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Abstract. The objective of this paper is to present two types of results on Minkowski
sums of convex polytopes. The first is about a special class of polytopes we call perfectly
centered and the combinatorial properties of the Minkowski sum with their own dual. In
particular, we have a characterization of the face lattice of the sum in terms of the face lattice
of a given perfectly centered polytope. Exact face counting formulas are then obtained for
perfectly centered simplices and hypercubes. The second type of results concerns tight
upper bounds for the f -vectors of Minkowski sums of several polytopes.

1. Introduction

Minkowski sums of polytopes in Rd naturally arise in many domains, ranging from
mechanical engineering [6] to algebra [7], [8]. These applications have triggered recent
algorithmic advances [2] and an efficient implementation [9]. Despite the new devel-
opments, we are still very far from understanding the combinatorial structure (i.e. the
face lattice) of a Minkowski sum of several polytopes. In particular, it is in general
difficult to estimate the number of k-dimensional faces (k-faces) of the result for each
0 ≤ k ≤ d − 1, even if we know the face lattices of the summands. One special case
of the problem which is relatively well understood is when the summands are m line
segments in Rd . The resulting sum is known as a zonotope given by m generators, see
e.g. Lecture 7 of [10]. The goal of the paper is to study the problem, first in the particular
case of a certain class of polytopes summed with their own dual, and then to prove tight
upper bounds on the number of k-faces.
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Research and Institute of Theoretical Computer Science, ETH Zentrum, Zürich, Switzerland.
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We call a polytope centered if it contains the origin in its relative interior. Nesterov
[5] has recently proved that the sum of a centered full-dimensional polytope (and more
generally a centered full-dimensional compact convex body) with its dual, if properly
scaled, gives a set whose asphericity is at most the square root of that of the initial
polytope. The asphericity of a set is here defined as the ratio of the diameter of its
smallest enclosing ball to that of its largest enclosed ball. Thus, summing a polytope
with its own dual has a strong rounding effect. For this reason, the Minkowski sum
P + αP∗, will be called a Nesterov rounding of a polytope P for any positive scalar α.

Of special interest is the combinatorial aspect of Nesterov rounding. The first ob-
servation is that the combinatorial structure of P + αP∗ does not depend on α. Thus
we can set the scaling factor to be 1 without loss of generality. We say “the” Nesterov
rounding instead of “a” Nesterov rounding to mean the class of all Nesterov roundings
with the unique combinatorial type. While the scaling factor is irrelevant for our study,
the position of the origin in P does affect the combinatorial structure of the Nesterov
rounding. In other words, the combinatorial structure of the Nesterov rounding of P
is not uniquely determined by that of the polytope. However, it is the case when the
polytope has the perfectly centered property, by which we mean that every nonempty
face intersects with its outer normal cone, see Section 2 for the formal definition.

The first result characterizes the face lattice of the Nesterov rounding of a perfectly
centered polytope. For this, we use the natural bijection between the faces of P and those
of the dual: FD denotes the dual face associated with a face F of P . We call a face F of
a polytope P trivial if it is either the empty set ∅ or the polytope P itself. In particular,
the trivial faces are dual to each other: PD = ∅.

Theorem 1. Let P be a perfectly centered polytope. A subset H of P+P∗ is a nontrivial
face of P + P∗ if and only if H = G + FD for some ordered nontrivial faces G ⊆ F
of P .

This theorem can be considered as a natural extension of a theorem in [1] which was
restricted to the facets of the sum.

As a corollary, we obtain face-counting formulas for perfectly centered simplices
(Theorem 6) and hypercubes (Theorem 7).

Any face of a Minkowski sum of polytopes can be decomposed uniquely into a sum
of faces of the summands. We say that the decomposition is exact when the dimension
of the sum is equal to the sum of the dimensions of the summands. When all facets have
an exact decomposition, we say the summands are relatively in general position.

This provides us with a trivial upper bound for the number of faces, i.e. the number of
possible distinct decompositions. As usual, we denote by fk(P) the number of k-faces
of a d-polytope P . For each k = 0, . . . , d − 1 and n ≥ 1, the number of k-faces of
P1 + · · · + Pn is bounded by

fk(P1 + · · · + Pn) ≤
∑

1≤si≤ f0(Pi )

s1+···+sn=k+n

n∏
i=1

(
f0(Pi )

si

)
,

where the si ’s are integral.
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The next theorem shows that this bound can be achieved in some cases.

