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The Cameros Basin sedimentary infill comprises a large, essentially continental, megasequence ranging from
the Tithonian (Upper Jurassic) to the Albian (Lower Cretaceous). It occupies an area of some 5500 km2, and is
home to around 300 dinosaur tracksites. Most of these tracksites are found in either the Huérteles Formation,
which is part of the Oncala Group (Berriasian), or the Enciso Group (Lower Aptian), both of which represent
early Cretaceous lacustrine episodes. Dinosaur trackways (n=1170) from both episodes were analysed in
order to establish the preferred direction of dinosaur movement, and to determine whether these move-
ments were influenced by the palaeogeographic and palaeoenvironmental conditions of the area.
The Huérteles Formation is interpreted as a complex record of alluvial plain systems distally connected with
a playa-lake. Its dinosaur tracksites are distributed throughout its alluvial plain facies and trackways show
two preferential unidirectional orientations: 1) NW, more or less parallel to the distribution of the facies belt
and 2) NNE. The Enciso Group is represented by a wide and shallow lacustrine system connected with
marine environments towards the SE (Iberian Basin realm) and in close proximity to marine settings to the
NW (Basque–Cantabrian Basin realm), rendering the Cameros Basin as the only continental connection
between the Ebro and Iberian Massifs. The fluctuating (but always shallow) water level of the system with
frequent desiccations probably allowed dinosaurs to pass through the lake basin. As a consequence of these
paleogeographic restrictions, the dinosaur trackways generally show a bidirectional NE–SW orientation.
Despite the temporal and geographical differences between the Huérteles Formation and Enciso Group, the
ichnocenoses of both are dominated by theropod dinosaur trackways (85% as a mean value). This is probably
explained by these dinosaurs being more active than others, a consequence of their searching/hunting
behaviour.
ll rights reserved.
© 2010 Elsevier B.V. All rights reserved.
1. Introduction

The first Cameros Basin dinosaur tracksite was reported by
Casanovas and Santafé in 1971. Since then many more such reports
have been published and the literature is now rich in footprint data for
this region (Moratalla and Sanz, 1997; Moratalla et al., 1997a; Pérez-
Lorente, 2002, 2003 and references therein). Some 300 tracksites are
now known, but every year new discoveries are made, confirming the
importance of this area for the study of fossil vertebrate ichnology.

The preferred directions taken by the makers of these trackways
have, however, been the focus of few studies (Martín-Escorza, 1986,
1988, 2001), and the mixing of individual footprint and trackway data
from formations of different age render the results obtained difficult
to interpret. The present paper tries to throw more light on this topic
by examining the orientations of entire trackways associated with
well-differentiated stratigraphic units.

The relationship between the preferential orientations of dinosaur
trackways and palaeoenvironmental conditions has been an important
area of study in dinosaur ichnology (Lockley, 1986; Lockley and Conrad,
1989; Lockley, 1991; Lockley and Hunt, 1995). The phenomenon of
regionally extensive, but stratigraphically-restricted, track-bearing
layers, or megatracksites (Lockley and Pittman, 1989) or “dinosaur
freeways” was first noted in Jurassic and Cretaceous coastal plain
deposits in theUnited States (Lockley and Pittman, 1989; Lockley, 1997)
and Europe (Meyer, 1993). Amegatracksite (sensu Lockley and Pittman,
1989) is a large, track-bearing layer (single surface of thin unit) covering
a wide area, perhaps even hundreds to thousands of square kilometres.
The Moab megatracksite in Utah (Lockley, 1991), the Glen Rose
Formation in Texas (Bird, 1944; Langston, 1979; Farlow et al., 2006),
the Dakota Sandstone (Gillette and Thomas, 1985; Lockley, 1985, 1987;
Lockley et al., 1992;Matsukawa et al., 1999; Schumacher, 2003; Lockley
et al., 2006b) and the SolothurnLimestoneof Switzerland (Meyer, 1993)
are outstanding examples. Lacustrine regions with track-bearing layers
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covering a relatively small area but spanning a relatively long period of
time represent another palaeoenvironment providing large accumula-
tions of dinosaur tracksites. Abundant examples of lacustrine systems
with rich dinosaur ichnofaunas have been identified for the Mesozoic
ranging from the: (1) Triassic, e.g., the Fleming Fjord Formation (Jenkins
et al., 1994; Milàn et al., 2004) and Chinle Group (Gaston et al., 2003),
through the (2) Jurassic, e.g., the Whitmore Point Member of the
Moenave Formation (Milner et al., 2006), the Morrison Formation
(Lockley et al., 1998), and the East Berlin Formation (Getty, 2005), to the
(3) Cretaceous, e.g., the Sousa Formation (Leonardi, 1994; Leonardi and
Dos Santos, 2004), the Jindong Formation (Lockley and Matsukawa,
1998; Paik et al., 2001; Lockley et al., 2006a), theUhangi Formation (Huh
et al., 2003), the Haman Formation (Huh et al., 2003), and the ElMolino
Formation (Meyer et al., 2001).

Despite their structural differences, both megatracksites and the
latter, vertically extensive, “basinal” track-bearing systems have
yielded important clues regarding dinosaur fauna composition,
behaviour and movement patterns. The features of ichnocenoses
reflect the composition of palaeocommunities and provide testimony
to the abundance of dinosaurs over relatively large areas. Dinosaur
abundance can be estimated from the number of trackways and the
number of tracksites (Lockley, 1997). It should be remembered,
however, that ichnocenoses can show bias with respect to animal size,
activity rates and preservation potential.

The study of dinosaur trackway orientation patterns has two main
aims: 1) to provide information on the relationships between different
trackways within the same tracksite, thus yielding information about
the behaviour of different individuals, and 2) to determine the general
orientation pattern of dinosaur trackways on a regional scale (which
implies the analysis of several tracksites) (Moratalla et al., 1997b). The
presence of parallel dinosaur trackways can be indicative of gregarious
behaviour or the passage of individuals along a physically constrained
pathway (Ostrom1972; Lockley, 1986, 1991). The presence of parallel,
bidirectional trackways has long been associated with physical re-
striction tomovement, e.g.,walking along the shores of a lake (checked
against ripple-mark directions or other indications of shoreline ori-
entation) (Lockley et al., 1986; Lockley, 1987, 1991, 1997). Sometimes,
movements appear to be unidirectional, even with regular spacing
between the trackways (intertrackway spacing, sensu Lockley, 1989).
Such a pattern is usually interpreted as the consequence of gregarious
behaviour (Bird, 1944; Ostrom, 1972; Currie and Sarjeant, 1979;
Lockley, 1989; Lucas, 1998). These general preferential movements
may, however, also have been influenced by palaeogeographic con-
ditions structures at a more regional scale.

