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Abstract Stress limit, combined with deformation and
orientation dependent damages, is proposed as the criterion
for failure prediction in bulk forming processes. Dedicatedly
designed experiments are carried out to investigate this
model. The results verify the existence of the stress limits.
The value of stress limit can vary in different directions due
to the material processing histories. The experiments
revealed also strong kinematical hardening behaviours for
the investigated material. The constitutive law has to include
this effect to evaluate the stresses with sufficient precision.
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Introduction

Failure prediction possesses great significance for the forming
industry because enormous costs can be saved if the failures
are discovered and eliminated in the prototyping phase by
means of the virtual tools. The finite element method (FEM) is
well developed to simulate the forming processes and
provides systematic information about the processes. There-
fore, FEM is no doubt the most powerful tool for the failure
prediction in forming processes.

Some types of failure like wrinkling or geometrical
defects can be directly predicted using the animation of the
simulation results, while other kinds of failures such as
rupture have to be predicted by means of some criteria
based on either theoretical consideration or experimental
results.

The concept of FLC has been widely used as criterion
for fracture in the FEM simulation of sheet forming
processes. In contrast, the failure prediction for the bulk
forming processes still remains as a large deficiency
although many models have been proposed to handle this
problem. Extremely large deformations and high hydrostat-
ic pressure as well as the complex deformation history
make the prediction remarkably more difficult than by sheet
forming.

Most of the existing models used for the failure
prediction in bulk forming processes are either empirical
formulae or functions of a scalar damage factor [1]. The
necking or rupture is predicted when a certain criterion is
fulfilled or the damage factor reaches a critical value.

Early works from Lemaitre [2] used the concept of
damage and modified the stresses according to the damage
in the material. Gurson [3] introduced the concept of void
and described rupture as the results of void coalescence.
These models have been proposed for decades. But the
successful applications are still very limited to special cases.

One of the widely used models for failure prediction in
bulk forming is the Oyane model [4]. Successful predic-
tions have been reported in many works, e. g. [5, 6]. On the
other hand, the accuracy of the Oyane criterion is not
sufficient if the identical critical values are applied for
different forming cases. Furthermore, this model ignores
the anisotropic properties of the materials.
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Johnson and Cook obtained diagrams as the criteria for
different metals under different loading conditions based on
the experiments and computation with continuum damage
mechanics [7]. The diagram is developed as relation between
effective plastic strain and the stress triaxiality using so
called round notched bar (RNB), as shown in Fig. 1. The
stress triaxility is defined as the ratio of mean stress and
yield stress σm/σY. This kind of diagrams is also called as
failure loci and is used in some commercial FE packages [9].

In the previous work [10], a direction oriented damage
model was presented and the stress limit was suggested as
the criterion for the material failure prediction in the FE
simulation of bulk forming processes. This model assumes
that the damages are strongly oriented according to the
plastic deformations. The material strength is not affected by
the damages when the compressive stress is applied. As the
tensile stress is applied, the strength of the material decreases
due to those damages. As soon as the tensile stress exceeds a
limit value, rupture happens and the material fails.

Stress limit criterion

Tensile stresses, accompanied with plastic deformation, are
primarily the driving force for the ductile fractures. The
rupture appears only when the tensile stresses exceed the
limit value. Those stress limits are determined by the
properties of the material as well as by the deformation.