Theorem 2. In dimension d ≥ 3, it is possible to choose d − 1 polytopes so that the
trivial upper bound for the number of vertices is attained.

Tight upper bounds on the number of facets appear to be harder to obtain in general.
However, the following result on 3-polytopes holds.

Theorem 3. Let P1, . . . , Pn be three-dimensional polytopes relatively in general po-
sition, and let P be their sum. Then the following equations hold:

2 f2(P)− f1(P) =
n∑

i=1

(2 f2(Pi )− f1(Pi )),

f2(P)− f0(P)+ 2 =
n∑

i=1

( f2(Pi )− f0(Pi )+ 2),

f1(P)− 2 f0(P)+ 4 =
n∑

i=1

( f1(Pi )− 2 f0(Pi )+ 4).

As a corollary (Corollary 4), we obtain tight upper bounds for the number of facets (and
edges) of the sum of two 3-polytopes.

Furthermore, by using the fact that the Nesterov rounding of a perfectly centered
polytope is again perfectly centered (Theorem 5), we also analyze the asymptotic be-
havior of repeated Nesterov roundings in dimension 3 (Theorem 8) that in fact shows
a combinatorial rounding effect: the ratio of the number of vertices over that of facets
approaches 1.

When the dimension d is large enough relative to the number of polytopes, it is
possible for faces of lower dimensions to attain the trivial upper bounds.

Theorem 4. In dimension d ≥ 4, it is possible to choose n ≤ �d/2
 polytopes P1, P2,
. . ., Pn so that the trivial upper bound for the number of k-faces of P1 + · · · + Pn is
attained for all 0 ≤ k ≤ �d/2
 − n.

Throughout this paper we assume that the reader is familiar with the basic results on
convex polytopes. For a general introduction to polytopes, please refer to [3] and [10].

2. Perfectly Centered Polytopes

We assume in this section that all polytopes are full-dimensional. A polytope P is said to
be centered if its relative interior relint(P) contains the origin. For any centered polytope
P , its dual, denoted by P∗, is defined by

P∗ = {x : 〈x, y〉 ≤ 1, ∀y ∈ P}.
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For each face of P , we define the associated dual face as

FD = {x | x ∈ P∗: 〈x, f 〉 = 1,∀ f ∈ F}.
We now define two notions central to Minkowski sums.

For a polytope P in Rd and any vector c ∈ Rd , we denote by S(P; c) the set of
maximizers of the linear function 〈·, c〉:

S(P; c) =
{

x ∈ P | 〈x, c〉 = max
y∈P
〈y, c〉

}
.

For any face F of P , the outer normal cone of P at F , denoted by N (F; P), is the set
of vectors c such that F = S(P; c). Normal cones are relatively open. Also, if F and G
are nonempty faces of a polytope P ,

G ⊆ F ⇔ cl(N (F; P)) ⊆ cl(N (G; P)),

where cl(S) denotes the topological closure of a set S.

Lemma 1. Let P be a centered polytope. For a face F of P , FD is a face of P∗.
Furthermore, if F is nontrivial, N (F; P) is the cone generated by the points in the
relative interior of the dual face FD. Namely,

N (F; P) = {λx : λ > 0, x ∈ relint(FD)}.
Consequently,

cl(N (F; P)) = {λx : λ ≥ 0, x ∈ FD}.

Proof. The proof is straightforward and is left to the reader.

Corollary 1. Let F be a nontrivial face of a polytope P . The affine spaces spanned by
F and FD are orthogonal to each other, meaning, the linear subspaces obtained from
the affine spaces by translations are orthogonal.

The study of Nesterov rounding of polytopes has led to a new class of polytopes, that
we introduce now. A polytope is called perfectly centered if

relint(F) ∩N (F; P) �= ∅ for any nonempty face F of P.

Observe that if the intersection is nonempty, then it consists of a single point, since a
face is orthogonal to its normal cone.