The Cameros Basin is in fact amixture of the two types of extensive
track-bearing deposits mentioned above, and has thick sediments
(total combined stratigraphic thickness up to 10000 m) covering a
wide area (about 5500 km2) (Moratalla, 2008). However, the frequent
lateral change shown by its facies does not allow for track-bearing
layers to persist over long distances; the conditions of the mega-
tracksite concept of Lockley and Pittman (1989) are therefore notmet.
The basin lies in the most northwestern part of the Iberian Range,
outcropping into the Spanish provinces of Burgos, Soria and La Rioja
(Fig. 1). It can be divided into two sub-basins — the Eastern and
Western Cameros — of rather different stratigraphic framework (see
General geological setting for further details). The preservation
conditions responsible for maintaining the fossil recordwere different
in the two sub-basins. Indeed, the Western Cameros sub-basin is
characterized by the predominance of osteological remains (Torcida,
2006), while the Eastern Cameros is characterized by ichnological
sites (Moratalla et al., 1997a; Sanz et al., 1997; Pérez-Lorente, 2003;
Hernández-Medrano et al., 2005–2006).

The first large stratigraphic study of the region was undertaken in
the eastern sector by Tischer (1966), who defined five geological
groups: Tera, Oncala, Urbión, Enciso and Oliván, ranging from the
Tithonian to the Albian. The Tera, Urbión and Oliván Groups are
characterized by fluvio-lacustrine sediments, while both the Oncala
and Enciso Groups are dominated by limestones of clearly lacustrine
origin. The Tithonian to Albian synrift infill of the Eastern Cameros
sub-basin has yielded a significant but irregular record of dinosaur
ichnofaunas covering a period of some 42 million years, providing
important ichnological evidence of dinosaur activity for most of the
early Cretaceous. This record is particularly associated with lacustrine
environments such as those of the Huérteles Formation and Enciso
Group.

Given the long period of time between the Berriasian (Huérteles
Formation) and the Aptian (Enciso Group), it might be expected that
many differences should be found between their ichnological records,
which would be influenced by their respective palaeogeographic and
palaeoenvironmental conditions, sedimentation rates, fauna and flora
etc. Dinosaur trackmorphotypes might, therefore, also differ, as might
the general tracksite features. The differences in the palaeogeographic
conditions between the Berriasian interval and the Lower Aptian
lacustrine episodeswere probably great enough that theymight easily
have had a significant influence on preferential dinosaur movements
throughout the entire Cameros area.

The aim of the present paper is to examine the preferential
orientations of the dinosaur trackways made during the Berriasian
and Aptian, and to attempt to correlate themwith the palaeoenviron-
mental and paleogeographic reconstructions of the basin for these
periods. In the study area, two distinct temporal lacustrine episodes
and a large number of dinosaur trackways (1170) were analysed. Two
original palaeogeographic maps (based on the information available
in the literature) corresponding to the age of the units discussed in
this paper are presented; they illustrate the close relationship
between the palaeogeography and sedimentary environments of
these times and the main patterns of dinosaur movement.

2. General geological setting

The Cameros Basin is placed in the Cameros structural unit which
consists of an intracratonic fold-and-thrust belt with a dominant NW–

SE orientation, a result of the Palaeogene–Lower Miocene compres-
sional phase (Guimerà et al., 1995). The northern border is a 100 km-
long striking thrust veering from E–W to NW–SE (traditionally known
as the Cameros or North Cameros thrust) over the Tertiary Ebro Basin.
The southern margin is characterized by NE–SW to NW–SE-oriented
folds and thrusts over the Tertiary Duero and Almazán Basins
(Fig. 1A). Thus, the Cameros unit has an overall asymmetric pop-up
structure and represents the result of the Tertiary inversion of the
uppermost Jurassic–early Cretaceous extensional Cameros Basin
(Guimerà et al., 1995).

DuringMesozoic times the Iberian plate underwent an extensional
regime leading to the widespread development of pericratonic rift
systems, including the South-Iberian ContinentalMargin (Vera, 2001),
the North Iberian Margin (García-Mondéjar et al., 1996; Vergés and
García-Senz, 2001), and the Western Iberian Margin (Pinheiro et al.,
1996), as well as intracratonic rifting named the Mesozoic Iberian Rift
System(MIRS) or IberianBasin (Salas et al., 2001). TheMIRS comprises
four evolutionary stages of the Mesozoic: (a) the Late Permian–
Hettangian rift cycle 1, (b) the Sinemurian–Oxfordian postrift stage 1,
(c) the latest Oxfordian–middle Albian rift cycle 2, and (d) the Late
Albian–Maastrichtian postrift stage 2. During the onset of the second
rifting cycle, which showed a NNE–SSW regional extension related to
the opening of the Bay of Biscay and the North Atlantic, four strongly
subsiding and well-differentiated sedimentary domains were gener-
ated: (1) the Cameros Basin (both Eastern and Western sub-basins),
(2) the Maestrazgo Basin, (3) the offshore Columbretes Basin and,
(4) the South-Iberian Basin (Salas and Casas, 1993; Salas et al., 2001).
Thus, the Cameros Basin is the most interior and northwesterly
sedimentary basin of the MIRS. As a result, it differs from the other
MIRS basins in that it shows continental infilling with only slight



Fig. 1. A. Simplified geologic map of the Iberian Peninsula showing the different Mesozoic basins along the Iberian Range area and surrounding Tertiary basins, stressing the location
of the Cameros Basin. B. Detailed geological map of the Cameros Basin.
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marine influence, a high rate of subsidence and sedimentation, and
in that it exhibits a low to very-low grade metamorphism event (Mas
et al., 2002).

