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Abstract A statistical investigation based on a Markov chain theory of polarity
formation applied to channel-type inclusion compounds loaded with both dipolar
A–π–D and non-polar N–π–N (N: A or D) guests is presented. The key parameters
effecting polarity formation are identified and their effects are explored. A number
of paradoxes are set out and an attempt to explain the mechanisms behind them is
made: dependence of macroscopic polarity on orientational selectivity induced by
intermolecular interactions, tuning of polarity through (i) the concentration of non-
polar guest and (ii) growth temperature.

Keywords Markov chain · Macroscopic polarity formation

1 Introduction

Experimental confirmation of basic features of growth induced polarity formation
has been elaborated for various host systems suitable for inclusion of dipolar guest
molecules into channels [1–4]. In view of a general theory of growth induced polarity
formation [5], channel-type frames represent an ideal 1D system to apply a Markov
chain description. By a Markov chain process here we understand a build-up process for
the growth along the channel axis of inclusion compounds, where the “up” or “down”
orientation of incoming dipolar guest molecules depends on probabilities which are
determined by functional group interactions with previously included dipoles and the
surface of the host material. In Fig. 1 basic assumptions are schematically summarized.
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Fig. 1 Schematic representation of the host–guest lattice growing along the channel axis. Corresponding
probabilities Pi j are indicated. q is the number of growth steps

A Markov chain model is suitable to describe this system because events for
different channels are considered as independent. Furthermore, we consider a layer-
by-layer growth from the gas phase where one guest enters the channel at each time,
interacting with guest molecules of the previously grown layer. Therefore, the memory
of the system is restricted to the last layer on top of which the new layer is added.
Such a 1D series of events (E) can be described by a simple probabilistic equation of
the form:

E(q + 1) = P E(q) (1)

where q = number of individual steps (1, 2, . . . ,∞) and P = transition probability
from step q to q + 1, etc. This process is known as a first order homogeneous Markov
chain and it is characterised by a development not dependent on initial conditions but
only on the previous system state.

Here, we extend our theoretical analysis demonstrating a universality behaviour
for channel-type hosts filled by a mixture of dipolar A–π–D (A: acceptor, D: donor
constituents of a π -conjugated bridging unit) and non-polar N–π–N (N: A or D) guest
molecules. Because of specific –A· · · N– and –D· · · N– interactions new phenomena
occur in such systems. It is found that the net fraction of aligned A–π–D molecules
Xnet = XA − XD (fractions of down and up oriented molecules) is a linear function
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of Xg and XN, the fractions of non-polar molecules present in the gas and those
included in the host, respectively. Consequently, a compositional analysis for XN
allows to determine Xnet, a quantity directly related to macroscopic polarity which
can otherwise be obtained from e.g. scanning pyroelectric microscopy [6], second
harmonic generation [7] or x-ray diffraction [8]. Surprisingly, calculations show that a
maximum polar alignment can be achieved by admitting non-polar guest molecules.
Therefore, the effect of dilution through a second guest is over-compensated by a
non-linear enhancement of polarity.

2 Theoretical model

Taking advantage of fundamental knowledge on growth induced polarity formation
[9–11] we can assume a time-homogeneous Markov chain description [12] being par-
ticularly valid in the case of lateral guest–guest interactions in the order of a small per-
turbation [13]. In case lateral interactions between channels become more significant,
probabilities describing the step-by-step growth of polarity (Xnet) become themselves
dependent on the local level of polarity as growth goes on. Here, we solve the problem
using a single stochastic probability matrix n × n. We set n = 3 because we have
the probabilities of inclusion of the “up” or “down” orientation of A–π–D guests and
N–π–N guests:

⎛
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⎞
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PAD PDD PND
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⎞
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Making use of the general properties of transition probability matrices [12] for
q → ∞ (infinite number of growth layers), the following equations for XA, XD and
XN were obtained for the stationary state:

XA

= PND + PDD PNA − PDA PND

PND PAA − PDD PAA + PDD PNA + PDA PAD − PDA PND − PDA − PNA PAD + PNA − PAD + PND + 1

(3)

XD

= −PNA PAD + PNA + PND PAA

PND PAA − PDD PAA + PDD PNA + PDA PAD − PDA PND − PDA − PNA PAD + PNA − PAD + PND + 1

(4)

