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Abstract The quality of wood used for music instrument making (resonance

wood) is determined by assessing six physical properties: density, modulus of

elasticity, sound velocity, radiation ratio, emission ratio, and loudness index. This

can easily be done by means of measurements of the resonance frequency and the

corresponding damping factor. The method described here is based on vibrational

analyses, adapted from standard non-destructive testing of solid material, so as to

provide information both for scientific studies and for violin making. The above six

properties were assessed in samples of resonance wood of different quality and in

normal (control) wood of Norway spruce and sycamore. The differences observed

between the samples correlated with anatomical or histological characteristics of the

wood. A sample of best-quality Norway spruce resonance wood showed a high

radiation ratio in the axial direction, which correlated with the presence of small

wood cells with thin cell walls. In ‘‘curly maple’’, a high sound velocity in the radial

direction correlated with the presence of broad xylem rays. The influence of external

factors like wood moisture content or the geometry of the system is discussed within

the context of the present study.
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Introduction

The selection of resonance wood for violin making is often biased and entirely

based on the empirical knowledge of the maker and the gross appearance of the

wood. At the beginning of the nineteenth century, scientists realized that wood

properties influence the sonority of the violin and they tried to classify resonance

wood on this basis (Bucur 1980; Dunlop 1978; Schleske 1990; Schwalbe 1925).

Later, Blossfeld et al. (1962) proposed a range of criteria related to the visual

appearance of the wood. The main criteria by which violin makers, as well as most

materials scientists, continue to recognize first-quality resonance wood are the

regularity of the annual rings and an absence of defects, together with a high

modulus of elasticity.

Young’s modulus of elasticity (MOE) is one of several properties that have been

assessed as indicators of resonance wood quality (Ono and Norimoto 1984). Most of

the studies up to the present have proved this to be of key importance together with

sound velocity (c) and the radiation ratio (R) (Haines 1979), which is the ratio

between the sound velocity and density q (Müller 1986; Rajcan 1998).

Additional properties used to evaluate resonance wood are the loudness index (L)

(Haines 1979) and the figure of merit (U) (Meyer 1995), which combine the

damping properties with the radiation ratio and the modulus of elasticity. Unlike the

preceding authors, Ono and Norimoto (1984) as well as Yano et al. (1994)

emphasize the significance of the damping factor d. They stress that this factor, in

combination with the radiation ratio, is more important than the velocity of sound as

a single parameter. The damping factor, which can be related to the other acoustic

properties mentioned above, is defined by a coefficient (K) as follows: d ¼ K Df
f r
;

where fr is the resonance frequency and Df the associated damping. The value of K
varies between K ¼ 1

p (Meyer 1995), K = 1 (Ono and Norimoto 1984) and K ¼ p
ffiffi

3
p

(Rajcan 1998). A summary of the properties used to characterize the resonance

wood quality is presented in Table 1. These properties correlate with the

propagation of sound waves in the top and bottom plates of a violin and allow

the best possible selection of wood specimens for violin making (Schelleng 1963).

Unfortunately, most systems for measuring technical properties are generally not

accessible to the majority of violin makers. The dynamic modulus of elasticity

(Edyn) is, however, a useful indicator of wood quality and can be readily derived

from measurements of dynamic resonance frequency. Such measurements, origi-

nally described by Goens (1931), are successfully used for assessing the quality of

Table 1 Principal parameters used for the assessment of tone wood quality for axial (L) and radial (R)

directions

Young’s modulus of elasticity E (MPa)

and density q (kg/m3)

E for L and R directions and q

Sound velocity c (m/s) c ¼ E
q

� �1=2

for L and R directions

Radiation ratio R (m4/kg s) R ¼ c
q ¼ E

q3

� �1
2

for L and R directions

Emission ratio H (m4/kg s) HL ¼ RL

dL
or HR ¼ RR

dR
for L and R directions

Loudness index L (m8/kg2 s2) L ¼ RL �RR

dL �dR
¼ HL � HR
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constructional timber (Hearmon 1966; Kollmann and Krech 1960) and can also

greatly facilitate the estimation of Edyn, for a range of other purposes: e.g.

assessment of resonance wood by music instrument makers. The simplicity of the

measurement system is one of its greatest advantages, together with the facility of

adjusting it to the desired specimen size.