The Cameros Basin comprises two sub-basins, each of which has a
characteristic palaeogeographic and tectonosedimentary setting
(Fig. 1B). The Eastern Cameros sub-basin is a 70 km-long and 45 km-
wide rectangular sub-basinmainly orientedNW–SE. It comprises up to
10,000 m of fluvio-lacustrine deposits with minor marine incursions
(Salas et al., 2001) and well-preserved ichnological tracksites, mainly
dinosaur footprints, although pterosaur, crocodile, bird and turtle
tracks have also been found. The Western Cameros sub-basin is
another rectangular, roughlyW–E-orientated sub-basin some 105 km
long and 50 kmwide andwith amaximum thickness of about 3000 m,
representing fluvial and lacustrine systems with no known marine
incursions (Arribas et al., 2003).

Two major models vie to explain the tectonic rift-basin nature of
the Cameros Basin: model 1 involves an extensional-ramp basin
formed over a roughly south-dipping ramp in a deep subhorizontal

image of Fig. 1
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extensional fault located in the basement (Mas et al., 1993; Guimerà
et al., 1995), whilemodel 2 involves a half-graben basin over a shallow
detachment level (Soto et al., 2007) (Type 1 ofWithjack et al. (2002)).
In fact, both theories agree with a synclinal basin developed over the
hanging-wall trough, with no high footwall scarp.

Since the work of Tischer (1966), many stratigraphic studies of the
Cameros Basin have been published (Mas et al., 1993, 2002, 2003).
The uppermost Jurassic–Early Cretaceous synrift infill, and consists of
continental deposits with scarce marine incursions, forms a mega-
sequence bound by two regional unconformities: the bottom one
being Tithonian and the upper one intra-Albian in age (Fig. 2). This
megasequence, which was deposited over a period of 42 million years
(according to the geological time scale of Gradstein et al. (2005)), can
be subdivided into eight depositional sequences bounded by
intrabasinal unconformities. The sequential arrangement within
each depositional sequence (DS) is composed of a siliciclastic–fluvial
unit succeeded by a gradual vertical and/or lateral change into a
carbonate–lacustrine unit (Salas et al., 2001; Mas et al., 2002). This
synrift stratigraphic architecture is well developed in most non-
marine rift basins (Lambiase, 1990; Schlische and Olsen, 1990). Fig. 2
shows the significant development of carbonate lacustrine systems in
the southeastern domains of the Cameros basin. DS-1 (Ágreda
Formation) is dominated by alluvial deposits in which no dinosaur
tracksites are preserved. DS-2 is represented by the fluvial Magaña
Formation (with only one tracksite) and the fluvio-lacustrine Sierra
Matute Formation (with three tracksites). DS-3 is composed of two
fluvio-lacustrine units: the Huérteles Formation (with 56 tracksites
although only 35 have been studied in this paper) (Table 1) and the
Valdeprado Formation (with 7 tracksites). DS-4, 5 and 6 are formed by
fluvial and lacustrine units with no confirmed tracksites (the Urbión B
Fig. 2. Simplified chrono-lithostratigraphic chart of the Eastern Cameros sub-basin. Based on
Salas et al. (2001).The Huérteles Formation is located in the Depositional Sequence 3 (DS-3
considered as Lower Aptian. Both sedimentary units concentrate the great majority of the C
unit in DS-5 may contain some). DS-7 is composed of a fluvial unit
named Urbión D which has some 16 tracksites, and the lacustrine
Enciso Group, with 103 tracksites (including different levels inside the
same tracksite name, see Table 2). The northern border of the Enciso
Group comprises the carbonate–lacustrine Leza Formation (with six
tracksites). DS-8 consists of the fluvial Oliván Group for which no
dinosaur tracksites have been reported in the literature, but which
does contain an unknown number. Thus, the Huérteles Formation
(DS-3) and the Enciso Group (DS-7) concentrate over 90% of the
Cameros Basin dinosaur tracksites. These last two formations lie
within the Eastern Cameros Sub-basin. The Enciso Group comprises
the uppermost lithostratigraphic unit of DS-7, whereas the Huérteles
Formation forms the lowermost unit of DS-3. Both units are described
in more detail below. The track-rich lacustrine episodes of both
formations coincide in time with the two pulsating phases of
accelerated rifting defined by Mas et al. (1993).

3. Materials and methods

Using software to provide an unfolded view of the track-bearing
layers, Martín-Escorza (2001) calculated the preferred orientation of
the Cameros dinosaur tracks employing orientation data from all the
Cameros geological groups. However, these data referred only to
individual footprints (n=962). The results were interpreted as
showing that the preferential movement of dinosaurs was mainly
southward. In the present work, however, entire trackways (although
in some cases just two consecutive footprints) were used rather than
individual footprints since the orientation of the latter can vary around
the mean direction by some 20° (personal observations). Trackway
orientation better reflects the original direction of animal movement,
Gómez-Fernández andMeléndez (1994b), Martín-Closas and Alonso-Millán (1998), and
) (Berriasian in age). The Enciso Group belongs to the Depositional Sequence 7 (DS-7),
ameros Basin dinosaur tracksites.

image of Fig.�2


Table 1
Tracksites from the Huérteles Formation (Cameros Basin, Spain).

Area No. Tracksite Locality No. Ther Orn Sau Indet

Santa Cruz–Bretún 29 Los Tormos A–B Santa Cruz de Yanguas 3 3
Santa Cruz Santa Cruz de Yanguas 1 1
El Prao Caido Santa Cruz de Yanguas 14 14

30 La Matecasa Bretún 1 1
El Frontal Bretún 17 17
Fuente La Corte A,B and C Bretún 15 14 1

31 Santa Cristina Villar del Río 5 5
32 Serrantes Villar del Río 26 26
33 Salgar de Sillas Los Campos 15 14 1

La Revilleja Los Campos 1 1
San Pedro–Fuentes 34 Valdegén Villar del Río 29 29

35 Fuentesalvo Villar del Río 12 12
36 San Roque Ventosa de San Pedro 5 5
37 El Castillejo 1–5 Matasejún 6 6
38 Barranco de Valdelavilla I–VII San Pedro Manrique 17 14 2 1
39 Miraflores I–IV Fuentes de Magaña 7 3 4

Umbría del Sastre Fuentes de Magaña 3 3
* La Hoyuela Las Fuentes de San Pedro 1 1

Total 178 166 3 8 1
% 93.3 1.7 4.5 0.6

Table 2
Tracksites from the Enciso Group (Cameros Basin, Spain).