XN

= −PDD PAA + PDA PAD − PDA − PAD + 1

PND PAA − PDD PAA + PDD PNA + PDA PAD − PD A PND − PDA − PNA PAD + PNA − PAD + PND + 1

(5)

The probabilities of all possible interactions, Pi j , appearing in the matrix are
functions of (i) the basic 1D guest–guest and host–guest interaction energies, (ii)
the composition Xg (molar fraction of non-polar guest molecules N–π–N in the gas
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Table 1 Guest–guest and
host–guest interaction energies Ei j Range (kJ mol−1)

EAD −25.0 to 0.01
EAA 0.01–10.0
EDD −5.0 to −5.0
ECj −5.0 to −5.0

phase) and (iii) temperature. The probabilities Pi j represent all possible attachments
and are given by a Boltzmann factor multiplied by X , the availability of molecules in
the nutrient, divided by the partition sum:

Pi j = Xe−β(Ei j +EC j )

Z
(6)

where

Zi =
∑

j∈{A,D,N}
e−β(Ei j +EC j ); i ∈ {A, D, N} (7)

X being Xg for non-polar guests or (1 − Xg) for polar guests. β = 1/kBT . EC j

and Ei j are the host–guest and guest–guest 1D interaction energies randomly chosen
from the following ranges of energy given in Table 1.

Here it is assumed that ENA = ENN = EAA and END = EAD for A–π–A guests
and END = ENN = EDD and ENA = EAD for D–π–D guests.

These are probabilities related to individual interactions: Along the channel we
have A–π–D· · · A–π–D, A–π–D· · · D–π–A, D–π–A· · · A–π–D and correspondin-
gly A–π–D· · · N–π–N and D–π–A· · · N–π–N interactions. When entering a pre-
existing channel or part of it, the A–π–D molecule may experience a significant
energy difference depending on whether the A- or D-group enters first (see Fig. 1).
Therefore, we introduce the energy terms ECA and ECD accounting for guest to
channel wall interactions. In the case of non-polar molecules no such distinction
is necessary. A detailed force field study on e.g. the inclusion of p-nitroaniline in
tris(o-phenylenedioxy)cyclotriphosphazene (TPP) channels has revealed a significant
energy difference, �EC ≡ ECA − ECD for entering an empty channel with the A- or
D-group first [14]. Therefore, the present study will rather address channel forming
host molecules such as perhydrotriphenylene (PHTP), where the effects of �EC are
likely to be less pronounced than for TPP.

Concerning the guest–guest interactions we assume at first that corresponding
–A· · · D–, –A· · · A– and –D· · · D– for A–π–D and N–π–N molecules are the same
or at least of similar order. Having discussed the system within this frame of an ap-
proximation including no inter-channel interactions, in the end we will also give an
account on the general case.
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Fig. 2 The effects of adding A–π–A (solid curve) or D–π–D (dashed curve) guest molecules in the gas
phase. The interaction energies were set to EAD =−15 kJ mol−1, EAA = EDD = 1 kJ mol−1 and therefore
�Ef = 0. In this case polarity formation is only due to non-polar additives

3 Results

3.1 Reviewing basic features

Based on knowledge gained from previous studies [15] we can say that inclusion of
A–π–D molecules featuring positive values for �EA ≡ EAA − EAD and �ED ≡
EDD − EAD, will cause the system to develop into a bipolar growth state where
A-groups appear preferably at the growing interface (q → ∞, for ranges of possible
interaction energies see Table 1). Here, addition of A–π–A to the growing system
can enhance polarity formation [11,16]. Starting from a seed providing random ori-
entations of A–π–D in channels, preference for A-groups appearing at the surface is
promoted.

A different situation is observed for D–π–D co-guest molecules: Their addition can
have a detrimental effect. For a positive �Ef ≡ �EA−�ED as typically is the case for
most common molecules, net polarity drops to zero, is inverted and a maximum value
is obtained which is lower than that obtained when admitting no non-polar molecules
(Xg = 0). Experimental proof for this effect has been reported before [16].

