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Abstract Habitat fragmentation is one of the most
important threats to biodiversity. Decreasing patch size
may lead to a reduction in the size of populations and to
an increased extinction risk of remnant populations.
Furthermore, colonization rates may be reduced in iso-
lated patches. To investigate the effects of isolation and
patch size on extinction and colonization rates of plant
species, calcareous grasslands at three sites in the Swiss
Jura Mountains were experimentally fragmented into
patches of 0.25, 2.25, and 20.25 m2 by frequent mowing
of the surrounding area from 1993 to 1999. Species
richness in the fragment plots and adjacent control plots
of the same sizes was recorded during these 7 years. In
agreement with the theory of island biogeography, col-
onization rate was reduced by 30% in fragments versus
non-isolated controls, and extinction increased in small
versus large plots. Habitat specialists, in contrast to
generalists, were less likely to invade fragments. In the
last 4 years of the experiment, extinction rates tended to
be higher in fragment than in control plots at two of the
three sites. Despite reduced colonization rates and a
tendency of increased extinction rates in fragments,
fragmented plots had only marginally fewer species than
control plots after 7 years. Hence, rates were a more
sensitive measure for community change than changes in

species richness per se. From a conservation point of
view, the detected reduced colonization rates are par-
ticularly problematic in small fragments, which are more
likely to suffer from high extinction rates in the long run.

Keywords Extinction Æ Fragment size Æ Generalists/
specialists Æ Interaction stochasticity Æ Species turnover

Introduction

One of the most dramatic landscape changes during the
twentieth century in Europe has been the reduction and
fragmentation of habitats such as semi-natural grasslands
(Fischer and Stöcklin 1997; Eriksson and Ehrlén 2001;
Kiviniemi and Eriksson 2002; WallisDeVries et al. 2002).
Habitat fragmentation, the transformation of once large
and continuous habitat areas into a number of small and
isolated patches, is nowadays one of the most important
threats to local biodiversity (Groom and Schumaker
1993), and the interaction of habitat fragmentation and
rapid climate change is predicted to lead to a range-wide
increase in extinction risk (Jump and Penuelas 2005).
Habitat fragmentation reduces the area available for
species and leads to isolation and decreased size of rem-
nant populations in plants and animals, which may suffer
from increased risk of local extinctions (Gilpin and Soulé
1986; Saccheri et al. 1998). The disadvantages suffered by
small populations involve greater sensitivity to demo-
graphic stochasticity (Holsinger 2000) and reduced ge-
netic variation (Ellstrand and Elam 1993; Lynch et al.
1995; Fischer and Matthies 1997; Krauss et al. 2004).
Furthermore, effects of habitat fragmentation on indi-
vidual species or populations may lead to the disruption
of biotic interactions such as pollination or seed dispersal
(Lennartsson 2002) and hence can affect species with
previously stable populations. These different processes
may occur together and reinforce each other leading to an
extinction vortex (Shaffer 1981; Menges 1991).

In plants, the fate of remnant populations within
habitat patches or land-bridge islands (Forman 1995)
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will depend on the degree of isolation, the quality of the
matrix habitat, the size of the remnant population, and
on species characteristics such as mating system, seed
dispersal ability, seed dormancy, and plant longevity
(Charlesworth and Charlesworth 1987; Kareiva 1987;
Saunders et al. 1991; Fischer and Matthies 1997;
Stöcklin and Fischer 1999; Aizen et al. 2002; Soons and
Heil 2002). In addition, altered abiotic conditions asso-
ciated with edge effects due to fragmentation have also
been found to influence species dynamics in several
experimental studies (Bruna 1999; Debinski and Holt
2000; Laurance et al. 2002; Dolt et al. 2005). All these
factors may lead to increased extinction rates in habitat
islands, particularly if they are of small size.