Area No. Tracksite Locality No. Ther Orn Sau Indet

Munilla–Hornillos 1 San Vicente de Robles San Vicente de Robles 7 5 2
2 San Martín 1–3 San Martín de Jubera 8 3 2 2 1
3 Soto 1–3 Soto en Cameros 24 10 8 6
4 La Pellejera Hornillos de Cameros 69 44 25
5 Hornillos 1–5 Hornillos de Cameros 18 17 1
6 Santisol Hornillos de Cameros 26 25 1
7 Santa Juliana Hornillos de Cameros 2 2

La Barguilla Hornillos de Cameros 3 1 2
El Contadero Ajamil de Cameros 6 6

8 Las Mortajeras Munilla 31 31
9 Malvaciervo Munilla 5 2 3

10 San Vicente de Munilla 1–16 Munilla 42 42
El Sobaquillo Munilla 1 1

11 Munilla 1–15 Munilla 42 28 14
* Valdemayor Cabezón de Cameros 3 3

Enciso–Préjano 12 Barranco de Valdeño Enciso 1 1
Corral de Valdefuentes Enciso 2 2

13 Las Losas Enciso 58 58
14 Virgen del Campo 1–4 Enciso 56 44 2 10
15 La Senoba Enciso 15 12 3
16 Valdecevillo Enciso 27 12 6 3 6

Valdecevillo Este Enciso 3 2 1
17 El Villar–Poyales Enciso 15 13 2

Icnitas 3 Enciso 4 4
18 Navalsaz Enciso 16 1 12 3
19 El Corral de Totico 1–2 Enciso 21 3 17 1

Barranco de Valdegutierrez 1–2 Enciso 5 2 3
Cuesta de Andorra Enciso 1 1
La Magdalena Préjano 1 1

20 Valdeté Préjano 1 1
Tajugueras Préjano 2 1 1
Perosancio Muro de Aguas 1 1
Perosancio Inferior Préjano 1 1

21 Valdemurillo Préjano 2 1 1
Sol de La Pita Préjano 1 1

* La Mata Peroblasco 1 1
Cornago–Igea 22 Los Cayos A,B,C,D and S Cornago 61 60 1

23 Era del Peladillo 1–7 Igea 110 66 22 6 16
Fonsarracín Igea 10 10

24 La Torre 1–6 and La Torre L Igea 228 226 1 1
25 Las Navas Igea 8 8
26 Camino Igea a Valdebrajes Igea 15 11 4
27 Valdebrajes Cervera de Río Alhama 11 1 10
28 Las Navillas Cervera de Río Alhama 27 20 4 3
* Valdenocerillo Cornago 1 1

Total 992 769 154 18 51
% 77.5 15.5 1.8 5.1
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avoids artificial duplication and thus provides amore accurate count of
individual trackmakers. Since the vast majority of the trackways
examined were straight, their orientation was determined using a
simple compass. Some trackways showed slight bending, in which
case the average direction was determined.

To obtain the true orientation of dinosaur trackways, the data
collected may require correction for the tectonic tilt of inclined beds.
However, in the present work, most of the trackway-bearing layers
examined showed dips of b25°; the deviation was therefore con-
sidered within the range of acceptable error and no adjustment was
attempted (Collinson and Thompson, 1989). When working on
Iberian trackways, further adjustments may be needed to take into
account the anticlockwise rotation of the Iberian Plate. Compared to
the present, and based on sea-floor anomalies and palaeomagnetic
data, this was rotated by about 40° in the Aptian and by 35° in the
Berriasian (Sibuet et al., 2004a,b; Gong et al., 2008). However, this was
not taken into account in the present work for the sake of simplicity
since all the structures examined must have been equally rotated. In
Fig. 3. Detailed geologic map of Eastern Cameros Sub-basin with the location of the dinosaur
the tracksites have been used in this study). Numbers (see Table 1 and 2) are referred to thos
and directional analysis carried out in this paper.
any event, future researchers are free tomake such corrections as they
deem necessary.

A sample of 1170 dinosaur trackways was analysed, 178 from the
Huérteles Formation and 992 from the Enciso Group. Most data
presented were recorded in situ, although some information was
taken from mapped tracksites published in the literature. At each
tracksite, the examined trackways were divided into three main
categories: ornithopod, theropod and sauropod. For the sake of clarity,
the position of all the tracksites examined was plotted on a com-
prehensive geological map (Fig. 3). The trackway data for the
Huérteles Formation came from 18 localities (each of which may
contain several tracksites), all in the Province of Soria (Table 1). Of the
178 trackways examined for this formation, 166 were made by
theropods, three by ornithopods, eight by sauropods and one remains
indeterminate. The Enciso Group trackway data came from three
selected areas (Munilla–Hornillos, Enciso–Préjano and Cornago–Igea)
with 103 tracksites between them (Table 2). These areas were
selected because their tracksites show large numbers of trackways.
tracksites (grouped in different areas). The footprint mark indicates a tracksite (not all
e tracksites with a significant number of trackways that allowed using for the statistical

image of Fig.�3
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Some of these sites reveal single layers, but the majority comprise
several. Of the 992 Enciso Group trackways examined, 769 had been
made by theropods, 154 by ornithopods, 18 by sauropods and 51 by
undetermined dinosaurs.

The collected data were analysed using EZ-ROSE software (Baas,
2000). The orientations of the trackways were plotted on circular
graphs with a class width of 15° and a significance level of 0.01.

4. Description of the tracksite areas

4.1. Huérteles Formation (Berriasian) dinosaur tracksites

The Huérteles Formation is located at the base of DS-3 (Fig. 2),
outcropping along the Provinces of Soria and La Rioja (see also Figs. 1B
and 3). Despite the lack of reliable chronological data, the Huérteles
Formation is thought to be Berriasian in age (Mas et al., 2002). It
represents a new tectonic reorganization and compartmentalization
of the Cameros Basin showing only occasional marine influences
(Salas et al., 2001; Mas et al., 2003).

