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Abstract The histopathological characteristics of Alz-
heimer’s disease (AD) are amyloid-β (Aβ) containing
plaques and neurofibrillary tangles (NFTs) as well as
neuronal and synaptic loss. Until today, the underlying
mechanisms of the interplay of plaques and tangles
remained unresolved. There is increasing evidence that
mitochondrial dysfunction might be a possible link, as
revealed by studies in several APP and tau transgenic
mouse models. Recently, we examined mitochondrial
function in a novel triple transgenic mouse model (pR5/
APP/PS2)—tripleAD mice—that combines both pathologic
features of the disease in brain. Using comparative,
quantitative proteomics (iTRAQ) and mass spectroscopy,
we found a massive deregulation of 24 proteins, of which
one third were mitochondrial proteins mainly related to
complexes I and IVof the oxidative phosphorylation system
(OXPHOS). Remarkably, deregulation of complex I was
related to tau, whereas deregulation of complex IV was Aβ
dependent, both at the protein and activity levels. The
tripleAD mice showed synergistic effects of Aβ and tau
already at the age of 8 months, resulting in a depolarized
mitochondrial membrane potential. At 12 months, the

strongest defects on OXPHOS, synthesis of ATP and
reactive oxygen species, were exhibited in the tripleAD
mice, again emphasizing synergistic, age-associated effects
of Aβ and tau in impairing mitochondria. This review
highlights the convergence of Aβ and tau on mitochondria
and establishes a molecular link in AD pathology in vivo.
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Introduction

Alzheimer’s disease (AD) is the most common neurode-
generative disorder affecting around 15 million people
worldwide. Because of the increase in life expectancy
already for 2020, the number of cases will rise to about 30
million people worldwide. Although the hallmark lesions of
the disease were described by Alois Alzheimer already in
1906—extracellular amyloid plaques mainly composed of
Aβ and intracellular neurofibrillary tangles (NFTs) built up
of hyperphosphorylated tau—the molecular mechanisms
underlying the disease are still unknown. However, more
recently, energy deficiency and mitochondrial dysfunction
have been recognized as a prominent, early event in AD [1–
11]. The successful development of single, double, and
recently triple transgenic mouse models that mimic diverse
aspects of the disease facilitated the investigation of
pathogenic mechanisms in AD and assisted in an under-
standing of the interplay of Aβ and tau on bioenergetic
processes in vivo [12, 13].
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Pathophysiological Alterations in Transgenic AD Mouse
Models

APP Transgenic Mice

In 1995, Games and co-workers established the first Aβ
plaque-forming mouse model that expressed high levels
of the disease-linked V717F mutant form of APP in the
brain [14]. These PD-APP mice (PDGF-β promotor)
showed many pathological features of AD, including
extensive deposition of extracellular amyloid plaques,
astrocytosis, and neuritic dystrophy [14]. Subsequently,
several APP-based transgenic models have been developed
[15–19] that were helpful in addressing aspects of Aβ
toxicity and age-dependent cognitive decline as well as
testing therapies like vaccination trials [20, 21]. Finally, the
discovery of FAD mutations in the presenilin-encoding
PSEN genes which affect APP processing opened the path
for PS1 and PS2 transgenic mouse models, which were
subsequently used to establish double transgenic APP/PSEN
mouse models [12].

Tau Transgenic Mice

Also in 1995, Götz and colleagues established the first tau
transgenic mouse model, expressing a wild-type form of the
longest human brain tau isoform hTau40 (441 amino acids),
using the hThy1 promoter for neuronal expression [22].
Despite the lack of NFT pathology, these mice modeled
selected aspects of human AD, such as the somatodendritic
localization of hyperphosphorylated tau and, therefore,
represented an early “pre-NFTs” phenotype. Once the first
pathogenic mutations were identified in the MAPT gene in a
familial form of frontotemporal dementia (FTD), FTDP-17,
in 1998, several groups expressed mutant forms of MAPT
to achieve a more advanced pathology. For example, P301L
tau expressing pR5 mice (longest four-repeat (4R2N) tau
together with the P301L mutation) develop aggregated
forms of hyperphosphorylated tau and NFTs [23–26].
Moreover, these mice showed age-related behavioral
impairment in amygdala- and hippocampus-dependent
tasks which could be correlated with the aggregation
pattern of the transgene [27, 28].