Summarizing, a system characterized by �Ef , �EA and �ED all larger than zero
(typical case), is influenced positively by the admixture of A–π–A as long as it is
not added in concentrations Xg � 0.9, whereas D–π–D co-guest molecules appear
detrimental. If, however, the interaction energies do not favour negative or positive
polarity, i.e. �EA = 0, the effects of A–π–A and D–π–D are symmetrical and result
in an enhancement of net polarity. Figure 2 illustrates the impact of non-polar guests
on polarity: For both A–π–A and D–π–D guests we observe that once a certain
critical amount of Xg is co-included, polarity is maximised within the limit of dilution.
A value of only Xg ≈ 0.2 is sufficient to drive the system to an almost polar alignment.
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Fig. 3 Net polarity Xnet , as a function of XN, the fraction of non-polar guests included in the crystal. Xnet is
plotted for various values of Xg(−Xg = 0.05, −Xg = 0.25, −Xg = 0.5, −Xg = 0.75, −Xg = 0.95). For
colour, see electronic version. Interactions energies were randomly chosen within the energy range given in
Appendix 1. Dashed curves were obtained from calculations using an extended hypothetical energy range
(−100 < Ei j < 100 kJ mol−1). The solid black lines show the upper limits of Xnet as a function of XN

This is an effect found also in solid solutions of molecular crystals and its impact on
polarity is determined by the strength of the –A· · · D– interaction [17].

As shown before [9–11], macroscopic polarity in channel-type hosts filled with a
single type of dipolar guests arises as a result of orientational selectivity driven by
the energy difference between –A· · · A– and –D· · · D– interactions. For the set of
interaction energies used for Fig. 2, �Ef = 0 and hence polarity would not arise in
the one component system. Once a non-polar guest is added, however, remarkably
high values of Xnet can be achieved. This is a result of faulted orientations caused by
the inclusion of non-polar guests and represents a paradox to our intuition.

3.2 Universality behaviour

Given the conservation equation XA + XD + XN = 1, net polarity Xnet can only occur
within a triangle limited by ±1 for Xnet and 1 for XN (see Fig. 3). The linear curves
appearing within the triangle result from a selected Xg (composition of growth) and
XN obtained by co-inclusion of N–π–N molecules.

Analytical calculations show that the gradients m of these solutions for polarity
formation are simply given by (for details see Appendix 1):

m = 1 − 2

Xg
(8)

From this we obtain:

Xnet = 1 − XN

(
1 − 2

Xg

)
(9)
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Fig. 4 Xnet plotted as a function of the absorptivity k = XN/Xg of non-polar A–π–A guests. Interaction
energies were randomly chosen from the fore mentioned energy set. The initial concentration of non-polar
guests in the gas phase was randomly chosen from the range 0 < Xg < 1. T = 300 K. Lower values of
Xnet are accessible for extended energy ranges

The signs in Eq. 8 are reversed for D–π–D guests molecules. Equation 9 is indepen-
dent of the interaction energies Eij provided that the assumptions made above hold.
Therefore, a compositional analysis allows Xnet to be determined without performing
measurements involving physical properties (pyroelectricity [18] or second harmonic
generation [18]). A small measured value of XN (N = A) would thus encourage us to
conclude that Xnet may be close to one, i.e. almost full alignment is achieved. This is
also valid in the case of D–π–D guests inclusion, however, the sign of Xnet is reversed.

Equation 9 also shows the relationship between polarity and the uptake of neutral
guest molecules, k = XN/Xg. For k = 0 the second term becomes zero and thus
polarity is maximised. Increasing the amount of N–π–N molecules means that less
polar guests are included into the crystal and therefore maximum polarity has to be
lower. For values of k > 0.5 non-polar guests can also reverse the sign of Xnet. When
almost all of the non-polar molecules are co-included their effect on Xnet depends on
their initial concentration, Xg: for a small concentration polarity is strongly enhanced,
whereas for higher concentrations polarity gradually diminishes due to dilution.

Figure 4 demonstrates the relationship between the amount of co-included N–π–N
molecules and Xnet. The data plotted represent the results of 100,000 individual calcu-
lations performed using interaction energies randomly chosen from the energy ranges
given in Table 1. Xg was also randomly chosen from values between 0 and 1. The
data clearly show that for a low value of XN polarity is maximized within the limit
of dilution. The mean value averaged over all points is Xnet ≈ 0.91 with a standard
deviation σ ≈ 0.19. Assuming a standard distribution, this corresponds to ∼68% of
all points lying in the range denoted by the standard deviation. The high density of
this distribution is illustrated on the top left corner of the graph in Fig. 4. Likewise, the
data show that the uptake of N–π–N molecules is generally low for A–π–A guests.
This is in accordance with experimental observations confirming that single inclusion
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Fig. 5 Histograms of Xnet values obtained from 100,000 calculations for various values of Xg (a–d).
Interaction energies are randomly chosen and the temperature was set to 300 K as before

of A–π–A non-polar guests is difficult in most cases. The mean uptake is k ≈ 0.06
with a standard deviation σ ≈ 0.14.