Detailed sedimentological and palaeoenvironmental studies of this
formation have been undertaken by Gómez-Fernández (1992),
Gómez-Fernández and Meléndez (1994a,b), and Meléndez and
Gómez-Fernández (2000). Here, a description of the Huérteles
Formation is provided in order to better relate the directions of the
dinosaur trackways to their depositional environments (based on the
above studies). With a maximum sediment thickness of 1050 m, the
Formation is characterized by: 1) deposition in a strongly subsiding
NW–SE-oriented half-graben with a major border fault at its
northeastern margin, plus NE–SW-trending minor intrabasinal faults;
2) a NW–SE-oriented and asymmetrical facies belt; 3) the predom-
inance of terrigenous sediments in the western sector, with
carbonates and even evaporites increasing in importance northwards
and eastwards until they become dominant; and 4) an increase in
salinity eastwards and upwards. The palaeogeographic interpretation
of this information suggests the presence of an extensive, tectonically-
controlled complex record of alluvial plain systems distally connected
with playa-lake systems, with an asymmetric arrangement of
different sedimentary belts (Fig. 4A). The most proximal palaeoenvir-
onmental complex of the formation, located to thewest, is interpreted
as a sandy–muddy plain with a predominance of siltstones and
sandstones, sometimes showing channel structures. To the east, this
palaeoenvironmental complex passes into a mudflat with ephemeral–
saline lakes, before finally becoming a carbonate-evaporitic perennial-
saline lake complex with mainly limestone sediments plus some
evaporitic levels with gypsum pseudomorphs. An alluvial fan/fan-
delta system developed in response to the footwall uplifting of the
border fault, which at this time defined the northeasternmargin of the
Cameros Basin.

Dinosaur tracksites are abundant in the Huérteles Formation (Sanz
et al., 1997; Pérez-Lorente, 2003). However, most have never been
described in detail; thus, the available ichnological data is relatively
scarce. Someof the cited tracksites (e.g., thosementionedbyHernández-
Medrano et al., 2005–2006) have names, but no further information is
provided for them (sometimes not even their exact position), while
others are small and yield just a few individual footprints.

The Huérteles dinosaur tracksites studied come from two main
areas (Figs. 3 and 4A). The San Pedro–Fuentes area is home to 6 sites:
Miraflores–Umbría del Sastre (39), Valdelavilla (38), El Castillejo (37),
San Roque (36), Fuentesalvo (35), and Valdegén (34). TheMiraflores–
Umbría del Sastre tracksites (39) show a multidirectional pattern but
slightly biased to a SW orientation. In contrast, Valdelavilla (38) and El
Castillejo (37) show rather a bidirectional pattern: NE–SW in the first
case and NW–SE in the second. In contrast, Fuentesalvo locality (35)
shows a unidirectional NWpattern, relatively similar to that of the San
Roque site (36). In contrast, Valdegén clearly shows amultidirectional
pattern (34) (Fig. 4B). If we plot together all the dinosaur trackways
from the San Pedro–Fuentes area we obtain a multidirectional rose
diagram but slightly biased to the NW (Fig. 4A) suggesting a dinosaur
preferential movement relatively parallel to the inferred water body.

The Santa Cruz–Bretún area contains 5 dinosaur localities:
Serrantes (32), Santa Cristina (31), Bretún tracksites (30), Santa
Cruz de Yanguas (29), and Los Campos (33) (Fig. 4A). Some of these
tracksites show a multidirectional pattern, especially evident in the
different localities of Santa Cruz de Yanguas (29). Other localities
show a clear bidirectional pattern like Bretún (30) but most show an
almost unidirectional model like Santa Cristina (31), Los Campos (33)
or even Serrantes (32) (Fig. 4B). The whole sample of the Santa Cruz–
Bretún area shows amultidirectional model slightly biased to the NNE
direction (Fig. 4A).

4.2. Enciso Group (Lower Aptian) dinosaur tracksites

The Enciso Group is the uppermost unit of DS-7 (Fig. 2),
outcropping only in the Province of La Rioja. Its overall structure is
defined by an extensive synclinorium with great development of its
longitudinal axial trace (about 70 km long) that shows a preferential
NW–SE orientation (parallel to the trace of the thrust) (Fig. 3). The
southern flank comprises a thick (up to 1400 m) gently dipping
sequence while the northern flank shows steeper dip angles, is
thinner (up to 300 m), and shows more complexity and tectonic
fracturing. An early Aptian age can be inferred from the evidence of
charophytes, dasyclad algae and regional geology (Alonso and Mas,
1993; Martín-Closas and Alonso-Millán, 1998; Doublet and Garcia,
2004).

The Enciso Group, in the depocentral area of the basin (the Enciso
stratigraphic section), encompasses a sequence formed by two units.
The lower, siliciclastic-rich unit, which is up to 600 m thick, shows an
alternation of mudstones, sandstones, and minor marlstones and
limestones. The upper unit, which is up to 800 m thick, is arranged into
large-scale (metric to decametric) cyclical carbonate- and siliciclastic-
dominated sedimentary packages. This pattern is similar to other
stratigraphic sections examined in track-rich areas several kilometres
away (Doublet et al., 2003; Moratalla et al., 2003; Doublet and Garcia,
2004). The greatmajority of tracksites occur in this upper unit either in
siliciclastic and carbonate-rich packages. These carbonate-dominated
packages are laterally extensive and consist of locally bioturbated,
meter-scale interbedded grey-dark marlstones and limestones (mas-
sive or sparsely laminated micrite with mudstone and/or wackestone
textures). Their profuse mottling, nodular appearance and desiccation
cracks suggest frequent subaerial-exposure, although the lack of well-
developed paleosoils implies exposure times were short. These
packages represent deposition in low-energy ramp-type carbonate–
lacustrine systems (sensu Platt and Wright, 1991) with development
of palustrine environments in an extensive lake-margin area with
shallow water as is common in these types of lakes (Alonso-Zarza,
2003). Such a palaeoenvironment would probably have favoured the
formation/preservation of vertebrate tracks. The siliciclastic-dominat-
ed packages also show an extensive lateral continuity and a common
coarsening-upward trend, comprising tabular bodies of lutites with
minor intercalated sandstones beds. They are interpreted to represent
a complex mosaic of fluvio-deltaic environments related to avulsion
belts similar to modern and ancient examples described by many
authors (e.g., Kraus and Wells, 1999; Makaske, 2001; Slingerland and
Smith, 2004).