The objective of this study was to evaluate a system for measuring resonance

frequency in order to assess resonance wood comprehensively and objectively and

thus to serve the requirements both of scientific research and violin making. The

value Edyn and the damping factor d were measured in samples of Norway spruce

and sycamore resonance wood and normal wood. Tested specimens were then

microscopically assessed so as to determine whether the above acoustic properties

were correlated with anatomical and histological properties.

Materials and methods

Specimen preparation

For comparison of the acoustic properties of normal wood and resonance wood of

Norway spruce (Picea abies) and sycamore (Acer pseudoplatanus), 120 heartwood

specimens of each species were tested. Of the 120 specimens, 80 were categorised

as resonance wood and the remaining 40 as normal wood. The 80 resonance wood

specimens of each species comprised two ‘samples’ (A and B), having been

collected from two different sites (Tables 4, 5). The remaining 40 specimens were

of normal wood (of unknown provenance). The resonance wood specimens were

selected initially on the basis of having narrow annual rings and being free from

visible defects or knots. The 40 normal specimens of each species (the ‘control’

sample) were selected only on the basis of having homogeneous annual rings. The

selection was then verified independently by a violin maker and a resonance wood

retailer, who also categorised the quality of the resonance wood as ‘good’ (sample

A) or ‘very good’ (sample B). The resonance wood specimens ranged in density

between 360–490 and 530–630 kg/m3 in Norway spruce and sycamore, respectively

(Tables 2, 3).

In order to determine acoustic properties in the axial as well as in the radial

direction, half of the 40 specimens in each sample were cut with their longest sides

axially orientated (‘axial specimens’), while the other half were cut with their

longest sides radially orientated (‘radial specimens’). The dimensions of the axial

specimens were: 3 (tangential) 9 25 (radial) 9 150 mm3 (longitudinal) and those

of the radial specimens were 3 (tangential) 9 25 (longitudinal) 9 100 mm3 (radial).

Prior to each measurement, wood specimens were preconditioned at 23�C and 50%

RH until a constant weight was reached; i.e. the moisture content of the specimens

was 10.5 ± 0.5%.

In order to determine the influence of moisture content on the resonance

frequency, additional resonance wood specimens of each species; ten radial and

ten axial, were tested. For each species, these specimens were of the same

provenance as ‘sample A’ (Tables 4, 5). They were stored for two weeks at
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constant temperature and different relative humidity (RH) following a cycle in five

phases: 50, 70, 50% RH, then dried for 24 h at 103�C and finally stored at 50%

RH. The corresponding moisture content was determined after each phase. The

resonance frequency was measured after each phase and compared with the dried

specimens.

Resonance frequency measurements and calculation of the dynamic modulus

of elasticity as well as the damping factor

Figure 1 illustrates the principle of the measurement system used to determine the

resonance frequency according to Hearmon (1966). At one end of the specimen, a

magnetic field excited the attached magnet. The sound waves propagated along the

specimen and the response was recorded with a microphone at the other end of the

specimen.

In the present study, the amplitude of the stress wave and its frequency were

preset with the support of a computer program made with the help of LABVIEW1.

This program also determined the appropriate frequency range and the number of

resonance peaks that were recorded during measurement. By combining the data

obtained from the applied vibration with the data from the response of the

specimen, it analysed the resonance frequency and calculated the modulus of

elasticity. Each peak was first identified by locating its frequency range

approximately and then accurate measurements of its resonance frequency were

made. The width of its peak was measured at half the peak height and was used to

calculate the damping factor d.

First, in order to assess the acoustic quality of wood, the density (q) had to be

measured with gravimetry (Table 1). Secondly, the dynamic modulus of elasticity

Fig. 1 Schematic drawing of the device used for resonance frequency measurements. The steps outlined
by a dashed line were undertaken with the aid of a computer program

330 Wood Sci Technol (2008) 42:325–342
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Edyn was calculated on the basis of Eq. (1), which describes the free transverse

vibration of a beam, including shear deformation and rotational inertia (Craig and

Kurdila 2006) with regard to the test set-up shown in Fig. 1:

q � A � o
2y

ot2
þ Edyn � J �

o4y

ox4
� q � J � 1þ Edyn

j � Gdyn

� �

� o4y

ox2ot2
¼ 0 ð1Þ

where q is the density of the specimens, A the area of their cross-section, J is the

areal moment of inertia and Gdyn the dynamic shear modulus. The third term

accounts for rotational inertia and shear deformation, the shear coefficient j is set to

0.833 for rectangular cross-sections. t stands for time, y for the lateral deflection and

x is the distance along the beam as indicated in Fig. 1.