For instance, the polytope on the left in Fig. 1 is perfectly centered, and the two others
are not. The one in the center can be made perfectly centered by moving the origin, but
the one on the right cannot be. Note that the perfectly centered property was previously
studied in [1] where it was called the projection condition. Advantages of using the term
“perfectly centered” over the old term become evident when we state theorems such as
Corollary 2 and Theorem 5 below.
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Fig. 1. A perfectly centered and two nonperfectly centered polytopes.

Lemma 2. A polytope P is perfectly centered if and only if P is centered andN (F; P)∩
N (FD; P∗) �= ∅, for every nontrivial face F of P .

Proof. By Lemma 1, for any nontrivial face F ,

N (FD; P∗) = {λx : λ > 0, x ∈ relint(F)}.
Thus, for every nontrivial face F of a polytope P , the relations relint(F)∩N (F; P) �= ∅
andN (FD; P∗) ∩N (F; P) �= ∅ are equivalent. SinceN (P; P) = {0}, two statements
relint(P) ∩N (P; P) �= ∅ and 0 ∈ relint(P) are also equivalent.

This immediately implies the following duality that was proved in [1] by a different
(and longer) argument.

Corollary 2 [1, Lemma 4.4]. The dual of a perfectly centered polytope is perfectly
centered.

The following theorem is equivalent to a theorem due to Broadie.

Lemma 3 [1, Theorem 2.1]. If P is a perfectly centered polytope, then H is a facet of
the Minkowski sum P+ P∗ if and only if H is the sum of a face F of P with its associated
dual face F D in P∗.

Our first goal is to extend the characterization of facets to all faces and to determine
the face lattice of the Nesterov rounding P + P∗ of a perfectly centered polytope.

Lemma 4 [2, Proposition 2.1]. Let P1, . . . , Pk be polytopes in Rd and let P = P1 +
· · ·+Pk . Then a nonempty subset F of P is a face of P if and only if F = F1+· · ·+Fk for
some faces Fi of Pi such that there exists c ∈ Rd (not depending on i) with Fi = S(Pi ; c)
for all i . Furthermore, the decomposition F = F1 + · · · + Fk of any nonempty face F
is unique.

Lemma 5. Let P be a perfectly centered polytope. If a facet of P + P∗ is decomposed
into two faces F ⊆ P and FD ⊆ P∗, then any nonempty subface G of F generates with
FD a subface of F + FD of dimension dim(G)+ dim(FD).

Proof. This is the case because the faces G and FD span affine spaces which are
orthogonal to each other.
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In other words, for any two faces F and G of P with G ⊆ F , G and FD sum to a
face of P + P∗. We will show that there are no other faces in P + P∗.

Lemma 6. Let P be a polytope. Let two nonempty faces of its Nesterov rounding P+P∗

be decomposed as G1 + FD
1 and G2 + FD

2 . Then

G1 + FD
1 ⊆ G2 + FD

2 ⇔ G1 ⊆ G2, F1 ⊇ F2.

Proof. Let two nonempty faces of its Nesterov rounding P + P∗ be decomposed as
G1 + FD

1 and G2 + FD
2 . If G1 ⊆ G2 and F1 ⊇ F2, we have FD

1 ⊆ FD
2 , and thus

G1 + FD
1 ⊆ G2 + FD

2 .
For the converse direction, observe that for two faces A and B of a polytope P , A � B

if and only if cl(N (A; P))∩N (B; P) = ∅. Assume G1 � G2, that is, cl(N (G1; P))∩
N (G2; P) = ∅. This implies

cl(N (G1 + FD
1 ; P + P∗)) ∩N (G2 + FD

2 ; P + P∗)
= cl(N (G1; P) ∩N (FD

1 ; P∗)) ∩N (G2; P) ∩N (FD
2 ; P∗)

⊆ cl(N (G1; P)) ∩N (G2; P) ∩ cl(N (FD
1 ; P∗)) ∩N (FD

2 ; P∗) = ∅.

Consequently, G1 + FD
1 � G2 + FD

2 . The same holds if F1 � F2 by symmetry.

Now we are ready to prove:

Theorem 1. Let P be a perfectly centered polytope. A subset H of P+P∗ is a nontrivial
face of P + P∗ if and only if H = G + FD for some ordered nontrivial faces G ⊆ F
of P .