The Enciso Group has yielded more dinosaur tracksites than any of
the other groups mentioned. Most were examined in the present
analysis (Table 2), and their orientations generally found to show a
general bidirectional pattern, with each site showing variations in
direction. At some the directional range of the trackways was
relatively narrow, while at others it was much wider. In addition, at
some tracksites the two main directions of movement were
represented by similar numbers of trackways, while at others one



Fig. 4. A, Palaeogeographic reconstruction of the Huérteles Formation showing the relation of the paleoenvironments and the most significant dinosaur tracksites. Based on Gómez-
Fernández and Meléndez (1994a), and Meléndez and Gómez-Fernández (2000). The tracksites in the sandy-muddy flat have been grouped in the Santa Cruz-Bretún area. The
tracksites in the mudflat paleoenvironment have been grouped in the San Pedro-Fuentes area. The rose diagrams in the upper part (A) show the preferential trackway orientations
for each area. Grey sector gives mean direction of movement±confidence sector for a significance level of 0.01 (see Baas, 2000 for statistical treatment of data). The Santa Cruz-
Bretún area gives a mean direction of 20°±33°. The Enciso-Préjano and Munilla-Hornillos areas are non-representative at 1% significance level. Each number represents a dinosaur
tracksite with a significant number of trackways that allowed using for the present paper. 29, Los Tormos, Santa Cruz and El Prao Caido; 30, La Matecasa, El Frontal and Fuente La
Corte; 31, Santa Cristina; 32, Serrantes; 33; Los Campos tracksites; 34, Valdegén; 35, Fuentesalvo; 36; San Roque; 37; El Castillejo; 38; Valdelavilla; 39; Miraflores and Umbría del
Sastre. See Table 1 for further details. B, Rose diagrams of these Huérteles dinosaur tracksites showing their preferential trackway orientations. The number inside the small circle
indicates the number of trackways for the highest frequency sector.
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particular direction was dominant (see Fig. 5 for further details).
Three main areas can be outlined for the Enciso Group dinosaur
tracksites: Munilla–Hornillos, Enciso–Préjano and Cornago–Igea
(Figs. 3 and 5A) that have yielded a slightly different general trackway
orientation. So, the Munilla–Hornillos region (located to the NW of
the map) shows a general NE–SW bidirectional pattern. By contrast,
the Enciso–Préjano area does not show a clear bidirectional
distribution but rather a multidirectional one with a slight preference
in a NNW–SSE pattern. On the contrary, the Cornago–Igea area clearly
shows a bidirectional NNW–SSE pattern, especially evident in La Torre
(24), Era del Peladillo (23) or La Senoba (15) localities. However,
some local variations could be pointed out like that of the Los Cayos
locality (22), showing a clear E–W bidirectional pattern or El Villar–
Poyales (17), with a NW–SE distribution (Fig. 5B).

5. Discussion

Two prerequisites are necessary for the present type of trackway
direction analysis: 1) a large number of trackways comprising a
representative sample, and 2) approximately synchronic time inter-
vals for the different trackways examined. The presentwork examined
1170 trackways, unlike the smaller number examined in earlier works

image of Fig.�4


Fig. 5. A, Palaeogeographic reconstruction of the Enciso Group showing the distribution of the dinosaur tracksites that have been grouped in three main areas: Munilla-Hornillos,
Enciso-Préjano and Cornago-Igea. The rose diagrams of the upper part show the preferential trackway orientations for each of the areas. Grey sector gives mean direction of
movement±confidence sector for a significance level of 0.01.The Cornago-Igea area gives a mean direction 235°±33°. The Enciso-Préjano and Munilla-Hornillos areas are non-
representative at 1% significance level. Each number represents a dinosaur tracksite with a significant number of trackways that allowed using for the present paper. 1, San Vicente de
Robres; 2, San Martín; 3, Soto en Cameros; 4, La Pellejera; 5, Hornillos de Cameros; 6, Santisol; 7, El Contadero, La Barguilla and Santa Juliana; 8, Las Mortajeras; 9, Malvaciervo; 10,
San Vicente de Munilla; 11, Munilla; 12, Valdeño and Valdefuentes; 13, Las Losas; 14, Virgen del Campo; 15, La Senoba; 16, Valdecevillo; 17, El Villar-Poyales and Icnitas 3; 18,
Navalsaz; 19, Totico, Valdegutierrez, Cuesta de Andorra and La Magdalena; 20, Valdeté, Tajugueras and Perosancio; 21, Valdemurillo and Sol de la Pita; 22, Los Cayos; 23, Era del
Peladillo and Fonsarracín; 24, La Torre; 25, Las Navas; 26, Camino Igea a Valdebrajes; 27, Valdebrajes; 28, Las Navillas. See Table 2 for further details. B, Rose diagrams of the main
Enciso dinosaur tracksites showing their preferential trackway orientations. The number inside the small circle indicates the number of trackways for the highest frequency sector.
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involving the Jindong (Lockley andMatsukawa, 1998; Paik et al., 2001;
Lockley et al., 2006a), Sousa (Leonardi, 1994; Leonardi and Dos Santos,
2004) or El Molino Formations (Meyer et al., 2001). Further, the
tracksites analysed in the present work are all thought to have been
made in the Berriasian or Aptian. Nonetheless, their exact stratigraphic
correlation remains somewhat uncertain because of the great tectonic
complexity of the basin, the location of dinosaur tracksites in different
areas, the high rate of lateral facies change, and the relative abundance
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of faults, etc. Consequently, the tracksites examined in this analysis
may not be entirely synchronous, although they are located through-
out the stratigraphic sections of both the Huérteles Formation and the
Enciso Group. Further, some tracksites hundreds or even thousands of
meters apart belong to the same siliciclastic (Munilla–San Vicente de
Munilla or Los Cayos A–B–C) or carbonate packages (Valdeté–
Tajugueras–Perosancio). Finally, the Enciso Group may represent a
period of about 4–5 Ma (according to the geological time scale of
Gradstein et al. (2005)), but might in fact only cover some 1–2 Ma if
the timescale proposed by Fiet et al. (2006) is followed. Moreover, the
stratigraphic distribution of the tracksites is not uniform; the majority
of the track-bearing sequences appear in the upper two-thirds of the
Enciso Group section, reducing the estimated time interval to which
Fig. 6. Palaeogeography of the Iberian Peninsula during the Berriasian showing the location
figure show the preferential dinosaur trackway orientations that show rather a multidirec
Huérteles dinosaur trackways and the right one have been plotted with the theropod ones. G
of 0.01. The total trackways gives a mean direction 352°±34° and the theropod trackways m
two-color striped area indicates a mixture of the two environments (lack of reliable data) i
they might belong. Finally, the cyclicity of the Enciso sedimentary
succession suggests that the same general palaeogeographic and
palaeoenvironmental conditions probably reigned over the entire
Enciso Group deposition episode.