Due to isolation, the colonization by new species or
the re-colonization by previously present species is ex-
pected to be lower in fragments than in sections of
continuous habitat of the same area (MacArthur and
Wilson 1963; Levins 1970; Hanski 1991a, b; Gonzalez
et al. 1998). Changed extinction and colonization rates
in fragments may subsequently lead to shifts in com-
munity composition (Robinson et al. 1992) and result in
a net decline of species richness. However, very few
studies have tested the causes of temporal changes in
community structure (Manne et al. 1998) and such shifts
have rarely been empirically investigated in fragmenta-
tion studies (Debinski and Holt 2000). Only a few
fragmentation experiments with proper replication and
controls have been carried out (Debinski and Holt 2000)
and, in contrast to expectations, often showed transitory
increases in species richness in fragments, due to
invading generalists from the surrounding matrix and
due to a competitive release of suppressed species be-
cause of edge effects (Holt et al. 1995, Debinski and Holt
2000).

Here, we report results from a 7-year habitat frag-
mentation experiment in natural mesocosms (Srivastava
et al. 2004) with a treatment-versus-control design to
address predictions made by biogeographic (MacArthur
and Wilson 1963), metapopulation and metacommunity
(Hanski 1999; Leibold et al. 2004) theories. Our open,
natural mesocosms allowed for replicated communities
of different size classes and allowed for the comparison
of community changes in fragments with community
changes in adjacent non-isolated control areas of the
same sizes. By frequent mowing of the surrounding area,
we fragmented species-rich calcareous grasslands spread
over three sites in the Swiss Jura Mountains in 12
experimental blocks containing 48 small fragment plots,
separated by 5 m from each other and from the adjacent
continuous habitat. In the adjacent continuous habitat,
48 control plots of the same size as the fragment plots
were marked. Calcareous, nutrient-poor grasslands are
ideal model ecosystems as they allow experimental
fragmentation at a scale that is large relative to the size
of the plant species typically found in this type of veg-
etation. During 7 years, we followed the vegetation
dynamics within fragments and control patches to
quantify extinction and colonization rates and their net

effects on plant community composition and species
richness. We tested the following two hypotheses: (1)
fragmentation leads to decreased colonization rates
compared with control areas and, together with (2), to
reduced species richness in habitat remnants; and (2)
extinction rate increases with decreasing patch size both
in fragment and control plots, but the effect is stronger
in fragments.

Materials and methods

Field sites and experimental design

Our model ecosystems were nutrient-poor, dry, calcare-
ous grasslands characterized by the presence of the grass
Bromus erectus (Mesobromion-alliance, Ellenberg 1988).
This vegetation harbors a large number of dwarf flower-
ing plants at the square-meter scale (Zoller 1954) and is
thus particularly suited for experimental tests of habitat
fragmentation using relatively small patches of land that
allow adequate replication at the landscape scale. We
established a total of 12 blocks for the application of
fragmentation treatments at three field sites in the Swiss
Jura Mountains: ‘‘Nenzlingen’’ (47�28¢N, 7�34¢E,
510 m asl), ‘‘Vicques’’ (47�22¢N, 7�26¢E, 590 m asl) and
‘‘Movelier’’ (47�25¢N, 7�20¢E, 770 m asl). These three
sites were located within 20 km of each other and were
also used to study various other groups of organisms
(Baur et al. 1996; Zschokke et al. 2000;Groppe et al. 2001;
Goverde et al. 2002). Until the start of the experiment, the
study sites were used as cattle pastures at a relatively low
stocking rate. During the experiment, this use was re-
placed by yearly mowing in late autumn. Therefore,
appropriate controls were of particular importance.