Analytical prediction of the Johnson-Cook triaxiality
diagram

The stress limit criterion by simple cases can be written as:

smaj � scrit: ð1Þ
Generally a stress state for the simple cases s22 ¼ s33 ¼

as11 and t12 ¼ bs11 can be expressed as

s ij ¼
1 b 0
b a 0
0 0 a

2
4

3
5s11: ð2Þ

Under the simplified assumption of isotropic v. Mises
yield locus the equivalent stress for the stress states is

seq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
s11 � s22ð Þ2 þ s22 � s33ð Þ2 þ s33 � s11ð Þ2

h i
þ 3t122

r
:

ð3Þ
CASE 1: main stress load case

For a triaxial load case (α ≠ 0 and β = 0), which can be
experimentally achieved with notched specimens (Fig. 1),
we obtain

seq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
1� að Þ2 þ a � að Þ2 þ a � 1ð Þ2

h ir !
s1

¼ 1� að Þs1 ð4Þ

Fig. 1 Diagram for the ductile
fracture [7, 8]
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or

s1ðaÞ ¼ 1

1� að Þ seq: ð5Þ

If the hardening curve of a material is described using
power law (Ludwik model) as

sY ¼ A"neq; ð6Þ

and the material is under plastic state so that seq ¼ sY , the
major tensile stress is expressed as

smajðaÞ ¼ sY=ð1� aÞ ¼ A"neq=ð1� aÞ: ð7Þ

In the uniaxial tensile test where α = 0 the critical stress
corresponds to

scrit ¼ A"ncrit tensile: ð8Þ

For the general cases α ≠ 0 the stress limit model is
expressed as

smajðaÞ ¼ scrit: ð9Þ

Combination of (7), (8) and (9) results in the following
relationship

"crit a ¼ ð1� aÞ1=n"crit tensile ð10Þ

where the "crit a denotes the critical equivalent strain under
triaxial loading conditions. For the case a ! 1, we
achieved the result "crit ! 0.

CASE 2: pure torsion load

By the torsion test the major stress is

smajor
torsion ¼ t ¼ sYffiffiffi

3
p ¼ Affiffiffi

3
p ð"torsionÞn: ð11Þ

Using the stress limit criterion, we arrive at the equation

Að"crit tensileÞn ¼ Affiffiffi
3

p ð"crit torsionÞn: ð12Þ

After the simplification we obtain the relation

"crit torsion ¼
ffiffiffi
3

p� �1=n
"crit tensile: ð13Þ

For the value n=0.36 we get

"crit torsion ¼ 4:60"crit tensile: ð14Þ

The much higher deformation achieved under pure
torsion represents well the experimental evidence.

For more general hardening laws and anisotropic yield
loci, as proposed for example by Barlat [11], the above
stress-strain relations have to be evaluated numerically.

So long as the hardening curve and the stress limit for a
material are available, the failure diagram can be evaluated
for tension test of notched round bar as

Δ"2 ¼ Δ"3 ¼ �0:5Δ"1 and Δ"1 ¼ Δ"eq: ð15Þ

Considering the rigid plastic material law s1 ¼
2sY

3Δ"eq
Δ"1, the major stress σ1 is expressed as

s1 ¼ s1 þ sm ¼ 2

3
sY þ sm ¼ 2

3
sY þ ksY � scrit ð16Þ

where s1 denotes the major stress deviator and k ¼ sm
sY

is the
factor for stress triaxiality.

When the hardening curve is adopted as Johnson and
Cook used in [7] for the material OFHC copper

sY ¼ 292"eq
0:31 þ 90 ð17Þ

and the stress limit is set as 550 MPa, the curve obtained
using stress limit model is compared with the data provided
by Johnson and Cook [7] in Fig. 2. The agreement is very
well except for the value for pure torsion.
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Fig. 2 Theoretical prediction of the critical strains in dependence of
the stress triaxiality
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Stress triaxiality diagrams, however, may fail to
predict failure properly in case of nonlinear loading
paths. The OFHC copper mentioned above can be taken
as example. Let the material be deformed under com-
pressive condition at first to achieve the equivalent strain
of 2.5. The corresponding equivalent stress at this
intermediate state can be computed as 496 MPa using
Eq. 17. The critical triaxiality can be estimated as 0.46
with the diagram in Fig. 1. Consequently, critical mean
stress sm ¼ ksY ¼ 228 MPa is obtained. If the deformed
material is loaded further under biaxial stretching state,
problem arises using the triaxiality diagram. For biaxial
stretching s1 ¼ s2 and s3 ¼ 0 the mean stress is calcu-
lated as sm ¼ 2