Proof. By Lemma 3, the facets of P + P∗ are of form F + FD for some nontrivial
face F of P . Lemma 5 says that if F and G are nontrivial faces of P with G ⊆ F , then
G + FD is a face of the sum polytope. Finally, Lemma 6 shows that all the faces are of
that kind, since it proves that there are no other subfaces to the facets.

Corollary 3. The face lattice of the Nesterov rounding P + P∗ of a perfectly centered
polytope is determined by that of P .

Theorem 5. The Nesterov rounding of a perfectly centered polytope is also perfectly
centered.

Proof. Le P be a perfectly centered polytope. Let F and G be nontrivial faces of P
with G ⊆ F . We denote by m F and mG the unique points in their intersections with their
respective normal cones. By Theorem 1, it suffices to show that mG+m FD ∈ N (G; P)∩
N (FD; P∗). By Lemma 2, mG ∈ N (G; P) ∩ N (GD; P∗). Also, m FD ∈ N (F; P) ∩
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+ =

Fig. 2. A nonperfectly centered sum of perfectly centered polytopes.

N (FD; P∗). Since G ⊆ F , N (F; P) ⊆ cl(N (G; P)). Since mG ∈ N (G; P) and
m FD ∈ cl(N (G; P)), mG +m FD ∈ N (G; P). By symmetry, mG +m FD ∈ N (FD; P∗),
completing the proof.

Note 1. The sum of two perfectly centered polytopes is not always perfectly centered.
For example, in Fig. 2, both rectangles are perfectly centered, but their sum is not, since
the sum of the two marked vertices is not in its normal cone.

2.1. The f-Vector of the Nesterov Rounding of a Simplex

Here we apply Theorem 1 to perfectly centered simplices.

Theorem 6. Let	d be a perfectly centered simplex of dimension d . Then the f -vector
of the Nesterov rounding of 	d is given by

fk(	d +	∗d) =
(

d + 1
k + 2

) (
2k+2 − 2

)
, for 0 ≤ k ≤ d − 1.

Proof. Let 	d be a perfectly centered simplex of dimension d. The f -vector of 	d is
given by

fk(	d) =
(

d + 1
k + 1

)
, for 0 ≤ k ≤ d − 1.

By Theorem 1, the faces of 	d + 	∗d can be characterized as the sums FD + G, with
G ⊆ F nontrivial faces of 	d .

Let S and T be the vertex sets of respectively G and F , with S ⊆ T , and denote
U = T \S. The dimension k of FD + G is dim(FD) + dim(G) = d − 1 + dim(G) −
dim(F) = d − 1+ |S| − |T | = d − 1− |U |.

So the number of faces of dimension k can be written as pq, where p is the number
of possible choices of U with |U | = d − 1 − k, and q is the number of choices of S
nonempty, so that S ∩U = ∅ and |T | = |S ∪U | < d + 1. Thus we have

p =
(

d + 1
k + 2

)
and q = 2k+2 − 2.



510 K. Fukuda and C. Weibel

2.2. The f-Vector of the Nesterov Rounding of a Cube

Theorem 7. Let ✷d be a cube of dimension d . Then the f -vector of the Nesterov
rounding of ✷d is given by

fk(✷d +✷∗d) =
(

d
k + 1

)
2d−k−1

(
3k+1 − 1

)
, for 0 ≤ k ≤ d − 1.

Proof. Let ✷d be a cube of dimension d. Then ✷d has 3n − 1 nontrivial faces, which
can be decomposed as

fk(✷d) =
(

n
d

)
2n−d , for 0 ≤ k ≤ d − 1.

By Theorem 1, the faces of ✷d + ✷∗d can be characterized as the sums FD + G, with
G ⊆ F nontrivial faces of ✷d .

Let S and T be the sets of fixed coordinates of respectively G and F , with T ⊆ S,
and denote U = S\T . The dimension k of FD + G is dim(FD) + dim(G) = d − 1 +
dim(G)− dim(F) = d − 1+ (d − |S|)− (d − |T |) = d − 1− |U |.

So the number of faces of dimension k can be written as pqr , where p is the number of
possible choices of U with |U | = d−1−k, q is the number of ways to fix the coordinates
in U , and r is the number of choices of G, so that S∩U = ∅ and |T | = |S∪U | < d+1.
We have

p =
(

d
k + 1

)
, q = 2d−k−1 and r = 3k+1 − 1.