Effects of Aβ and Tau on Tau Pathology and APPxTau
Double Transgenic Mice

Conventional transgenic mouse models for the APP- and
tau-related pathologies reproduce only some selected
aspects of the human disease. Therefore, in 2001 two new
approaches were pursued to allow studying the synergistic
effects of both histopathological hallmarks. The group of
Mike Hutton generated a double transgenic mouse model

by crossing P301L mutant tau transgenic JNPL3 mice
(shortest four-repeat (4R0N) tau together with the P301L
mutation) with APPsw transgenic Tg2576 mice (KM670/
671NL) [29]. The resulting TAPP mice showed detectable
NFTs as early as 3 months of age in both the spinal cord
and pons. These were consistently present and numerous as
the mice aged, especially in limbic areas of (9–11 months
old) female mice. Amyloid plaques were evident as early
as 6 months of age, similar in morphology, distribution,
and density to those in the parental Tg2576 strain. As an
indication for the role of APP or Aβ on NFT formation,
the double transgenic TAPP mice showed substantially
enhanced tau pathology in the limbic system and
olfactory cortex as compared to the single transgenic
tau mice [29]. An interaction of Aβ and tau pathology
was also shown by Götz and colleagues, by injecting
synthetic Aβ1–42 fibrils into brains of P301L tau trans-
genic pR5 mice [24]. This led to a 5-fold increase in NFT
pathology in 6-month-old mice already 18 days after
injection. Data from our group could confirm a synergistic
effect of Aβ and tau on mitochondrial function when
cortical brain cells of P301L tau transgenic pR5 mice were
treated with different Aβ1–42 conformations [30].

Not only synthetic Aβ induces an increase in tau
pathology, as the injection of diluted brain extract from
aged APP23 transgenic mice (expressing the KM670/
671NL mutant APP) into the cerebellum of young B6/
P301L tau transgenic mice (obtained through backcrossing
the JNPL3 mice with C57BL/6J mice) also shows an effect
[31]. This treatment leads to an induction of tau pathology
at the injection site, but interestingly also in areas with a
neuronal projection such as the entorhinal cortex and the
amygdala. Additionally, in double transgenic APPxTau
mice, a neurofibrillary pathology was induced in vivo
[31]. Recently, the work from Clavaguera and colleagues
showed that the injection of brain extracts from P301S mice
(expressing the shortest four-repeat tau isoform bearing the
P301S mutation) into brains of wild-type human tau
transgenic ALZ17 mice caused the assembly of wild-type
human tau into filaments [32]. In contrast, mouse lines that
express wild-type tau (such as the ALZ17 strain) do
normally not produce tau filaments nor do they show
neurodegeneration [33, 34]. Interestingly, it seems that the
tau pathology has been transmitted as a spreading of tau
pathology was found from the site of injection to
neighboring brain regions [32].

Triple Transgenic Mice

The fact that mutations in the PSEN1 and 2 genes affect
APP processing was utilized to develop triple AD models
that combine an enhanced Aβ and tau pathology in one
model [35–37]. Moreover, recent studies found an active
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PS2-containing γ-secretase complex in mitochondria [38]
and the knockout of PS2 impaired mitochondrial function-
ality by reducing mitochondrial membrane potential and
lowering the basal respiratory rate [39]. The first triple AD
mouse model (3xTg-AD) was generated 2003 by LaFerla
and colleagues, harboring the PS1 M146V mutation and co-
expressing mutant tau (P301L) as well as APPsw (KM670/
671NL) [35]. This model, which exhibits plaques and
tangles, shows behavioral and neuronal symptoms of AD
including synaptic dysfunction and LTP deficits [40, 41].
Recently, another triple transgenic mouse model which co-
expresses mutant tau (P301L), PS2 (N141I), and APPsw

(KM670/671NL) was established, first termed TauPS2APP
triple [37] and subsequently tripleAD transgenic mice [10].
The tripleAD mice develop tau and amyloid deposits in an
age-dependent manner. [37]. At the age of 4 months, tau
accumulation was detected within the subiculum and the
CA1 region, where most amyloid deposits were found. At
8 months, the number of amyloid plaques and intracellular
tau deposits increased considerably within the subiculum
and the CA1 region while rare amyloid plaques as well as
few tau deposits appeared in the M1/M2 and somatosensory
cortex. While tau phosphorylated at pT231 was already
present at high levels in tripleAD mice at 4 months of age,
but with almost unchanged levels over the next 12 months,
tau phosphorylated at pS422 was barely detectable at
4 months, but levels increased roughly 10-fold at an age of
16 months. Of note, this suggests that accumulation of Aβ
in tripleAD mice impacts on tau pathology by increasing the
phosphorylation of tau at S422, but not at T231 [37]. In
contrast, the 3xTg-AD model did not exhibit conformational
changes of tau or immunoreactivity with phospho-specific
tau markers before the age of 12 months [35, 40]. Finally,
NFT pathology was reported in 16-month-old tripleAD mice
and, relatively late, at the age of 18–24 months in the
3xTg-AD model [35, 41]. Furthermore, tripleAD mice show
impaired spatial learning already at 4 months of age [37].
Similarly, cognitive impairment manifested in 3xTg-AD
mice at 4–6 months of age [41, 42].