The 12 blocks measuring 32·29 m each were set up in
April 1993 (according to size of field sites, five blocks
could be placed in Nenzlingen, four in Vicques and three
in Movelier). Each block was divided into two halves of
32·14.5 m. In each half of a block, four quadratic pat-
ches of vegetation (plots of geometrically increasing
area: 0.25 m2< 2.25 m2< 20.25 m2) were established
(see Fig. 1). The smallest plot size occurred twice in each
half of a block, because we anticipated larger variation
in species composition among small plots. The positions
of control and treatment halves and of plots of a given
size within halves were randomly allocated in each of the
12 blocks. At the beginning of the experiment, plots of
0.25 m2 on average harbored 23.3 plant species
(including woody species), plots of 2.25 m2 43.0 plant
species and plots of 20.25 m2 65.3 plant species.

In the treatment halves, fragmentation was imposed
by frequent mowing (6–12 times between March and
October) of the interstitial matrix vegetation leading to
an isolation distance of 5 m both between plots and
between plots and continuous vegetation. Mowing pre-
vented any seed-set of species surviving in the matrix
vegetation. In particular, dwarf shrubs such as Helian-
themum nummularium, Genista sagittalis, Euphorbia
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cyparissias and Ononis repens—here and in the follow-
ing, taxonomy always follows Lauber and Wagner
(1996)—declined in the matrix vegetation, whereas
sun-loving herbs such as Hieracium pilosella, Prunella
grandiflora, Prunella vulgaris, Bromus erectus, Thymus
serpyllum, and Sedum sexangulare (the six most common
species in the matrix) persisted in the matrix vegetation.
No mowing between plots was applied in the control
halves. Therefore, these controls represented sample
plots in the continuous vegetation (Fig. 1). At the end of
the season each year, the entire experimental area was
mown to simulate the previous grazing regime and
prevent succession (Zschokke et al. 2000).

Vegetation survey and data preparation

Starting in 1993, plant species richness was recorded
annually (with the exception of 1998 where no data were
collected) in spring and summer (beginning of May,
July/August) at the level of individual plots, using por-
table scaffolds to prevent trampling of the plots. Initial
plant-species lists recorded in 1993 are presented in Baur
et al. (1996). In the first year, vegetation was sampled
with greater detail than in the subsequent years because
the first-year data served as the baseline for future

extinction and colonization events. In 1993, rooting
shoots and rosettes of herbaceous plants and culms of
grasses and graminoids were counted in each plot. To
calculate initial average population sizes on a per plot
base, graminoids and woody plants were excluded and
the average number of rooting shoots and rosettes of a
total of 76 herbaceous species was used. The Shannon
diversity index (H¢), the Simpson index (D), and an
evenness index (Hill’s modified ratio E5; Ludwig and
Reynolds 1988) were calculated from these abundance
data. Shannon’s diversity index was calculated as
H¢=�Rpi ln(pi), where pi denotes the proportional
abundance of the i-th species. In a sample with only one
species, H¢ becomes 0. The Simpson Index (D) was
estimated as D=Rpi

2. The Simpson Index gives the
probability that two individuals drawn at random from
a community belong to the same species. Hill’s modified
ratio (E5) was calculated as E5=(1/D)�1/eH¢�1 (Lud-
wig and Reynolds 1988). If all species in a community
are equally abundant, i.e. evenness is maximal, E5 be-
comes 1. Otherwise, if only one species dominates the
community E5 equals 0. To assess how well the pattern
of species abundance followed a log-normal distribu-
tion, Pielou’s (1975) method of fitting a truncated log
normal curve was used.

