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Abstract We consider an economy where a finite set of agents can trade on one
of two asset markets. Due to endogenous participation the markets may differ in
the liquidity they provide. Traders have idiosyncratic preferences for the markets,
e.g. due to differential time preferences for maturity dates of futures contracts. For
a broad range of parameters we find that no trade, trade on both markets (individ-
ualization) as well as trade on one market only (standardization) is supported by
a Nash equilibrium. By contrast, whenever the number of traders becomes large,
the evolutionary process selects a unique stochastically stable state which corre-
sponds to the equilibrium with two active markets and coincides with the welfare
maximizing market structure.
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1 Introduction

In standard general equilibrium models without trading frictions all agents can
simultaneously trade on all existing market places. In reality, however, it can com-
monly be observed that agents need to make choices about particular markets they
participate in. In the context of financial markets, prominent examples for this
kind of decision problem are the choice of an exchange by a broker and by a
company issuing shares, or the selection of a set of funds or single assets by an
investor.

To analyze the implications of such a situation, this paper studies a simple
model with two markets located at the endpoints of an interval, where identical
assets can be traded. These markets may differ in two respects. Firstly, given their
mean–variance preferences, the traders prefer a liquid market over an illiquid one
since it guarantees better predictable price realizations for the assets.1 In our model
the liquidity of a market increases with the number of traders and hence is endog-
enous. Whether one market is perceived to be more attractive than the other then
depends on the relative size of these markets. Secondly, each trader has an individ-
ual preference for one of the two markets. We model this preference by a simple
linear cost schedule and assume that traders are sitting at equal distance from
each other between the two markets. Hence, agents face a trade-off between the
expected liquidity of a market and its characteristics with respect to idiosyncratic
preferences. The cost can be given several interpretations, e.g. it may reflect the
traders’ time preference when the interval represents all possible maturity dates of
futures contracts and the positions of the markets represent the tradable maturity
dates (see Economides and Siow 1988). Or the cost may reflect a trader’s pref-
erence or cost of adaption for different information systems or trading platforms
used by the exchanges.

As a benchmark case we first study the situation where agents correctly antici-
pate the liquidity on the two markets. It turns out that a (static) pure strategy Nash
equilibrium always exists, but that there may be multiple equilibria including an
implausible no trade equilibrium. In particular, there are ranges of the parameter
values for this model for which both the situation where all traders meet on one of
the two markets (standardization) and the situation where each market is actively
used (individualization) coexist as Nash equilibria. This coexistence of equilibria
is robust against an increase in the number of traders. By contrast, individualiza-
tion is the unique welfare maximizing market structure if the number of traders
becomes large.

Apart from the multiplicity of equilibria, the static model fails to capture an
important element of market selection, especially in the dynamic environment of
modern financial markets: Rather than being a one-shot decision, market selection
can be regularly revised by market participants based upon the experiences they
have made in previous trading periods. Therefore, the paper investigates a dynamic,
evolutionary model in which traders are not assumed to have rational expectations
about the liquidity on different markets. Instead, the model assumes that agents
interact repeatedly and form their expectations on the basis of the observed market

1 See O’Hara (1995) for a discussion of the role of liquidity in financial markets.
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liquidity in the past. This gives rise to an evolutionary process, where in each period
agents play a best reply to a sample of observations made in the past and where
they occasionally make a mistake. For this adaptive-play-dynamic (Young 1993)
we determine the stochastically stable states, i.e. those states in which the evolu-
tionary process spends most of its time as the error rate goes to zero. We find that
there are two critical values for the exogenous costs, such that for costs below the
lower value all agents meet on a single market most of the time, while for costs
above the upper value both markets remain active. Hence, liquidity considerations
lead to a standardization of markets if and only if individual preferences (i.e. the
costs in our model) are sufficiently immaterial. In case the two critical values do
not coincide, there is a nondegenerate interval of costs for which both, standard-
ization and individualization, are stochastically stable. Different from the static
fully rational case, however, this indeterminacy vanishes if the number of traders
becomes large. The evolutionary approach predicts that only the situation with two
markets will survive in the long run, if the number of traders approaches infinity.
Hence, it is the welfare maximizing market structure that is selected for. Moreover,
the speed of convergence to the stable market structure is reasonably fast, implying
that the evolutionary forces are already effective in the medium run.