5.1. Huérteles Formation

The most common trackway movement pattern for the ichnoce-
noses of the Huérteles Formation seems to be multidirectional (Fig. 4).
Sometimes, however, it is almost bidirectional or unidirectional, and
sometimes twodirections cross oneanother. Fig. 6 shows thedirectional
plot for 178 dinosaur trackways. Compared to the trackways of the
Enciso group, these show a relatively wide range of directions, although
of the Cameros Basin (Húerteles Formation). The rose diagrams or the lower part of the
tional pattern, although slightly biased to the north. The left diagram includes all the
rey sector gives mean direction of movement±confidence sector for a significance level
ean direction is 356°±31°. The ? symbol means inferred/probably environment and the
ndicated by the colors.
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there is a slight preference to the North. In addition, Fig. 4 strongly
suggests that the spatial distribution of the tracksites themselves obeys
a phenomenon of palaeoenvironmental distribution. This spatial pref-
erence for tracksitesmay be the result of preservation factors and/or the
animals' palaeohabitat preferences. The first hypothesis explains the
absence of tracks in the northeastern alluvial fan/fan-delta system.
Nevertheless, the lack of any footprint on the margins of the perennial-
saline lake complex (Fig. 4A) or in the eastern sector of the mudflat
environment (Fig. 4A), seemsnot to bedue topreservation factors alone
since relatively similar ancient playa-lake systems, such as those of the
Jindong (Paik and Kim, 2006 versus Houck and Lockley, 2006) or East
Berlin Formations (Gierlowski-Kordesch and Rust, 1994) show abun-
Fig. 7. Palaeogeographical reconstruction of the Iberian Peninsula during the early Aptian s
plotted with all the dinosaur trackways we analyzed, show a bidirectional pattern slightly bi
(middle rose diagram). On the contrary, the Enciso Group orinthopod trackways show rath
direction ofmovement±confidence sector for a significance level of 0.01. The total trackways g
The ? symbol means inferred/probably environment and the two-color striped area indicates
dant trackways. Consequently, it is here assumed that the absence of
dinosaur tracks in these areas is due to reasons of preferred habitat; a
lack of freshwater may have been a key factor. If this is so, two main
conclusions can be drawn: 1) that dinosaur tracksites aremainly located
throughout the more proximal facies of the basin, quite far from the
central saline lacustrine complex; and 2) that the general directional
pattern suggests that animals walked relatively parallel to the
sedimentary facies belts. This conclusion would be consistent with a
predominance of animal movements parallel to the water body.

This fact suggests that the preferential dinosaur movements
during Huérteles Formation deposition were probably more influ-
enced by the local paleoenvironmental conditions than by from the
howing the location of the Cameros Basin (Enciso Group). The rose diagram of the left,
ased to de SSW. A similar distribution was provided using only the theropod trackways
er a multidirectional orientation pattern (right rose diagram). Grey sector gives mean
ives ameandirection 205°±35° and the theropod trackwaysmeandirection is 231°±34°.
a mixture of the two environments (lack of reliable data) indicated by the colors.
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Fig. 8. Both Huérteles and Enciso ichnocenoses — based on trackways — show a clear
domination of theropod dinosaurs that seem to bemore abundant during the Berriasian
and experienced a descent of about 16% for the Aptian. On the contrary, ornithopod
dinosaurs bear a significant increment from the Berriasian (1.7%) up to the Aptian
(15.5%), while sauropod dinosaurs seem to be the less abundant trackway makers
during both periods.
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general paleogeographic land distribution shown in Fig. 6. This
conclusion seems to be different that those inferred from the Enciso
Group paleogeographic analysis, as we will see in the next section.

5.2. Enciso Group

The trackway pattern for the Enciso Group is quite different, with a
clear bidirectional pattern distribution for the Munilla–Hornillos and
Cornago–Igea areas and a more multidirectional distribution for the
Enciso–Préjano one. A coherent explanation for these differences is
difficult topropose. The simplest answermaybe related todifferences in
the spatial and temporal palaeoenvironmental characteristics of these
areas. In fact, although most of these dinosaur tracksites are located in
the upper part of the Enciso Group, their exact chronostratigraphic
correlations are not completely understood. Further work will be nec-
essary if a detailed correlation among tracksites is to be obtained.

Fig. 7 is a plot of the results for the entire Enciso Group sample
(n=992). The graph suggests that the preferential trackway ori-
entation is NNE–SSW, although this preferential orientation seems to
be more evident for theropods than for ornithopods. These results are
probably the consequence of the general paleogeographic conditions
of the Cameros Basin during the deposition of the Enciso Group. So, a
positive correlation appears to exist between the eustatic rise in sea
level and the deposition of the Enciso Group (Mas et al., 1993). Thus,
compared to the Berriasian of the Huérteles Formation, the palaeo-
geographic setting of the Iberian Plate changed significantly in the
earliest Aptian. The significant global rise in sea level combined with
the extensional regime of Iberia facilitated a marine transgression
with Boreal affinities (Wilmsen, 2005) from the north (Basque–
Cantabrian Basin), as well as that of the Tethys Sea from the southeast
(MIRS) (Salas et al., 2001; Mas et al., 2002). This led to the partition
of the Iberian Plate into two major emerged areas — the Ebro Massif
(northeast) and the Iberian Massif (southwest) (Fig. 7) — largely
separated by the sea, the only land communication between them
being the Cameros Basin. Therefore, during the Lower Aptian, the
Cameros Basinwas the only route that dinosaurs (and, of course, other
terrestrial animals) could take between these massifs (Moratalla and
Hernán, 2007; 2008). The finding of dasycladaceas throughout the
Leza Formation (part of the Enciso Group) suggests several short-lived
invasions of Tethys marine water masses into the Cameros Basin,
with a stable NW land limit near the Moncayo Mountain (Malacara
Formation) (Alonso and Mas, 1988). The width of the corridor be-
tween the northernmarine limit and the southernmarine limit can be
estimated at 100 km following a NNW–SSE transect.