During the 7 years, vegetation surveys were carried
out by three different botanists (1993–95 by J.J., 1996
and 1999 by H.-P.R., and 1997 by C.D.). The change in
observer between 1995 and 1996 coincided with an
unusually dry start of the vegetation period in the Jura
Mountains in 1996. As vegetation surveys were not
carried out in the whole area of the medium and large
plots in 1997, these data were omitted from most anal-
yses. They were, however, used to check for re-appear-
ance of species present in 1993 and not thereafter (see
below). For the calculation of extinction and coloniza-
tion rates and of species turnover between 1993 and
1999, woody species were excluded, as these were
annually removed by the mowing management. Species
turnover rates (TR) were calculated based on presence/
absence data as TR=100(E+C)/(S1+S2). C is the
number of colonizing species and E the number of spe-
cies going extinct between censuses, S1 the number of
species present at census date 1 (1993 or 1996, respec-
tively) and S2 the number of species present at census
date 2 (1995 or 1999), all on a per-plot basis. Extinction
(ER) and colonization rates (CR) were calculated as
ER=100(E/0.5)/(S1+S2) and CR=100(C/0.5)/
(S1+S2), respectively (Nilsson and Nilsson 1982). To
reduce the amount of pseudo-turnover, i.e. sampling
errors that artificially increase species turnover estimates
especially when comparing turnover at different plot
sizes (see Nilsson and Nilsson 1985), species were only
considered extinct if they were recorded in 1993 (or 1996
for analyses on species turnover during the second half
of the experiment), but not in any subsequent year. On
the other hand, species were counted as colonizers if they
were not present before census date 2 within one of the
two census periods.

Fig. 1 Layout of one of the 12 blocks that were set up in the field in
early spring 1993. Each block contained four small plots of
0.5·0.5 m, two medium-sized plots of 1.5·1.5 m and two large
plots of 4.5·4.5 m. Half of each block served as control, the other
half was experimentally fragmented by frequent mowing between
plots. Isolation distance between fragment plots and these and
continuous vegetation was 5 m. The position of each pair of plots
of a given size as well as the position of control and treatment side
was randomly chosen in each of the 12 blocks
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Habitat specificity values 0 (none), 1 (medium), and 2
(high) were assigned to species by counting the number
of phytosociological orders in which they occur in
Switzerland according to the literature (see Fischer and
Stöcklin 1997 for a detailed description for the habitat
specificity scoring; electronic supplementary material).
Each plot was also characterized by the mean nutrient
indicator value of species present (nutrient indicator
values of Landolt 1977). Nutrient indicator values range
from 1 (plants growing on nutrient poor soils only) to 5
(plants growing on over-fertilized soils).

Statistical analyses

According to the hierarchical experimental design, the
data were analyzed with analysis of variance and devi-
ance using generalized linear modeling (McCullagh and
Nelder 1989) as implemented in the Genstat 5 statistical
language (General Statistical Program, release 3.2;
Payne et al. 1993). The treatment model consisted of site,
fragmentation, and plot-size effects (the latter parti-
tioned into linear contrast and deviation) and their
interactions (Table 1; see also Groppe et al. 2001). The
block effects were fitted to eliminate spatial variation
within experimental sites and site effects were tested
against the variation between blocks within sites. The
effects of fragmentation were tested against the variation
between halves within blocks (Fig. 1; Table 1 ‘‘block ·
fragmentation’’). Where necessary, dependent variables
were transformed prior to statistical analysis to meet the

analysis of variance assumptions of homoscedasticity
and normality. Differences in habitat specificity of spe-
cies among plots were analyzed by analysis of deviance
(Joshi et al. 2001).

Results

Species richness and composition at the start of the
experiment

At the beginning of the experiment in 1993, a total of
143 plant species (including woody species) were re-
corded at the three study sites with 53.8% of the species
occurring at all sites. Of these 143 species, 90% were
perennials. The high overall mean values of the Shannon
and evenness indices and the low value of the Simpson
index at the beginning of the fragmentation experiment
emphasize the high diversity and evenness of the inves-
tigated calcareous grassland communities (H¢=2.88;
E5=0.68, D=0.09). No significant initial differences in
the pattern of plant-species diversity between fragments
and control areas or between the three sites were de-
tected with any measure, i.e. species richness, Simpson’s,
Shannon’s, or evenness index (P>0.4 for species rich-
ness and P>0.1, respectively for all diversity measures).