2.3. Repeated Nesterov Rounding in Dimension 3

We use the following notation: f (i)k (P) denotes the number of k-dimensional faces in a
polytope P after executing the Nesterov rounding i times.

Theorem 8. Let P be a perfectly centered three-dimensional polytope P . Then the
following relations hold:

f (n)0 = 4n−1 f (1)0 ,

f (n)1 = 2 · 4n−1 f (1)0 and

f (n)2 = f (1)2 + (4n−1 − 1) f (1)0 .

Proof. Let P be a perfectly centered three-dimensional polytope. By Corollary 3,

f (n)2 = f (n−1)
0 + f (n−1)

1 + f (n−1)
2 .

It is a general property of face lattices that for two faces G ⊆ F so that dim(G)+ 2 =
dim(F) there are exactly two faces H1 and H2 of dimension dim(G) + 1 so that G ⊆
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H1 ⊆ F and G ⊆ H2 ⊆ F . In a Nesterov rounding, it means that all (d−3)-dimensional
faces, which are sums of a face G and FD, G ⊆ F so that dim(G) + 2 = dim(F) are
contained in four (d− 2)-dimensional faces, which are G+ H D

1 , G+ H D
2 , H1+ FD and

H2 + FD, and four (d − 1)-dimensional faces, which are G +GD, H1 + H D
1 , H2 + H D

2
and F + FD. In the three-dimensional case it means that all vertices are contained in
four incident edges and four facets. Since each edge contains exactly two vertices, we
have

f (n)1 = 2 f (n)0 , ∀n ≥ 1.

Since the number of vertices in the next Nesterov rounding is equal to the number of
pairs of a vertex and its containing facets, it also means that

f (n+1)
0 = 4 f (n)0 , ∀n ≥ 1.

Thus we have the following equations:

f (n)0 = 4n−1 f (1)0 ,

f (n)1 = 2 · 4n−1 f (1)0 and

f (n)2 = f (n−1)
2 + 3 · 4n−2 f (1)0 ⇒ f (n)2 = f (1)2 + (4n−1 − 1) f (1)0 .

Note that the ratio of the number of facets to that of vertices tends towards 1.

3. Maximizing Faces

It is natural to explore possible bounds for the number of faces in Minkowski sums of
polytopes. The description of a Minkowski sum can be exponential in terms of the de-
scription (binary) size of the summands. For instance, the sum of d orthogonal segments
in d-dimensional space is the d-hypercube, which has 2d vertices, but only 2d facets.

In this section we obtain some tight bounds on the number of faces in Minkowski
sums, in terms of number of vertices in the summands, and of the dimension.

3.1. Bounds on Vertices

We will show an upper bound for the number of vertices in a Minkowski sum, then we
will show this bound is attainable provided the dimension is big enough in relation to
the number of polytopes.

Each vertex in a Minkowski sum is decomposed into a sum of vertices of the sum-
mands. Since each vertex has a different decomposition, we arrive at the following trivial
upper bound:

Lemma 7 (Trivial Upper Bound). Let P1, . . . , Pn be polytopes. Then the following
gives an upper bound on the number of vertices of their Minkowski sum:

f0(P1 + · · · + Pn) ≤
n∏

i=1

f0(Pi ).
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Now we are ready to prove:

Theorem 2. In dimension d ≥ 3, it is possible to choose (d − 1) polytopes so that the
trivial upper bound for vertices is attained.

Proof. Let Pi , i = 1, . . . , d − 1, be d-dimensional polytopes, and let vi, j be their
vertices, j = 1, . . . , ni where ni ≥ 1 is the number of vertices of the polytope Pi . We
set the coordinates of the vertices to be

vi, j = cos

(
j

ni + 1
π

)
· ei + sin

(
j

ni + 1
π

)
· ed,

where the ej’s are the unit vectors of an orthonormal basis of the d-dimensional space.
So the vertices of Pi are placed on the unit half-circle in the space generated by ei and
ed. Observe that the polytopes are two-dimensional for now. By the construction, one
can easily verify that

vi, j ∈ N ({vi, j }; Pi ).