However, a molecular link between Aβ and tau protein
in AD pathology was still missing in vivo. The tripleAD
model is therefore particularly suited to study the relation-
ship between Aβ and tau in an age-related way. Moreover,
resulting from crossing PS2APP mice with P301Ltau
transgenic pR5 mice, the tripleAD model offers the advan-
tage of analyzing tau and Aβ pathology together and
separately, while this is not possible in the 3xTg-AD mice
generated by co-injection of DNA. It has been shown in
the tripleAD model that Aβ accumulation leads to the
development of tau phosphorylation at the specific AD-
epitope Ser422 [37]. Although the mice do not develop
extensive neuronal loss or pronounced cognitive deficits,
the progression of biochemical changes and histopatho-

logical features is reminiscent of the pathogenic progress
observed in AD. Consequently, this model may be very
useful for assessing therapeutic interventions addressing
amyloidoses and/or tau pathology. Importantly, behavioral
deficits are present before the detection of any protein
aggregates which is especially meaningful considering the
paradigm of early mitochondrial dysfunction reported in
AD [37].

Evidence for Mitochondrial Dysfunction in Transgenic
Mouse Models

APP Transgenic Mice

Early energy dysfunction characterized by a decreased
mitochondrial membrane potential, ATP level, and complex
IV activity has been reported for 3- and 6-month-old APP
transgenic mice (APP; Swedish (KM670/671NL) and
London (V717I) mutation) [9]. These mice showed also
increased levels of 4-hydroxynonenal, a marker of lipid
oxidation, and reduced activity of Cu/Zn superoxide
dismutase [43]. Interestingly, mitochondrial defects such
as the decrease of complex IV activity in 3-month-old APP
transgenic mice were already observed in the absence of
plaques but in the presence of increased Aβ levels in brain
[9, 44]. Furthermore, an age-dependent impairment of
oxygen consumption such as a decrease of state 3 and
uncoupled respiration were observed in APP transgenic
mice compared to aged-matched controls [9, 45, 46]. In
addition, APP/PS1 transgenic mice, which in contrast to
APP transgenic mice exhibit Aβ plaques already at an age
of 3 months, presented stronger reductions in mitochondrial
membrane potential and ATP levels compared to aged-
matched APP transgenic mice. Consequently, Aβ-dependent
mitochondrial dysfunction starts already at a very young age
and accelerates substantially with increasing age as does Aβ
plaque load [7]. Moreover, a mitochondrial accumulation
of Aβ has been shown in AD and APP transgenic mouse
brain [3, 45, 47]. In transgenic APP mice expressing APP
V717/F and the APPsw mutation, mitochondrial Aβ
accumulation increased at around 4 months of age, well
before the formation of plaques [45]. Taken together,
these findings are in line with the recently proposed
hypothesis of an intracellular Aβ toxicity cascade which
suggests that the toxic Aβ species intervening in molec-
ular and biochemical abnormalities may be intracellular
oligomeric aggregates instead of extracellular, insoluble
plaques [3, 48].

The involvement of mitochondria in the pathogenic
pathway of Aβ was confirmed by specific binding of Aβ
and APP to mitochondrial proteins which causes energy
impairment and cell physiology defects. Firstly, Aβ
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specifically binds to the mitochondrial Aβ-binding alcohol
dehydrogenase (ABAD) [3], a mitochondrial matrix
protein which is up-regulated in the temporal lobe of AD
patients as well as in APP transgenic mice [49–51]. The
Aβ–ABAD interaction caused elevated reactive oxygen
species (ROS) production, cell death as well as spatial
learning and memory deficits in 5-month-old APP/ABAD
double transgenic mice. The investigation of the crystal
structure of ABAD–Aβ demonstrated that the formation
of the complex prevents the binding of NAD+ to ABAD,
thereby changing mitochondrial membrane permeability
[52] and reducing the activities of respiratory enzymes [3]
which then may lead to mitochondrial failure. Secondly,
mitochondrial Aβ may interact with cyclophilin D
(CypD), an integral part of the mitochondrial permeability
transition pore (mPTP) which potentiates free radical
production, causes synaptic failure, and promotes opening
of the mPTP leading to apoptosis [53]. Finally, the group
of Anandatheerthavarada observed an accumulation of
APP in mitochondrial membranes leading to mitochondrial
dysfunction in neuronal cells of APP transgenic mice
(Tg2576) [54, 55].