Changes in species richness over time

On average, species richness per plot was similar in 1993
(37.6±16.7) and in 1999 (35.7±15.3). At the beginning
of the experiment, species richness was slightly, but not
significantly higher in fragment than in control plots
(38.50±16.89 compared with 36.67±16.37; F1,11=2.95,
P=0.11). At the end of the experiment, this difference
was reversed (35.52±15.91 species in fragmented plots
compared with 35.83±15.35 species in controls) and
fragment plots had a slightly, but not significantly,
higher decline in species richness than control plots
(F1,11=3.44, P=0.091, �3 species vs. �0.8 species).
There were pronounced differences in richness changes
due to fragmentation at the different sites at the end of
the experiment (F2,9=12.89, P<0.01). Species number
decreased more in fragment than in control plots at the
site Nenzlingen (9.0 species less in fragments compared
with 4.1 species less in controls), increased less in frag-
ment than in control plots at the site Movelier (2.8
species more in fragments compared with 3.9 species
more in controls) and remained constant in Vicques (0.2
species more in fragments compared with 0.3 species less
in controls).

Colonization–extinction dynamics

Between 1993 and 1999, colonization rate was 29.4%
lower in fragment than in control plots (Table 2; Fig. 2).

Table 1 Skeleton analysis of variance for measured variables.
Random effects (error model) in italic letters, fixed effects (treat-
ment model) in roman letters; effects are always adjusted for effects
that precede them

Source of variation df Mean
square

Variance-ratio

Site 2 MSs MSs/MSb
Block (within site) 9 MSb MSb/MSbp
Fragmentation 1 MSi MSi/MSbi
[Site · fragmentation 2 MSsi MSsi/MSbi]

a

Block · fragmentation 9 MSbi MSbi/MSbip
[Plot-pair 3 MSp MSp/MSbp]

a

Plot size 2 MSa MSa/MSbp
Plot size, linear 1 MSl MSl/MSbp
Plot size, quadratic 1 MSq MSq/MSbp

[Site · plot-pair 6 MSsp MSsp/MSbp]
a

Block · plot-pair 27 MSbp MSbp/MSbip
Fragmentation · plot size 2 MSia MSia/MSbip
Fragmentation · plot size,
linear

1 MSil MSil/MSbip

Fragmentation · plot size,
quadratic

1 MSiq MSiq/MSbip

Block · fragmentation ·
plot-pair

27 MSbip MSbip/MSe

Individual N = 96 MSe

aThese lines were not of direct interest and only included in the
model if their F-values were larger than 2 (see Green and Tukey
1960), otherwise they were pooled with the random effect below
them
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The extinction rate between 1993 and 1999, however,
was not significantly different between fragment and
control plots (Table 2). Therefore, the lower coloniza-
tion rate in fragment plots decreased the species turn-
over rate compared to control plots by 22%
(F1,11=7.24, P<0.05; Fig. 2).

In the first half of the experiment, from 1993 to 1995,
the same pattern of change was already being observed:
colonization rate was decreased by fragmentation
(F1,11=25.20, P<0.001) whereas the extinction rate was
not significantly affected (P=0.23). This resulted in a
decreased turnover rate in fragment compared with
control plots (F1,11=19.74, P=0.0016). In the second
half of the experiment, from 1996 to 1999, the coloni-
zation rate was still lower in fragment than in control
plots (F1,11=5.54, P<0.05) and, overall, the species
extinction rate similar (F1,11=2.02, P>0.18). However,
because at two of the three sites the extinction rate
tended to be increased by fragmentation (Fig. 3), the
turnover rate was no longer significantly different
(P=0.12) between fragment and control plots during the
second half of the experiment.

At the beginning of the experiments in 1993, the
logarithm of species richness increased with the loga-
rithm of plot size (slope of the species-area curve
z=0.24; R2=0.89, n=96). Average population sizes of
species did not differ between sites or between fragment
and control plots (all P>0.6), but they linearly increased
with increasing plot size (F1,31=566.9, P<0.001; see
Table 3 for average population sizes of the four most
common non-clonal forbs), reflecting more or less con-
stant population densities of 2.3 ‘‘individuals’’, i.e.
rooting shoots or rosettes per m2.