This stays true if we add anything to those vectors in the spaces orthogonal to that of the
half-circle:

vi, j +
∑
k �=i,d

αkek ∈ N ({vi, j }; Pi ), ∀αk ∈ R.

So for any choice of S = { ji }d−1
i=1 , ji = 1, . . . , ni , we can build this vector

vS =
d−1∑
i=1

cot

(
ji

ni + 1
π

)
· ei + ed.

This vector vS , projected to the space generated by ed and any ei, is equal to
cot (( ji/(ni + 1))π) · ei + ed which is collinear with cos (( ji/(ni + 1))π) · ei +
sin (( ji/(ni + 1))π) · ed, and thus belongs to N ({vi, ji }; Pi ). So we have that

vS ∈
d−1⋂
i=1

N ({vi, ji }; Pi ),

and since this intersection is not empty, it means that vj1 , . . . , vjd−1 is a vertex of the
Minkowski sum P1 + · · · + Pd−1. This stays true for any choice of S = { ji }d−1

i=1 ,
so the Minkowski sum has

∏d−1
i=1 ni vertices. The polytopes Pi thus defined are two-

dimensional. The property still stands if we add small perturbations to the vertices to
make the polytopes full-dimensional.

3.2. Bounds on Facets

It appears to be much harder to find tight upper bounds on facets of Minkowski sums
than on vertices. This is due to the fact that vertices of the sum decompose only in the
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sum of the vertices of the summands, while facets decompose in faces that can have any
dimension. Results are therefore limited for now to low-dimensional cases.

Let us recall now Theorem 3, which gives the number of facets in a three-dimensional
Minkowski sum of polytopes relatively in general position:

Theorem 3. Let P1, . . . , Pn be three-dimensional polytopes relatively in general po-
sition, and let P be their sum. Then the following equations hold:

2 f2(P)− f1(P) =
n∑

i=1

(2 f2(Pi )− f1(Pi )),

f2(P)− f0(P)+ 2 =
n∑

i=1

( f2(Pi )− f0(Pi )+ 2),

f1(P)− 2 f0(P)+ 4 =
n∑

i=1

( f1(Pi )− 2 f0(Pi )+ 4).

Proof. Let P1, . . . , Pn be three-dimensional polytopes relatively in general position
and let P be their sum. A facet of P can be either pure, which means its decomposition
contains exactly one facet of one of the summands and vertices otherwise, or it can
be mixed, which means the decomposition contains exactly two edges and vertices
otherwise.

In terms of normal cones, the normal ray of a pure facet is the intersection of the normal
ray of a single facet with three-dimensional normal cones of vertices. This means each
facet in the summands will generate exactly one pure facet of the sum:

f pure
2 (P) = f2(P1)+ · · · + f2(Pn).

The normal ray of a mixed facet is the intersection of the two-dimensional normal
cones of exactly two edges with three-dimensional normal cones of vertices. This means
that each of those two normal cones are split into two nonconnected sets by removal
of the intersection. This creates in effect four normal cones of four different edges in
the Minkowski sum. So every occurrence of a mixed facet augments by exactly two the
number of edges in the sum:

2 f mix
2 (P) = f1(P)− ( f1(P1)+ · · · + f1(Pn)).

Combining the two equations, we get the first part of the theorem. The two other parts
are deduced using Euler’s equation: f0 + f2 = f1 + 2.

This result allows us to find tight upper bounds on the number of edges and facets when
summing two three-dimensional polytopes:

Corollary 4. Let P1 and P2 be polytopes in dimension 3, and let P = P1+ P2 be their
Minkowski sum. Then we have the following tight bounds:

f2(P) ≤ f0(P1) f0(P2)+ f0(P1)+ f0(P2)− 6,

f1(P) ≤ 2 f0(P1) f0(P2)+ f0(P1)+ f0(P2)− 8.
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Proof. We first need to prove that the maximum number of facets can be attained if P1

and P2 are relatively in general position.
Let P1 and P2 be polytopes in dimension 3, so that their Minkowski sum P has the

maximal number of facets. They are not relatively in general position if and only if a
facet of the summands is summing with a facet or an edge. Suppose we perturb P2 by a
small well-chosen rotation. The facets previously contained in a nonexact decomposition
will now sum to a facet with an exact decomposition. Therefore, there will be at least as
many facets as before in the sum, and the summands will now be relatively in general
position.