3 s1. It leads to the result s1 ¼ 3
2 sm ¼ 342

MPa using the critical value provided by the triaxiality
diagram. If failure should be predicted for this state, it is
obviously incorrect because the stress is still below the
yield stress and the material is still in the elastic state. As
soon as the material is plastified, that means s1 ¼ sY , the
triaxiality value reaches immediately the level of 0.666,
which lies far above the curve. In contrast, the stress limit
criterion predicts failure when the stretching stress
exceeds the critical value of 550 MPa. Therefore further
plastic deformation is necessary to cause the material
failure.

Modelling of deformation state dependent damages

Experiments showed that the damages inside the material
are strongly orientation dependent. A specimen that
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Fig. 5 Experimental evaluation of critical stresses by compression-
tensile test

0.00

100.00
200.00
300.00

400.00
500.00
600.00

700.00
800.00
900.00

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

T
ru

e 
st

re
ss

 [
M

P
a]

Logarithmic strain

Fig. 4 Hardening curve of the steel SAE 1144

Fig. 3 Specimen for
the compression-
tensile test
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undergoes compressive deformation can be further
compressed without noticeable damage. The rupture
might appear much earlier as the loading direction
changes. In order to consider the influence of deforma-
tion history, the damage dependent stress limit model is
presented.

This model is based on the assumption that the plastic
deformations cause material damages. Such damages
weaken the strength of the material consequently. It is then
reasonable to define the damage D as an objective function
of the deformation gradient tensor F

D ¼ f ðFÞ: ð18Þ

An infinitesimal material section area dA0 is transformed
to dA with the deformation gradient tensor as:

dA ¼ ðdetFÞðF�1ÞTdA0: ð19Þ
If the damage is induced by the deformation, the

difference of the real section area and ideal section area
can be defined as the expression of damage

D ¼ ðdAideal � dArealÞ
dAideal

: ð20Þ

Unlike the existing models where a scalar value is
adopted for the damage description, we use 3 values to
distinguish the damages in 3 principal direction of the
deformation tensor:

Di ¼ 0 ðj"ij � "0Þ
Γðj"ij � "0Þ ðj"ij > "0Þ ði ¼ 1; 2; 3Þ

�
ð21Þ

where ε0 denotes the threshold strains for the initialization
of damages in each direction. Here the function Γ describes
the relation between damage and plastic strain. In the work
of Lemaitre [2], a model was established for isotropic
materials in the frame of Continuous Damage Mechanics
(CDM). In the same work he verified also the linearity of
the function between damages and plastic strain using 6

different metal materials as experimental samples. Howev-
er, the choice of functions is not unique and the parameters
of the functions must be well calibrated using the
experimental results.

In the case of non-proportional loading case, (21) loses
the validity because the principal directions are changing
and the description for damage rate and strain rate has to be
adopted. Further investigations are needed therefore for the
general cases.

Table 1 Compression-tensile test

Nr. D0 [mm] Dcompression [mm] εcomp Dtensile [mm] εtensile Maximum tensile force (kN) Stress limit [MPa]

1 10.03 10.03 0 8.59 0.310 57.16 986

2 10.02 10.6 0.113 8.85 0.361 59.65 970

3 10.03 11.12 0.206 8.89 0.448 63.02 995

4 10.03 12.25 0.400 10.15 0.376 77.6 959

5 10.03 12.26 0.401 10.3 0.348 79.3 952

6 10.03 12.95 0.511 10.56 0.408 86.48 987
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Good agreement between the simulation and experiment; b) Devia-
tions under the assumption of isotropic hardening and the improve-
ment due to Chaboche model
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3D stress limit criterion (3D-SLC)

Since damages exist in the material, the stresses calculated
with an ideal material model are obviously lower than the
stresses in real cases. The existing models intend to modify
the material constitutive laws using the damage factor.
However, as the damages do not affect the material
properties under compressive stress states, it is not
necessarily favorable to do this modification at the level
of constitutive relation.