Equation (1) is solved using the function described in (2):

y x; tð Þ ¼ A0 � sin k � xð Þ þ B0 � cos k � xð Þ þ C0 � sinh k � xð Þ þ D0 � cosh k � xð Þð Þ � eixt

ð2Þ

where k is the wave number and x = 2�p�fr is the circular frequency. Inserting

Eq. (2) into (1) yields the relation (3) between wave number and circular frequency.

x2 ¼ Edyn � J � k4

q � A � 1þ J
A � k2 � 1þ Edyn

j�Gdyn

� �� � ð3Þ

Additionally, the boundary conditions have to be fulfilled. In contrast to the con-

figuration used by Görlacher (1984) the mass m0 of the magnet, although amounting

only to 0.0523 g, had to be taken into account.

for x ¼ 0 M ¼ 0 and V ¼ 0

for x ¼ L M ¼ 0 and V ¼ m0 � o
2y

ot2

where M is the bending moment and V is the shear force:

M ¼ E � J � o2y

ox2
� q

j � Gdyn

� o
2y

ot2

� �

and

V ¼ �E � J � o
2y

ox3
þ q � J � 1þ Edyn

j � Gdyn

� �

� o3y

oxot2
:

Inserting Eqs. (2) and (3) into the boundary conditions yields a linear, algebraic

homogeneous system of four equations. This set has only a nontrivial solution, if the

determinant of the coefficients vanishes. A relation between resonance frequency fr
and Young’s modulus Edyn is found which is solved numerically to determinate the

value of Edyn.

Determining Young’s MOE requires an estimate of the shear modulus Gdyn.

According to Niemz (1993) the shear modulus parallel to the grain was taken as

500 MPa for Norway spruce and 1,000 MPa for sycamore. The respective values

perpendicular to the grain were assumed to be 10% (DIN 1052 2004) of the parallel

to the grain values. Calculations showed that the estimated Young’s modulus is not

Wood Sci Technol (2008) 42:325–342 331
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very sensitive to the value of the assumed shear modulus. In the present

configuration, a variation of 20% in Gdyn results in a deviation of less than 0.5%

in Edyn.

The third property of importance is the sound velocity c ¼ E
q

� �1
2

; which was

calculated using the value obtained for the dynamic modulus of elasticity.

Additionally, a high radiation ratio (R) in the axial direction, combined with a

low wood density, has been described as being of the utmost significance for first-

quality resonance wood (Müller 1986; Ono and Norimoto 1983). On the other hand,

it has been demonstrated that the significance of the radiation ratio concept is

sometimes overrated and that in some circumstances the sound velocity should be

preferred as the decisive property (Holz 1973).

The damping factor (d) was then defined according to the theory of electric

circuits as the ratio of the width (Df) of the resonance curve at half of the maximum

amplitude or at half-power level to the resonance frequency (Bucur 1995; Haines

1979). The relationship (4) defines the damping factor d for axial or radial directions

(Bucur 1995).

dL=R ¼ p
Df

f r

ð4Þ

where fr is the resonance frequency and Df the width of the peak at the amplitude

3 dB below the resonance frequency amplitude or at half-power level.

In addition, the emission ratio (H) and the loudness index (L) of the wood

specimens were calculated (Table 1). These properties, which represent the

damping factor, are an essential consideration for hit and plucked string instruments

(e.g. harpsichord, guitar), which require a very low damping of sound waves

(Norimoto et al. 1984). For bowed string instruments like violins, these factors are

less critical because the string is continuously excited.

Measurement of static modulus of elasticity: static flexure test

In order to assess the accuracy of the calculated value of the dynamic modulus of

elasticity (Edyn), the 120 specimens of Norway spruce and of sycamore, were

subjected to a three-point bending test, so as to measure the static modulus of

elasticity (Estat) and to determine whether the relationship between Edyn and Estat

was consistent with published data. The tests were conducted by applying a central

load both to the axial and the radial specimens with a span (L) of 100 mm using a

universal 100 kN test machine with a load rate of 2.5 mm/min. The load was

measured using a 1,000 N force sensing device with a maximum error of 2% and a

mid-span deflection w with a maximal error of 1%. The values of Estat were

calculated according to Eq. (5) as a secant modulus between a lower load (F1) and

an upper load (F2). The corresponding mid-span deflections were w1 and w2. When

specimens were tested parallel to the grain, the values of F1 and F2 were 20 and

40 N, respectively. Perpendicular to the grain, specimens were tested with a lower

load F1 of 2.5 N and an upper load F2 of 4 N.
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Estat ¼
F2 � F1ð Þ � L3

4 � w2 � w1ð Þ � b � h3
ð5Þ

where b and h are the width and thickness of the specimens, respectively.