Plot size, independently of the fragmentation treat-
ment, had a negative influence on species colonization
rate (Table 2), i.e. the newly arriving species made up a
larger proportion of species present in small than in
large plots (Fig. 2). In the first half of the experiment,
between 1993 and 1995, no significant effect of plot size
on extinction rate was observed (P>0.8). However,
calculated over the entire period of the experiment
(1993–1999), plot size also had a negative influence on

species extinction rate (Table 2), i.e. a larger proportion
of species present disappeared in small than in large
plots. Therefore, species turnover was lowest in large
plots (�53.8% compared with small plots), i.e. small
plots had the lowest, and large plots the highest, per-
sistence in species composition over time (Fig. 2).

Species richness at the beginning of the experiment in
1993 was positively correlated with the number of
extinctions between 1993 and 1999 in the small frag-
mented plots (Fig. 4; R2=0.41, F1,22=16.83, P<0.001).
Such a positive relationship was lost in the medium and
large fragmented plots (P>0.19 and P>0.9, respec-
tively) and was not detected in control plots of any size
class.

Species-specific effects

The number of generalist plant species (habitat speci-
ficity 0) did not change during the experiment (1993–
1999; P>0.1). However, the number of species with
habitat specificity 1, i.e. species typically found in this
vegetation, significantly decreased in fragmented plots of
all size classes between 1993 and 1999 (�0.7 species in
small plots, �0.3 species in medium-sized plots, and
�3.7 species in large plots; F1,11=8.03, P=0.016). In
control plots, however, the number of specialist species
with habitat specificity 1 slightly increased during the
7 years (+1.3 species in small plots, +0.4 species in
medium sized plots, and +0.3 species in large plots;
F1,11=8.03, P=0.016). Only 16.8% of all species, e.g.
the rare orchid Spiranthes spiralis or the rare legume
Trifolium ochroleucon, had habitat specificity 2. Their
number did not significantly change between 1993 and
1999 (P>0.3). Generalists tolerate a broader range of
habitats, reflected in a higher average nutrient indicator
value of 3.17±0.01, than species with habitat specificity
1 or 2, which showed lower tolerance for nutrients
(average 2.29±0.08 and 2.16±0.1, respectively;
F1,132=58.0, P<0.001).

The same pattern was already detectable in the first
half of the experiment (1993–1995): the number of

Table 2 Results of ANOVA for colonization and extinction rate of fragmented and control plots between 1993 and 1999

Source of variation Colonization rate Extinction rate

df MS F P MS F P

Site 2 27.47 0.49 0.6268 687.12 3.92 0.060
Block 9 55.81 1.17 0.3440 175.34 7.43 0.000
Fragmentation 1 394.14 7.23 0.0211 37.15 0.52 0.486
Block · fragmentation 11 54.53 1.14 0.3601 71.44 3.03 0.006
Plot-pair 3 10.03 0.30 0.8252 72.16 1.30 0.292
Plot size, linear 1 1,054.86 31.54 0.0000 439.90 7.93 0.008
Plot size, deviation 1 273.11 8.16 0.0076 135.16 2.44 0.129
Block · plot-pair 31 33.45 0.70 0.8388 55.48 2.35 0.008
Fragmentation · plot size 2 45.62 0.96 0.3941 42.91 1.82 0.178
Residual 34 47.66 23.60
Total 95
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generalist plant species (habitat specificity 0) and the
number with habitat specificity 2 did not change during
the first half of the experiment (P>0.9 and P>0.3).
However, the number of species with habitat specificity 1
significantly decreased in fragment plots 2 years after the
start of the fragmentation treatment by 8% on average
(F1,11=6.27, P<0.05).