As an alternative method to include the effect of
damages, we introduce the limit tensile stress as the critical
value. The stress limit is reduced by damages in the material.
Because only tensile stresses are compared with the critical
values, it is no more necessary to change the constitutive
relations. Mathematically, the critical stresses in different
directions can be calculated with the corresponding damages

s
»
ib ¼ s ibð1� DiÞ ði ¼ 1; 2; 3Þ: ð22Þ
The initial stress limits in different directions form a

spherical surface for isotropic materials without damages.
However, many engineering raw materials have been
processed with different methods such as rolling, drawing
or heat treatment before they are put into the current bulk
forming processes. If the material possesses anisotropic
properties, or the initial damages are direction dependent,
the stress limits might be different in different directions.
The locus of stress limits will form then an ellipsoid
surface. Mathematically the criterion can be expressed as:

snn1
s»

1b

� �2

þ snn2
s»

2b

� �2

þ snn3
s»

3b

� �2

� 1: ð23Þ

Here σn is the normal stress along an arbitrary direction
and n1,n2 and n3 are the direction cosines of this direction.

Experimental evaluation of the critical stress

In order to verify the model and estimate the stress limit of
steel SAE 1144, compression-tensile tests were performed.
The geometry of the specimen is shown in Fig. 3. The
hardening curve of this steel is obtained using standard
tensile test as shown in Fig. 4. The specimens were
compressed to different amounts to achieve compressive
deformation. Afterwards the specimens were deformed
under tensile condition until rupture appeared (Fig. 5a).

During the experiment, the force and displacement of the
process are recorded and the diameters in the middle of the
specimens are measured before and after the deformations
(Table 1). The deformations are calculated using logarith-
mic strain as

"comp ¼ lnðD2
compression=D

2
0Þ and "tensile

¼ lnðD2
tensile=D

2
compressionÞ ð24Þ

and the critical stresses are calculated with a mean value as

scrit ¼ Fmax=ðpD2
tensile=4Þ: ð25Þ

Despite the remarkable different deformation histories
(Fig. 5b), the critical stresses obtained from the tensile test
show only slight variation, as shown in Fig. 5c.

Experimental data can be used for the determination of
parameters for the model. As the data in Table 1 are used
for the mathematical approximation approach, the values
for (21) are obtained as ε0=0.004 and Γ=0.07 for the linear
relation D ¼ Γ � ð"� "0Þ between damage and plastic
strain, while the stress limit of initial material in (22) is
also obtained as s ib ¼ 1050 MPa½ �. The small value of Γ
indicates a slow accumulation process of damage in this

Fig. 7 The bending and re-
bending test

C1 C2 C3 η1 η2 b Q0 Q∞

1264.43 3724.54 22.49 19.35 50.19 22.04 494.15 308.46

Table 2 Parameters of Cha-
boche model for material SAE
1144
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material. That provides the explanation why the stress limit
is not strongly affected by the plastic deformations.

However, as only very limited experimental data are
available for the approximation, the significance of the
approximation results is also limited. More experiments
should be performed and more complex stress states should
be investigated in order to obtain more accurate description
of the damage accumulation. Nevertheless, the experiment
confirmed the feasibility of using critical stress as failure
criterion.

Kinematic hardening

Since the stress is adopted as the criterion for the failure
prediction, the precision of the evaluation of stresses
becomes essential in the computation.

Many metal materials show the Bauschinger effect. If
non-proportional loading is applied, the isotropic hardening
model is unable to describe the material behaviors properly.

As an example, the above compression-tensile test is
computed using the isotropic hardening model. Excellent
agreement between experiment and calculation was
obtained by the simulation of compression process
(Fig. 6a). However, as the loading changed to the tensile,
the isotropic model overestimated the load (Fig. 6b).