Light microscopy

For light microscopy, test specimens were cut into smaller specimens of approx.

10 9 5 9 5 mm3. The specimens, with transverse, radial, and tangential faces

exposed for examination, were fixed in 2 vol.% glutaraldehyde buffered at pH 7.2–

7.4, dehydrated with acetone and embedded in a methacrylate medium. The

embedded specimens were sectioned at approx. 2 and 4 lm using a rotary microtome

(Leica1 2040 Supercut) fitted with a diamond knife. For general observation of

wood anatomy and histology, sections were stained for 12 h in safranin and then

counter-stained for 3 min in methylene blue and for 30 min in auramin. Micrographs

were taken, using a colour film (Kodak1 EPY 64T), with a Leitz1 Orthoplan

microscope fitted with a Leitz-Vario-Orthomat1 camera system.

Results and discussion

Reliability of the measurement system and relationship between Edyn and Estat

Repeated measurement of the resonance frequency on the same specimens indicated

that the system created only very small errors, within the range of approx. ±0.1 to

±0.6%. The configuration of the system was considered as a possible source of

variation but it was found that the distances between the magnet and the coil, as well

as between the microphone and the test specimen, had no noteworthy affect on the

measured value of resonance frequency. Moreover, the precision with which the

distance between the supports was set did not significantly affect the final value of

Edyn. This result is confirmed by Haines et al. (1996). Irregularities in wood density,

ranging between 0 and 1%, were an additional source of variation of Edyn, the

calculated value of which diverged by 0.5–3.5%. Consequently, the error on the

radiation ratio value induced by the measurement method ranged between ±0.5

and ±4.0%.

Figure 2 shows a comparison of the static modulus of elasticity (Estat) and

dynamic modulus of elasticity (Edyn) for Norway spruce and sycamore wood

specimens in the axial direction. The data points are shown separately for the

specimens of resonance wood and of normal (control) wood. Compared to the value

of Estat, the numerical value of Edyn measured with this method was on average

10.1% higher in Norway spruce and 5.3% higher in sycamore.

The relationship between Estat and Edyn in the wood of Norway spruce was

originally described by Holz (1968). Schletter (cited in Holz (1968)), using a similar

Wood Sci Technol (2008) 42:325–342 333

123



testing device to the one in this study, found that the value of Edyn was approx.

11.1% higher than Estat. Haines et al. (1996) and Sinclair and Farshad (1987)

obtained values of Edyn which were respectively 6 and 10% higher than Estat by

inducing vibration with a hammer blow. The consistency between these previous

results and those obtained in the present study provides additional evidence that our

measurement system is sufficiently reliable.

In the radial direction, the relationship between Estat and Edyn was broadly

similar to that found in the axial direction (Fig. 3). Compared to the value of Estat,

the numerical value of Edyn was on average 20.2% higher for Norway spruce and

16.5% higher for sycamore. Moreover, it has also been observed that, in both

Figs. 2 and 3, the difference between Edyn and Estat increases with the absolute

value of Edyn.

Resonance frequency measurements on wood logs show that Edyn varies with the

frequency (Ouis 2002). In fact, Estat is generally the lower value for the modulus of

elasticity, which is measured by the static flexure test and corresponds to a

frequency of zero. For solid materials in general, Edyn increases proportionally with

increasing frequency, up to a finite limit (Pritz 1998). This increase is the

consequence of the duration of the excitation and the non-causal response of the

material, which is related to the dissipation of energy (Marra et al. 1966).

Fig. 2 Static MOE as a function of dynamic MOE for Norway spruce (triangle) and sycamore wood
specimens (square) in the axial direction
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Influence of the resonance frequency on the damping factor

The damping factor (d) in the axial direction was found to be 0.032 for Norway

spruce and 0.043 for sycamore wood for a frequency of respectively 860 and

540 Hz. In comparison and for a similar frequency range, Krüger and Rohloff

(1938) obtained values of damping factor d equal to 0.028 for sycamore and to

0.024 for Norway spruce wood. Furthermore, Fig. 4, which represents d as a

Fig. 3 Relationship of static and dynamic MOE in the radial direction for specimens of Norway spruce
(triangle) and sycamore (square)

Fig. 4 Development of the damping factor in relation to the logarithm of the resonance frequency for
specimens of Norway spruce (triangle) and sycamore (square)
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function of the resonance frequency, shows that the measurements were less

accurate when the damping factor was greater. It was also apparent that the damping

factor d increased exponentially with increasing resonance frequency. The

coefficients of determination R2 were 0.93 in spruce and 1.0 in sycamore. The

increase in exponential form is in good agreement with the model for wood

developed by Ouis (2002). In the frequency range between 102 and 105 Hz, Holz

(1973) observed a similar increase of the damping factor, using two different

measurement systems.

