρw
t }

)
R

)

≤ λEQF (D(ρw
t , ρu

t )R).

Now we show (65). According to (60), we can choose for a given ε > 0 a policy
ũ ∈ Uu

t0 such that

EQF (V u
t0 ) − ε ≤ EQF (Y ũ

t0) = EQF

⎛

⎝
t∫

t0

ũs R̂sds

⎞

⎠ + EQF (Y ũ
t )

≤ EQF

⎛

⎝
t∫

t0

ũs R̂sds

⎞

⎠ + EQF (V ũ
t ) (69)

Since 0 ≤ EQF (V u
t0 ) − EQF (V ũ

t ) holds for ũ ∈ Uu
t0 by the optimality principle

(61), we rewrite (69) as (65):

|EQF (V u
t0 ) − EQF (V ũ

t )| ≤ EQF

⎛

⎝
t∫

t0

ũs R̂sds

⎞

⎠ + ε ≤ λ(t − t0)EQF (R) + ε.

�
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