Therefore, the Chaboche model [12] for the kinematical
hardening is introduced. This model describes the material

behavior well when the loading direction changes, as
shown in Fig. 6b.

Back stresses are introduced to describe the behavior of
kinematical hardening. The yield function can be expressed as:

f ¼ J2 s � Xð Þ � Q � 0 ð26Þ
where J2 is the second invariant of the stress deviator, X is the
back-stress and Q describes the strain hardening effect of the
material. The evolution equation of the back-stress proposed
by Chaboche was

dXi ¼ 2

3
Cid"

p � hiXid"eq ð27Þ
where Ci and ηi are material constants which describe
translation of the yield surface in the stress space. In order
to describe complex material behavior, the back-stress is
defined as the sum of nonlinear as well as of linear
components

X ¼
Xn
i¼1

Xi: ð28Þ

The model uses a common exponential function Q to
describe the strain hardening behavior. Q consists of a
strain independent yield stress Q0, a saturation value Q∞

and a saturation rate b

Q ¼ Q0 þ Q1ð1� expð�b"eqÞÞ: ð29Þ

Fig. 8 The one way bending
test and the simulation, critical
stress at failure

Fig. 9 Comparison of calculated
stresses at the end of first bending
of 90°
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In order to determine the parameters for the Chaboche
model, experiments were carried out and the parameters are
determined with the experimental data [13]. The parameters
used in this work are listed in Table 2.

Experimental verification

Several experiments have been performed in order to verify
the stress limit model. In this work the bending experiment
is presented as well.

A bar was bended with the equipment shown in Fig. 7.
Two different loading cases were performed. In the first
case, the bar was bended in just one direction until the
fracture appeared in the middle. In the second case the
specimen was bended to around 90° at first. It was then
bended in the reverse direction until fracture appeared.

Both processes are calculated using isotropic hardening
and Chaboche model. In the one way bending simulation
(Fig. 8), both models worked very well and we obtained the
critical tensile stress for the investigated material as
1035 MPa by comparing the simulations and experiment.

In the multi-step bending no fracture appeared at the end
of the first pre-bending of 90°. The simulation of both
models showed the same results as in Fig. 9.

The difference of the two models appeared as they were
used to simulate the subsequent reverse bending processes.
Because isotropic hardening model doesn’t take the
Bauschinger effect into account, it delivered overestimated

values for stresses. Failure should be predicted as the
specimen was bended to near flat form because the tensile
stress exceeded the limit value (Fig. 10a). However, in the
experiment, no fracture was observed at this stage. In
contrast, Chaboche model described the material behavior
properly. The maximum stress value was below the critical
stress of 1035 MPa.

By the further bending process the tensile stress with
Chaboche model reached the critical value. Fig. 11 shows
the comparison of the simulation and the specimen. Very
satisfactory agreement is achieved by the Chaboche model.

Conclusions and outlook

The stress limit can be well used as the criterion for the
rupture prediction in bulk forming processes. In order to
achieve sufficient accuracy, kinematical hardening has to be
included in the constitutive relation for many materials with
strong Bauschinger effect. Moreover, large plastic deforma-
tions in bulk forming processes cause damages in the
materials and the stress limit can be direction and damage
dependent. The implementation into an FE program
delivers a convenient judgment for the possible failure.

However, the prediction of ductile fracture in forming
process is a very challenging theme. Besides the deformation
history and stress states, more factors such as strain rate and
temperature might also play important roles in the failure
process. Different metals or different processing histories can

Fig. 10 Results with different
models a) failure predicted
by isotropic model, b) no failure
predicted by Chaboche model

Fig. 11 Result with Chaboche
model and rupture by
experiment
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also lead to different rupture types. Therefore, more experi-
ments with different materials under complex forming
conditions have to be carried out in the future investigations
to supply the model with systematical experimental data.
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