Another finding shown in Fig. 4 is that the damping factor (d) increased more

steeply with increasing resonance frequency in Norway spruce than in sycamore.

The model of Ouis (2002) describes this very well with adapted values of the

parameters. A chemical explanation has been proposed by Pritz (1998), who stated

that the frequency dependence of dynamic properties is particularly strong in

organic polymers with an amorphous structure. Over the frequency range of 102 to

105 Hz, the attenuation of sound waves and the corresponding relaxation

mechanisms in polymers are usually associated with cooperative movements of

large segments of the molecular structure (Dunlop 1978). The content of lignin,

which is the principal amorphous polymer in wood, is higher in Norway spruce

wood (25–29%) than in sycamore (21–24%) (Rowell 1984). Consequently, the

lignin content, the crystallinity of the cell wall material and the structure of the

amorphous zones of the cell wall are likely to be the most important factors

influencing the frequency dependence of the damping of sound waves.

Influence of moisture content on the measured resonance frequency

When the resonance frequency of dried wood was compared with that of wood at

different percentages of moisture-content, an inverse linear relationship was found

(Fig. 5); the coefficient of determination R2 ranged between 0.95 and 0.99 for the

two species and the two directions of sound propagation. This effect was greater in

the radial than in the axial direction and it was also greater in sycamore than in

Norway spruce. Small differences between measurements of resonance frequency

should, however, be considered in the context of the precision of the equipment,

which was in the range of ±0.6% in the present study.

According to Akitsu et al. (1993), water acts as a plasticizer above 8% moisture

content. The cohesive forces between molecules are decreased and the molecular

movement is facilitated. The plasticizing effect of water is greater in the radial

direction and in hardwoods, as exemplified by the radial specimens of sycamore

wood in the present study.

Six relevant properties used to evaluate the quality of resonance wood

For Norway spruce wood, the results presented in Table 2 are in good agreement

with those of Ono and Norimoto (1983). Specimens of normal (control) wood had a

superior radiation ratio (R) but their annual rings were too wide, a feature that is
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considered by violin makers to be aesthetically disadvantageous. Of the two samples

of resonance wood (A = good quality and B = very good quality), sample B had the

lower density and the higher radiation ratio. Also, the overall value of Edyn met the

stiffness and strength requirements for a music instrument. Moreover, its radial

value of Edyn and its radial radiation ratio were very high. This characteristic is

considered as decisive by Holz (1984) who defined ‘‘resonance wood’’ as wood

having a radial MOE exceeding 500 MPa and with a latewood content lower than

20%.

For sycamore, the selection of resonance wood is first and foremost governed by

its aesthetic appearance (violin makers prefer ‘‘curly maple’’). Of the two samples

of curly sycamore wood compared in Table 5, sample B (very good quality) showed

a slightly distorted fibre alignment, whereas the distortion in sample A was strong

and visible as axial ‘‘waves’’. This distortion represents an extended pathway for the

axial propagation of sound waves, leading to greater attenuation than in sycamore

wood with a regular structure. It was therefore not surprising that the values of

modulus of elasticity, sound velocity and radiation ratio of resonance wood were

approximately 10% higher in the control specimens (Table 3).

The results showed also that the radiation ratio in the axial direction was similar

for sample A and B. The radiation ratio should therefore not be used as single

parameter for an objective selection of curly maple wood for instrument making. On

the other hand, the higher values of sound velocity and MOE that sample B showed

in the radial direction were specific characteristics for high quality ‘‘curly maple’’.

Additionally, sample B had a higher emission ratio in the axial direction than

sample A and therefore did not damp the sound waves as much as sample A. In

summary, a high value of emission ratio, particularly in the radial direction, and a

high loudness index were decisive factors in characterizing resonance wood. In this

Fig. 5 Resonance frequency in relation to moisture content: percentage diminution compared with the
resonance frequency of dried specimens/Axial (L) and radial (R) directions for specimens of Norway
spruce (triangle) and sycamore (square)
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study, these properties clearly explain the superior quality of specimens of sample B

when compared to those of sample A.