Discussion

As predicted by the theory of island biogeography
(MacArthur and Wilson 1963), habitat fragmentation

had a negative impact on colonization rates of plant
species in our small-scale experimental model system.
The results of the present study show that even an iso-
lation distance of 5 m reduces colonization rates. In
particular, the colonization rate of habitat specialists,
whose fate is of particular concern for nature conser-
vation, was smaller in fragment than in control plots,
whereas generalists were not affected by habitat frag-
mentation. The extinction rate of plant species during
the 7-year observation period was negatively related to
plot size, i.e. smaller populations had a higher chance of
extinction. This is also in agreement with predictions of
island biogeography (MacArthur and Wilson 1963).
Hence, classical island theory is useful to study diversity
patterns in terrestrial habitat remnants, albeit with some
restrictions, e.g. the spillover of matrix species from the
interstitial areas between fragments, which has to be
taken into account (Cook et al. 2002).

Above all, initially species-rich small plots lost species
due to fragmentation. In the second half of the experi-
ment, there was a tendency of increased extinction rates
in fragment as compared with control plots at two of the
three field sites. Overall, the reduced colonization rate in
fragment plots and the tendency of increased extinction
rates in fragments in the second half of the experiment
resulted in a trend of fragment plots having a higher
reduction in species number than adjacent control plots
after 7 years of experimental habitat fragmentation. In
our study, rates were more sensitive to detect changes in
community dynamics than species number per se due to
random differences in initial species numbers at the
different field sites between fragment and control plots.
This higher variability or background noise in field
experiments compared with laboratory experiments

Fig. 3 Extinction rate in fragments (filled bars) and control plots
(open bars) based on species present in 1993, at the start of the
experiment, but not in any subsequent year until 1999, the end of
the experiment, at each of the three sites. The extinction rate was
highest in Nenzlingen (extinction rate in fragment plots vs control
plots: 23.8±2.68% vs 14.3±1.83%)

Fig. 2 Extinction rate, colonization rate, and species turnover rate,
respectively, as a function of plot size in fragments (closed circles)
and control plots (open circles) over 7 years, between 1993 and
1999. Vertical bars denote ±1 SE
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makes it a necessity to replicate field experiments at
different field sites to achieve some generality in the
patterns observed.

Although our results support the theory of island
biogeography, they are in contrast with an array of long-
term studies, which found inconsistent effects of habitat
fragmentation on community dynamics depending on
ecosystem type, dispersal ability of organisms and
experimental design (Debinski and Holt 2000). How-
ever, the review by Debinski and Holt (2000) showed
that effects of fragmentation become stronger with time;
a pattern also observed in the present study with
perennial plants. Slower population growth rates in
fragmented areas compared with continuous habitat
increasing the risk of population decline and extinction
have also been observed in an Amazonian understory
herb (Bruna and Oli 2005), and higher extinction and
lower colonization rates have been reported for
specialist butterfly species in fragmented calcareous
grasslands in Germany (Krauss et al. 2003). The low
(re-)colonization rates of specialist plants in our
fragment plots are matching patterns of changed

plant-community composition, especially the decline of
specialist plant species and the simultaneous increase of
generalist plant species in habitat remnants, reported in
an observational study on fragmentation effects between
1950 and 1985 at the landscape scale in the same type of
grassland and geographical region (Fischer and Stöcklin
1997; Stöcklin and Fischer 1999). Plant diversity in
grasslands is limited by seed dispersal and availability of
micro-sites for recruitment (Tilman 1997, Turnbull et al.
2000). Our results suggest that (re-)colonization is a
crucial point in fragmented habitats as control plots in
continuous vegetation hold demes of plant species that
are in constant exchange of individuals by seed dispersal
with adjacent patches, which have been removed around
the fragment plots (Holt 1992).

