Environmental variables controlling soil respiration on diurnal, seasonal and annual time-scales in a mixed mountain forest in Switzerland

Ruehr, Nadine ; Knohl, Alexander ; Buchmann, Nina

In: Biogeochemistry, 2010, vol. 98, no. 1-3, p. 153-170

Ajouter à la liste personnelle
    Summary
    Studies on soil respiration in mountain forests are rather scarce compared to their broad distribution. Therefore, we investigated daily, seasonal and annual soil respiration rates in a mixed forest (Lägeren), located at about 700m in the Swiss Jura mountains, during 2years (2006 and 2007). Soil respiration (SR) was measured continuously with high temporal resolution (half-hourly) at one single point (SRautomated) and periodically with high spatial resolution (SRmanual) at 16 plots within the study site. Both, SRautomated and SRmanual showed a similar seasonal cycle. SR strongly depended on soil temperature in 2007 (R 2=0.82-0.92), but less so in 2006 (R 2=0.56-0.76) when SR was water limited during a summer drought. Including soil moisture improved the fit of the 2006 model significantly (R 2=0.78-0.97). Total annual SR for the study site was estimated as 869g C m−2year−1 for 2006 and as 907g C m−2year−1 for 2007 (uncertainty <10% at the 95% confidence interval, determined by bootstrapping). Selected environmental conditions were assessed in more detail: (1) Rapid, but contrasting changes of SR were found after summer rainfall. Depending on soil moisture at pre-rain conditions, summer rain could either cause a pulse of CO2 from the soil or an abrupt decrease of SRautomated due to water logging of soil pores. (2) Two contrasting winter seasons resulted in SR being about 60-70% (31.2-44.6g C m−2) higher during a mild winter (2007) compared to a harsh winter (2006). (3) Analysing SR for selected periods on a diurnal scale revealed a counter-clockwise hysteresis with soil surface temperatures. This indication of a time-lagged response of SR to temperature was further supported by a very strong relationship (R 2=0.86-0.90) of SR to soil temperature with a time-lag of 2-4h