The development of sophisticated proteomic methods
allowed the examination of synaptosomal fractions from
APP transgenic mice (Tg2576) and revealed a massive
neuronal decay and synapse loss as the final consequence
from all pathological changes occurring in AD [56].
Additional studies revealed significant differences in
mitochondrial hsp70 and protein subunit composition of
respiratory chain complexes I and III in this transgenic
mouse model [46].

Finally, the critical role of mitochondria in the early
pathogenesis of AD may make them attractive as a
preferential target for treatment strategies such as antiox-
idants. Transgenic mice modeling some pathological
aspects are hence very valuable in monitoring therapeutic
interventions at the mitochondrial level. In agreement,
recent data suggest that natural plant antioxidants such as
a standardized Ginkgo biloba extract or the green tea
component epigallocatechin-3-gallate may be promising
treatment strategies. In addition to their anti-oxidative
properties, these compounds stabilize mitochondrial func-
tions such as the mitochondrial membrane potential, ATP
levels, and mitochondrial respiratory complexes [57–59].
Moreover, in APP transgenic mouse models, an anti-
amyloidogenic effect of these compounds was reported by
inhibiting amyloid fibril formation either by a direct
interaction with Aβ [60, 61] or by activating the α-
secretase pathway [62]. In view of the increasing interest
in mitochondrial protection as a treatment strategy in
dementia, the findings of a substantial protection of
mitochondria by natural antioxidants against Aβ-induced
dysfunction deserves further attention.

Tau Transgenic Mice

Mitochondrial defects in AD are in agreement with the
axon transport failure hypothesis. Hyperphosphorylated tau
may block the transport of mitochondria leading to energy
deprivation and oxidative stress at the synapse as well as to
neurodegeneration [63–66]. Transgenic pR5 mice over-
expressing the P301L mutant human tau protein exhibit an
accumulation of hyperphosphorylated tau and develop
NFTs [24]. A mass-spectrometric analysis of the brain
proteins from these mice revealed deregulation of mito-
chondrial respiratory chain complex components (including
complex V), antioxidant enzymes, and synaptic proteins
[67]. Functional analysis showed mitochondrial dysfunction
in pR5 mice together with a reduced complex I activity and,
with age, impaired mitochondrial respiration and ATP
synthesis. Mitochondrial dysfunction was associated with
higher levels of ROS in aged pR5 mice. Increased tau
pathology as in aged homozygous pR5 mice revealed
modified lipid peroxidation levels and up-regulation of
antioxidant enzymes in response to oxidative stress [67].
These findings demonstrated for the first time that not only
the Aβ but also the tau pathology acts on the enzyme
metabolism of the brain and the oxidative conditions in
AD. One mechanism proposed is that tau accumulation
could have direct repercussions on the mitochondria as
the accumulation of increasingly insoluble ATP synthase
α-chain together with NFTs has been shown in AD
brains [68]. Interestingly, the deleterious effect of tau on
mitochondria may be reciprocal as mitochondrial stress
led to tau hyperphosphorylation in a mouse model
lacking the detoxifying enzyme superoxide dismutase 2
(Sod2−/−) [69]. Furthermore, the inhibition of complex I
with annonacin led beside a concentration-dependent
decrease of ATP levels to a redistribution of tau from the
axons to the cell body as well as a retrograde transport of
mitochondria and finally to cell death [70].