The preferential orientations of the Enciso Group dinosaur track-
ways would be consistent with these described paleoenvironmental
conditions (see Fig. 5A and Fig. 7). Their general orientation suggests
that dinosaurs, especially the theropods, travelled through this large
Enciso lacustrine complex following preferred regional routes. So,
they passed through the lake basin in a preferential NNE–SSW
direction (as we can observe in Fig. 5A) strongly influenced by the
paleogeographical conditions reflected in Fig. 7. This hypothesis
would be clearly in contrast with the orientation pattern observed in
the Huérteles Formation localities (Fig. 4A), and also in other well-
known lacustrine areas fromwhich a preferential dinosaurmovement
parallel to the coast/shore has been deduced (Lockley and Price, 1988;
Lockley, 1991; Lockley et al., 1992; Meyer et al., 2001).

As discussed above, whatever the rift-basin structure contemplat-
ed, both the sedimentological evidence and stratal architecture
suggest the presence of an Enciso palaeolake complex with a sag-
basin morphology rather than the classic half-graben model. A sag-
like lacustrine complex would suggest the presence of a greatly
fluctuating level of lake water in a shallow environment. Sag-type
lakes are characterized by a very large surface area covered by shallow
water (they therefore have large littoral areas), and gentle bottom
slopes; the shorelines of such lakes would therefore be very sensitive
to fluctuations in the water level. These conditions imply shoreline
shifts and the exposure of wide areas of mud, which dinosaurs might
trample. An outstanding example was cited by Mohler et al. (1995) in
Lake Chad; these authors reported that a fall in the lake's water level
of 3 m caused a lakeward migration of the shoreline of some 18 km. A
sag-like lacustrine complex would also suggest the absence of high
relief produced by footwall uplift. Present-day rift-escarpment
margins can be very high due to footwall uplift, perhaps exceeding
thousands of meters in height (Cohen, 1990; Le Turdu et al., 1999;
McGlue et al., 2006); such a landscape would represent an
insurmountable obstacle to dinosaur movement. If the above
inferences are correct, then the area of the shallow lacustrine complex
would have been the only option for animal movement through the
Enciso palaeoenvironmental system. It is possible that some local
progradational avulsion (many tracksites occur at the top of avulsion
deposits) and/or low lake-level episodes (many track-bearing layers
show mud-cracked bedding planes) gave rise to contractions of the
water body creating emergent passages facilitating such movement.
Relatively prolonged dry episodes, such as that shown by the drying of
modern Lake Victoria (Johnson et al., 1996; Stager and Johnson, 2008)
or Lake Tana (Lamb et al., 2007), may have facilitated animal
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movement. Nevertheless, no complete desiccation of the Cameros
palaeolake seems to have occurred; no evidence of a well-developed
palaeosoil has yet been found.

This lacustrine-complex scenario is consistent with the directional
pattern of the dinosaur tracks for the Enciso Group, but it does not
explain the existence of an ichnocenosis clearly dominated by predatory
dinosaurs. The same is true of the Huérteles Formation. Clearly, both
events are relatively similar in that they are dominated by theropod
trackways (93.3% for the Huérteles Formation and 77.5% for the Enciso
Group) (Fig. 8) (Moratalla, 2008). However, ornithopod tracks are far
less abundant in the Huérteles Formation (1.7% compared to 15.5% for
the Enciso Group), while sauropod tracks are more abundant (4.5%
compared to 1.8% for the Enciso Group). Avian-like and pterosaur tracks
aremore abundant in the Huérteles Formation than in the Enciso Group
(Moratalla, 2008). Almost certainly the apparently high percentages of
predatory theropods reflect their activity rather than the true
composition of the palaeocommunity. These dinosaurs were signifi-
cantly more active than others, a consequence of their searching/
hunting behaviour. Herbivorous dinosaurs such as ornithopods and
sauropods probably inhabited wider areas, over which their food
sources would be more plentiful, but where the conditions for track
preservation would be at their worst. Shallow-water dwellers and/or
active animals such as the theropodswould have found a homemore to
their liking in the central lacustrinebasin; these thenmovedalongaNE–
SW axis as part of their hunting lifestyle.
6. Conclusions

• Two different preferential orientation dinosaur trackway patterns
can be deduced from the Berriasian and from the Aptian of the
Cameros Basin. These differences seem to be related to the different
paleogeographical conditions in both stages.

• The location and preferred orientation of the Huérteles Formation
dinosaur trackways seem to be related to the facies belts. So, they
show a rather multidirectional preferential orientation pattern but
slightly biased to the north, suggesting a preferential dinosaur
movement parallel to the water body.

• The Huérteles Formation orientation pattern seems to be heavily
conditioned by the presence of a perennial-saline lake complex from
which no dinosaur tracksites have been found.

• During the Aptian (reflected by the Enciso Group), a double
transgression from the north and from the southeast occurred,
resulting in the partition of the Iberian Plate into two main
emergent areas connected by the Cameros pathway.

• The EncisoGroup landscapewas formedby a broad shallow lacustrine
system that experienced fluctuations in its water level. Large areas of
exposed sediment were trampled by dinosaurs as they followed their
preferred regional route of movement. So, these dinosaurs passed
through the lake mainly in a preferential NE–SW orientation heavily
conditioned the geographical distribution of the land masses.

• The ichnocenosis of the Cameros Basin — based on trackways —

shows that theropod dinosaurs were the most abundant trackway
makers (85.3% as a mean value). The percentage of ornithopod
trackways is significantly larger in the Enciso Group (15.5%) than in
the Huérteles Formation (1.7%), while the percentage of sauropod
trackways is more abundant similar in the Huérteles Formation
(4.5%) to the Enciso Group (1.8%). The theropod trackways are the
most abundant in both periods (93.3% in Huérteles Formation and
77.5% in the Enciso Group).

• The almost absolute dominance of theropods in the Cameros Basin
ichnocenoses suggests that these dinosaurs were significantly more
active than others, a likely reflection of the searching/hunting
behaviour typical of such predatory groups.
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