We now find what the maximum is when summands are relatively in general position.
By Theorem 3, it is sufficient to maximize f0(P) and f2(Pi )− f0(Pi ) for each i . We can
do this by using simplicial polytopes disposed as indicated in Theorem 2. Since vertices
and facets are maximized in the sum, so are edges.

3.3. Sums of Cyclic Polytopes

We will show here an upper bound for the number of faces of each dimension a Minkowski
sum of polytopes can have. We will then show this bound is attained for lower dimensions
by certain sums of cyclic polytopes.

Lemma 8 (Trivial Upper Bound 2). Let P1, . . . , Pn be d-dimensional polytopes. For
each k = 0, . . . , d − 1 and n ≥ 1, the number of k-faces of P1+ · · · + Pn is bounded by

fk(P1 + · · · + Pn) ≤
∑

1≤si≤ f0(Pi )

s1+···+sn=k+n

n∏
i=1

(
f0(Pi )

si

)
,

where the si ’s are integral.

Proof. Let P1, . . . , Pn be d-dimensional polytopes, and let F be a k-dimensional face
of P1+ · · ·+ Pn . Let Fi ⊆ Pi , i = 1, . . . , n, be the decomposition of F . Let k1, . . . , kn

be the dimensions of respectively F1, . . . , Fn . Then k1 + · · · + kn ≥ k. The minimal
number of vertices for a face of dimension ki is ki + 1. So the total number of vertices
contained in faces of the decomposition of F is at least k + n. For any fixed k1, . . . , kn ,
the number of possible choices of si vertices for each Pi is

n∏
i=1

(
f0(Pi )

si

)
.

Note that the above lemma is an extension of Lemma 7.
Cyclic polytopes are known to have the maximal number of faces for any fixed number

of vertices. This property is somewhat carried on to their Minkowski sum. We define
the moment curve as the curve in the d-dimensional space which is the set of points of
form (x, x2, x3, . . . , xd). We call P a cyclic polytope if its vertices are all on the moment
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curve. Cyclic polytopes have the following properties: Their number of faces is maximal,
for faces of all dimensions, over all polytopes with this dimension and this number of
vertices [4]. They are also simplicial, i.e. all their faces are simplices. Moreover, they
are �d/2
-neighborly, which means that the convex hull of any set of �d/2
 vertices of a
cyclic polytope P is a face of P [3, 4.7]. Since each face is a simplex, this also means that
any set of �d/2
 vertices are affinely independent. For more details concerning cyclic
polytopes, please refer to [3].

Note that if we choose a set S of points on the moment curve, with |S| ≤ �d/2
,
conv(S)will form a face of any polytope P having S as a subset of its vertices, no matter
how the other vertices are chosen. That is, there is always a linear function 〈mS, x〉 so
that S(P;mS) = conv(S).

Let us now recall:

Theorem 4. In dimension d ≥ 4, it is possible to choose n ≤ �d/2
 polytopes P1, P2,
. . ., Pn so that the trivial upper bound for the number of k-faces of P1 + · · · + Pn is
attained for all 0 ≤ k ≤ �d/2
 − n.

Proof. Let P be the Minkowski sum of polytopes P1, . . . , Pn whose vertices are all
distinct on the moment curve, with k = �d/2
 − n, k ∈ N.

Let S1 ⊆ V(P1), . . . , Sn ⊆ V(Pn) be subsets of the vertices of the polytopes such
that Si �= ∅, ∀i and |S1| + · · · + |Sn| = k + n. Since k + n ≤ �d/2
, there is a
linear function maximized at S1, . . . , Sn on the moment curve. Therefore, conv(Si ) is
an (|Si | − 1)-dimensional face of Pi , ∀i = 1, . . . , n. Since the same linear function
is maximized over each Pi on these faces, they sum up to a face of P . Since the set
of vertices S1 ∪ · · · ∪ Sn is affinely independent, dim(conv(S1) + · · · + conv(Sn)) =
dim(conv(S1))+ · · · + dim(conv(Sn)) = |S1| + · · · + |Sn| − n = n + k − n = k.
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