Triple Transgenic Mice

Although Aβ and tau pathologies are both common
features in AD, it is still inexplicable how they relate to
each other. However, a close relationship between mito-
chondrial failure and Aβ on the one hand and tau on the
other hand has been demonstrated. Therefore, could
mitochondria be the point of convergence of the two
unquestionable pathologic hallmarks of the disease? Aβ
aggregates and hyperphosphorylated tau may block the
transport of mitochondria leading to bioenergetic defects
and cell death [65, 71]. Moreover, elevated tau may inhibit
the transport of APP into axons and dendrites, causing
impaired axonal transport suggesting a linkage between tau
and APP [63, 64]. The development of triple transgenic
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mouse models combining Aβ and tau pathologies in recent
years was helpful in investigating the precise impact of both
lesions on the mitochondrial respiratory machinery and
energy homeostasis in vivo. Data from our group indicate
that mitochondria of tau transgenic pR5 mice show
increased vulnerability towards an Aβ insult in vitro [30,
67], suggesting a synergistic action of tau and Aβ
pathology on mitochondria. The Aβ insult caused an
increased reduction of mitochondrial membrane potential
in cerebral cells of pR5 mice [67]. Furthermore, incubation
of isolated mitochondria from P301L mice with either
oligomeric or fibrillar Aβ1–42 preparations resulted in a
reduction of state 3 respiration and respiratory control ratio
as well as uncoupled respiration. Interestingly, aging
particularly increased the sensitivity of mitochondria to
oligomeric Aβ1–42 insult, demonstrating that oligomeric as
well as fibrillar Aβ1–42 are both toxic but exert different
degrees of toxicity [30].

To address the contribution of Aβ and tau pathologies in
vivo, a new tripleAD (pR5/APP/PS2) mouse was generated
[37]. Using combinatorial transgenesis, quantitative proteo-
mics, and functional assays, our findings support first of all
that Aβ and tau act synergistically in amplifying mitochon-
drial respiratory deficits, mainly of complex I and IV
activities. Thereby, hyperphosphorylated tau may drive a
vicious cycle within the Aβ cascade. Remarkably, deregu-
lation of complex I was related to tau, whereas deregulation
of complex IV was Aβ dependent both at the protein and

activity levels. The synergistic effects of Aβ and tau led
already at the age of 8 months to a depolarized
mitochondrial membrane potential in the tripleAD mice.
Additionally, we found that age-related oxidative stress at
12 months of age may exaggerate the dysfunctional
energy homeostasis and synthesis of ATP and, in turn,
take part in the vicious cycle that finally leads to cell death
(Fig. 1) [10]. Our data complement those obtained in
another triple transgenic mouse model 3xTg-AD
(P301Ltau/APP/PS1) [35]. Yao and colleagues described
age-related bioenergetic deficits in female 3xTg-AD mice
aged from 3 to 12 months [72]. They found a decreased
activity of regulatory enzymes of the OXPHOS (pyruvate
dehydrogenase (PDH) and cytochrome c oxidase (COX)),
increased oxidative stress, and lipid peroxidation. Most of
the effects on mitochondria were seen at the age of
9 months, whereas mitochondrial respiration was signifi-
cantly decreased with 12 months of age. Importantly,
mitochondrial bioenergetic deficits precede the develop-
ment of AD pathology in the 3xTg-AD mice.

Conclusion

In conclusion, we discussed in this review the key role of
the vital organelle, mitochondria, in the pathogenesis of
AD. Specifically, mitochondrial dysfunction integrates the
two indisputable hallmarks of AD, plaques and NFTs,

Fig. 1 The vicious cycle of
bioenergetic defects in AD. Tau
and Aβ, the two major histopath-
ological hallmarks of AD, act
synergistically on mitochondria
inducing amplified oxidative
phosphorylation system
(OXPHOS) deficiencies thereby
triggering a vicious cycle.
Notably, deregulation of mito-
chondrial complex IV was shown
to be Aβ dependent, while
deregulation of complex I was
tau dependent, both at the protein
and activity levels. The strong
decrease of the mitochondrial
respiratory capacity and the drop
of ATP production associated
with oxidative stress may
finally lead to the synaptic loss
and neuronal death that
characterizes AD

Mol Neurobiol (2010) 41:107–114 111



which act independently as well as synergistically. Conse-
quently, besides the treatment and/or removal of both Aβ
and tau pathology, strategies to protect cells at the mito-
chondrial level by stabilizing or restoring mitochondrial
function or by interfering with the energy metabolism appear
to be promising in treating or preventing AD. Moreover, the
better understanding of the biochemical pathways by which
mitochondria-protecting drugs act may not only optimize our
therapeutic options but also clarify the role of mitochondria
in the pathogenesis of AD. Transgenic mice and particularly
triple transgenic models combining both pathologies may be
very valuable in monitoring therapeutic interventions at the
mitochondrial level. Eventually, this may prevent the
progression of Aβ deposits and tau hyperphosphorylation
at early stages of the disease.

Open Access This article is distributed under the terms of the Creative
Commons Attribution Noncommercial License which permits any
noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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