The low sensitivity of generalist plant species to
habitat fragmentation may be due to a broad tolerance
towards altered abiotic conditions as indicated by their
broad range of soil nitrogen tolerance, allowing them to
survive outside the habitat islands, or simply reflect their
generally higher regional abundance and thus higher re-
colonization pressure. Similar interpretations have been
given for rain-forest fragments in the Amazon, where
invasion of generalist matrix species led to an increase of
generalist animal species in fragments at the expense of
specialists (Laurance et al. 2002).

Plot size, independently of the fragmentation treat-
ment, was negatively correlated with colonization rate
because large plots already contained a larger number of
species so that fewer new ones could be added (Mac-
Arthur and Wilson 1963). This effect, together with the
decreased extinction rate with increasing plot size, also
explains the lower species turnover rate in larger plots
that had the highest persistence in species composition
over time (see Fig. 2).

Fewer species (re-)colonized than went extinct in the
surveys on species turnover over the first 3 and the last
4 years of the experiment. In the calculations over the
whole duration of the experiment, this difference disap-
peared. This suggests that some of the extinctions ob-
served over a short time scale were due to pseudo-
extinction (Nilsson and Nilsson 1985) of species that do
not produce aboveground parts in some years. The
changed colonization and extinction rates did not have
an immediate strong negative effect on overall species
richness in fragments, but resulted in a trend of de-
creased species richness in habitat fragments. Especially,
at the most nutrient-rich site ‘‘Nenzlingen’’ (Dolt et al.

Fig. 4 Number of extinctions between 1993 and 1999 and initial
species richness in fragment plots. The number of extinctions was
positively correlated with species richness in small fragmented plots
(R2=0.41, F1,22=16.83, P<0.001; solid line), but not in medium
and large sized plots (P>0.19 and P>0.9, respectively; dashed
lines)

Table 3 Average population sizes ± 1 SE in plots of different sizes of the four most frequently encountered non-clonal forbs in 1993 at
the beginning of the experiment

Species Proportion of plots
containing the species (%)

Number of individuals
in 0.25 m2 plots

Number of individuals
in 2.25 m2 plots

Number of individuals
in 20.25 m2 plots

Sanguisorba minor 96.9 4.2±2.9 19.6±16.8 84.8±29.4
Ranunculus bulbosus 88.5 6.3±7.0 30.9±26.6 55.8±62.2
Lotus corniculatus 83.3 5.7±4.7 22.8±17.2 123.7±72.3
Plantago media 72.9 2.0±1.6 8.0±9.3 39.0±32.4
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2005) with the highest difference in the extinction rate
between fragment and control plots, species number was
less than half in fragment compared with control plots
after 7 years of isolation.

In the long term, fragmentation may lead to higher
extinction not only due to increased demographic and
genetic stochasticity of populations, but also via indirect
effects. These include altered abiotic conditions or the
disruption of biological interactions (Groppe et al. 2001;
Goverde et al. 2002; Braschler and Baur 2003; Braschler
et al. 2003). In contrast to pure demographic and envi-
ronmental stochasticity, which directly influences small
populations, these combined factors that include indirect
effects induced by fragmentation may be summarized by
‘‘interaction stochasticity’’. Stochastic interaction effects
might also have influenced plant community patterns in
the present study system, where fragmentation also af-
fected species richness and density of invertebrates
(Zschokke et al. 2000; Braschler and Baur 2003; Bras-
chler et al. 2003).

While we can expect to detect shifts in species com-
positions due to fragmentation already after a few years
(e.g. Robinson et al. 1992), the effects of habitat frag-
mentation on species richness may only become visible
in the long run (Eriksson 1996), especially if plant
communities consist of perennials that may persist for
years, albeit with decreasing abundances. The lower
colonization rate of habitat specialists and the trend for
a higher extinction rate observed in our experimental
study show that in species-rich calcareous grasslands,
population dynamics can be disrupted even at the small
scale of a 5-m isolation distance.
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