Influence of macrostructure of wood

The width of the annual rings and the proportion of latewood are both regarded as

important in the selection of resonance wood (Tables 4, 5). Wood with broad annual

rings is rarely selected for resonance wood, mainly because of aesthetic

requirements. Also, ring width can affect the density of the wood but the results

of the present study showed no such relationship in Norway spruce wood, provided

that the ring width was below 2.5 mm; this finding was consistent with that of Holz

(1984). The density was however lower in specimens with an annual ring width

higher than 2.5 mm and they showed a slightly higher radiation ratio (Fig. 6).

Latewood content is regarded as more significant than ring width for the

characterization of resonance wood. In the present study, sample B of Norway spruce

wood had a very low latewood content. This, combined with narrow annual rings,

was typical of first-quality resonance wood. For sycamore wood, latewood content

was less important but the overall density was crucial for resonance wood quality.

Light microscopy findings in relation to the calculated properties

The two samples of Norway spruce wood differed anatomically and histologically

in a number of ways, which were consistent with their values of radiation ratio and

sound velocity (Fig. 7). The wood cells in sample B, i.e. tracheids, had a smaller

mean diameter (22.8 lm in the latewood, compared with 25.3 lm). Also, their walls

were thinner (3.7 lm, compared with 6.3 lm) and the latewood was only 4–6 cell

rows wide, as compared with 10–15 rows in sample A. Also, the structural

Fig. 6 Radiation ratio versus annual ring width. Norway spruce samples with identical letters were
extracted from the same wood block
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differences between the late- and earlywood were less marked in sample B than in

sample A. These characteristics of sample B are typical for first quality resonance

wood with a high sound velocity (Buksnowitz 2006). Also, the narrowness of its

latewood seems consistent with its superior emission ratio, since Bucur (1995)

found that the propagation of sound waves was hampered by a wide latewood zone.

The control sample of Norway spruce was similar to sample A with regard to the

lumen diameter and the cell wall thickness of the tracheids. It had a wider latewood

zone (12–18 cell rows) but also a considerably wider earlywood zone. As a result,

the damping induced by the latewood zone was reduced, so that the emission ratio

was higher than in sample A.

The samples of sycamore wood (Figs. 8, 9) differed mainly with regard to their

xylem rays. Sample B had wider rays (6–8 cells wide) than sample A or the control

sample (3–4 cells wide). The greater width of its xylem rays explains its high radial

values of MOE and velocity of sound (Bucur 1995). Another difference was that the

distance between two xylem rays was greater in sample B than in the control sample

(Fig. 8). This can be directly related to the low emission ratio of sample B.

The proportion of latewood and the overall ring width was similar in all three

samples and so showed no relationship with their acoustic differences.

Fig. 7 Transverse sections of Norway spruce wood: (A) sample A from France/(B) sample B from
Switzerland/(C) control sample
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Conclusions

In this study, a method to assess resonance wood quality with improved objectivity

was introduced, evaluated and critically discussed. Resonance frequency derived

from vibration testing allows calculation of six important properties. Generally,

Fig. 8 Transverse sections of sycamore showing typical features of diffuse porous wood. (A) Sample B
from Switzerland/(B) control sample

Fig. 9 Tangential sections of sycamore showing broad (A) and narrow xylem rays (B). (A) Sample B
from Switzerland/(B) control sample
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a low density and high radiation ratio in the axial and radial directions are crucial

properties for first-quality Norway spruce resonance wood. In addition, emission

ratios and loudness index are valuable properties for estimating general resonance

wood quality.

Comparison of the resonance wood quality of different wood specimens requires

some precautions. Firstly, the resonance frequency measurements should always be

conducted with the same apparatus under standard conditions. Secondly, the

measurements should be taken over the same frequency range. Finally, the moisture

content of the specimens should be strictly controlled.

Evidence is also provided that the wood structure and the size of the wood cells

influence the value of some of the calculated properties. In Norway spruce, first-

quality resonance wood has a homogeneous arrangement of small-dimensioned

cells with thin walls, while in sycamore, high quality of resonance wood is

associated with wide xylem rays. For future studies, it would be interesting to relate

the acoustic quality of the wood to the chemical composition of the cell walls,

particularly of the lignin content and its composition. Furthermore it would be of

interest to develop a method for assessing all relevant elastic properties of tone

wood specimens in real shapes and dimensions.
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