In order to explore the effect of A–π–A inclusion further, we have performed four
sets of calculations for selected values of Xg. The results are plotted on the histograms
shown in Fig. 5. These histograms allow us to investigate where for a given range
of interaction energies (same selection as before), the most probable Xnet may be
found. The data were divided in bins of �Xnet = 0.02 and the number of results
within this range were counted for each bin. The higher the number of counts, the
higher the probability that Xnet will be within this range regardless of the interaction
energies chosen. We observe that even in the one component system (Xg = 0) high
polarity values have the highest probabilities (d). This tendency, however, is enhanced
extremely (c) when non-polar guests in concentrations as little as Xg = 0.05 are added
in the gas phase. This results from the increased probability of –A· · · A– interactions
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Table 2 Statistical measures for
histograms shown in Fig. 4

a Standard deviation

Xg Mean of Xnet σ a Range of
Xnet (max = 2)

Xg = 0 0.57 0.42 1.75
Xg = 0.05 0.87 0.24 1.54
Xg = 0.25 0.92 0.17 1.32
Xg = 0.9 0.90 0.19 1.00

because of the numeric predominance of A- terminals in the gas phase. For Xg = 0.25
the probabilities of high Xnet is further increased (b), whereas for higher concentrations
(Xg = 0.9) the effect diminishes due to dilution (a). Statistical calculations giving the
mean values and standard deviation of Xnet for the cases discussed above are shown in
Table 2. The statistical nature of the results demonstrates that in most cases inclusion
of A–π–A guests is beneficial. It must be noted that for D–π–D guests inclusion
polarity is reversed but similar results are obtained.

3.3 Beyond the idealized case

Here we demonstrate the effects of (i) the host–guest interactions, (ii) the lateral
guest–guest interactions, (iii) growth temperature and (iv) nonequal interactions for
e.g. –A· · · D– between dipolar guests and –A· · · D– between dipolar and non-polar
guests.

1. Host–guest interactions are accounted for by introducing an additional energy
term, �EC in the exponent of the Boltzmann factors that determine the tran-
sition probabilities (Appendix 1). The host–guest interaction energy provides
an alternative way by which polarity can arise in such systems. The parameter
�EC ≡ ECA − ECD represents the energy difference experienced by the guest
molecule depending on whether it enters the channel with the A- or D-terminal
first. Its effect on polarity can be can be synergetic or antagonistic depending
on whether it has the same or opposite sign with �Ef . Figure 6 illustrates the
dependence of polarity on �EC in case all other interactions are set to zero.

2. In order to investigate the effect of lateral inter-channel guest–guest interactions,
calculations considering a small perturbation were performed. For those calculati-
ons, the principal interaction energies were chosen randomly and the corresponding
lateral guest–guest interaction energies, �E⊥ ≡ Ep − Eap, were chosen between
0 and ±0.1,±0.5 and ±1.0 kJ mol−1. Xg = 0.5 for A–π–A and T = 300 K. The
results are shown in Fig. 7. The stronger the lateral interaction, the more the system
deviates from the deterministic behaviour of Eq. 9.

3. The attachment probabilities Pi j resulting from inter-molecular interactions are
essentially Boltzmann probability distributions, which are dependent on tempera-
ture. The system’s microstates are not all equally probable [19]; thus the Boltzmann
factor is biasing the distribution towards low energy states, i.e. as the temperature
is reduced, the interaction probabilities are concentrated on a smaller group of low
energy states. Therefore, temperature is a scaling factor to interaction energies
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Fig. 6 The dependence of Xnet on �EC, the guest to channel energy differences. All interaction energies
are set to zero except for ECA and ECD which are randomly chosen within the range: −5 < ECA,
ECD < 5 kJ mol−1. T = 300 K

