On Polygons Excluding Point Sets
Fulek, Radoslav ; Keszegh, Balázs ; Morić, Filip ; Uljarević, Igor
In: Graphs and Combinatorics, 2013, vol. 29, no. 6, p. 1741-1753
Add to personal list- Summary
- By a polygonization of a finite point set S in the plane we understand a simple polygon having S as the set of its vertices. Let B and R be sets of blue and red points, respectively, in the plane such that $${B\cup R}$$ is in general position, and the convex hull of B contains k interior blue points and l interior red points. Hurtado etal. found sufficient conditions for the existence of a blue polygonization that encloses all red points. We consider the dual question of the existence of a blue polygonization that excludes all red points R. We show that there is a minimal number K=K(l), which is bounded from above by a polynomial in l, such that one can always find a blue polygonization excluding all red points, whenever k≥ K. Some other related problems are also considered