Fig. 7 The effect of lateral guest–guest interaction energies on polarity. Guest–guest interaction energies
were randomly chosen in the range −10 < Ei j < 2 kJ mol−1. The lateral interaction energies were selected

from the range: −0.1 < �E⊥ < 0.1 kJ mol−1 (black points), −0.5 < �E⊥ < 0.5 kJ mol−1 (red points)
and −1.0 < �E⊥ < 1.0 kJ mol−1 (blue points), T = 300 K, here the A–π–A guest concentration was
Xg = 0.5. For colour, see electronic version

Ei j and as such its variance cannot give rise to polarity. Instead, the variation of
temperature influences the impact interaction energies and Xg have on polarity
(see Fig. 8). We observe that depending on the initial concentration of non-polar
guests, the effects of the growth temperature can be quite dramatic. The specific
case of Xg = 0.0003 (D–π–D) is rather representative: near room temperature
no polarity arises. However, if the crystallisation would be carried out at lower or
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Fig. 8 The effect of temperature on polarity for various concentrations Xg(−Xg = 0, −Xg = 0.00001,
−Xg = 0.0001, −Xg = 0.0003, −Xg = 0.001, −Xg = 0.01). The interaction energies used for the
calculations were EAD = −25 kJ mol−1, EAA=5 kJ mol−1 and EDD = −5 kJ mol−1. For colour, see
electronic version. Surprisingly, a very small amount of neutral D–π–D molecules in the gas phase can
have a strong effect on polarity as temperature is varied

higher temperatures, significant polarity could be achieved. The results of Fig. 8
were obtained assuming a Gibbs distribution and therefore only hold in thermal
equilibrium, i.e. constant temperature of growth. If temperature is varied during
growth the present description is invalid.

4. If we allow for non-equal interactions between dipolar guests and corresponding
interactions between dipolar and non-polar guests thus removing the restrictions
imposed on the selection of interaction energies, Eq. 6 no longer applies and the
conclusions reached before are invalid. In such a system, the ratio of non-polar
to dipolar guest molecules in the solid can be much higher than their ratio in the
gas phase (k > 1). Furthermore, polarity is on average lower in such systems and
more difficult to control.

4 Conclusions

The present study highlighted surprising aspects of polarity formation in channel-type
hosts filled with dipolar and non-polar guest molecules. A universality behaviour is
found i.e. macroscopic polarity can be determined by measuring the concentration of
non-polar guests in the crystal without any further knowledge. It was also found that
a very small concentration of non-polar guest molecules in the gas phase may have a
dramatic impact on polarity. This brings up a delicate issue concerning the purity of
A–π–D used for inclusion formation. The results presented here suggest that particu-
larly A–π–A impurities can be highly fortunate for polarity formation in channel-type
inclusion compounds. Furthermore, the strength of this effect may be strongly tempe-
rature dependent. For Xg < 0.01 the theory predicts that the variation of the growth
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temperature can have a significant effect on macroscopic polarity. In extreme cases
polarity may be reversed just by varying the growth temperature. Experimental work
complementary to previously published [11,16] findings is in progress.

Acknowledgement This work received partial support from NFP 47, Project No. 4047-057476/2.

Appendix 1

Substituting Eqs. 3 and 3 into Xnet = XA − XD yields:

Xnet = PND + PDD PNA − PDA PND + PNA PAD − PNA − PND PAA

PND PAA − PDD PAA + PDD PNA + PDA PAD − PDA PND − PDA − PNA PAD + PNA − PAD + PND + 1

(A1)

Substituting Eq. 3 for the probabilities in Eqs. 3 and A1 gives complicated ex-
pressions for XN and Xnet, respectively. Those quantities are now functions of the
various interaction energies Ei j . In order to obtain the gradients of the linear curves
of Fig. 3, one has to calculate the partial derivatives of Xnet and XN with respect to
the interaction energies involved in each expression:

m = ∂ Xnet/∂ Ei j

∂ XN/∂ Ei j
(A2)

When considering the co-inclusion of A–π–A guests, Eq. A2 gives m = (Xg −2)/Xg
(or m = −(Xg−2)/Xg in the case of D–π–D guests) for all the derivatives irrespective
of the interaction energies involved. Consequently, all points lay on a straight line as
demonstrated in Fig. 3.
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