The model analyzed in this paper relates to several strands of the literature.
It builds on the literature on the selection of markets in the presence of liquid-
ity effects. Important contributions in this field are due to Pagano (1989a,b) and
to Economides and Siow (1988). The latter authors, for example, study market
selection in a static framework where, as in our model, multiple equilibria with
ambiguous welfare properties arise. Our paper goes a step further by analyzing the
stability properties of the different equilibria. Similar models are also studied in
political economics, where, for example, Alesina and Spolaore (1997) investigate
the endogenous determination of the number and size of nations. The model pre-
sented in this paper extends this strand of the literature by studying the issue of
market selection within an evolutionary framework. Moreover, our paper adds to
the recent literature on endogenous participation in financial markets (see Bettzüge
and Hens 2001; and chapter 1 in Güth and Ludwig 2000). While we study the evo-
lution of market participation in general, i.e. the choice between different asset
markets, these papers concentrate on the evolution of single assets on one market.
Hence, our results complement theirs and there are interesting parallels: Bettzüge
and Hens (2001) find that incomplete financial markets can be a persistent phe-
nomenon. In Güth and Ludwig (2000) it is shown that there exist stable situations
where traders, who are restricted in the number of assets they can trade, do not nec-
essarily exhaust these trading restrictions. By comparison our results show that the
existence of two markets need not be a stable situation, if the number of traders is
small. Another related paper is Alós-Ferrer and Kirchsteiger (2003) who study the
evolution of a market clearing institution vs. non-market clearing institutions. They
find that the market clearing institution is always stable but that other, non-market
clearing institutions can survive in the long run as well.

The paper is organized as follows. In Section 2 we introduce the static model and
derive the set of Nash equilibria. In Section 3 we present the evolutionary approach.
We solve for the stochastic stable states and compare them to the welfare maxi-
mizing market structures. Finally, in Section 4 we conclude. All proofs are in the
Appendix.
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2 The static economy

There are I ≥ 4 agents in our economy who are located at equal distance from
each other in an interval that we normalize to [0, 1], i.e. agent i, i = 1, . . . , I, is
located at (i − 1)/(I − 1). For simplicity we only consider the case where I is
even. With a slight abuse of notation by I we also denote the set of agents in our
economy. There are two assets, one safe and one risky asset. The safe asset gives
a riskless return of R while the risky asset pays a random dividend d with mean μ

and variance σ 2. Every agent is endowed with θ̄ i = θ̄ +ei shares of the risky asset,
where θ̄ is a constant and the ei are i.i.d. disturbances with mean 0 and variance
σ 2

e . Also, each agent is endowed with ω̄ units of the safe asset.
There are two markets where these assets can be traded. Market 1 is located

at 0 and market 2 is located at 1. When trading on market k (k = 1, 2) agent i
determines her demand θ i(q) for the risky asset such as to maximize a mean-var-
iance utility function, taking the price q of the risky asset as given (the price of
the safe asset is normalized to 1). More specifically, agent i solves the following
optimization problem

max u(xi) = E(xi) − γ

2
Var(xi)

(P i)

s.t. xi = θ id + R
(
ω̄ + q(θ̄ i − θ i)

)
for some θ i ∈ R,

where γ > 0 is a measure of the agents’ risk aversion, and E(·) and Var(·) denote
expectation and variance, respectively.

Agents have idiosyncratic preferences for the two markets which we model by
a linear cost c > 0. Trader i’s disutility ci(k) for trading on market k (k = 1, 2) is
given by c times her distance to the market. Hence,

ci(k) = c

∣∣∣
∣
i − 1

I − 1
− (k − 1)

∣∣∣∣ .

We assume that agent i’s overall utility from trade is additively separable in the
linear cost, i.e. if xi is her final wealth obtained from trade on market k, then her
utility is

u(xi) − ci(k).2

The sequencing of events and actions in our model is the following (see Fig. 1).
First, each agent either goes to a market or stays at her position on the line. Then,
each agent observes the realization of her endowment, but not the endowments of
other agents. An agent who did not go to any of the two markets receives the utility
from consuming her endowment. Agents who went to one of the two markets trade
assets with other agents on the same market and receive the utility from terminal
wealth after trade minus the cost they bear.

2 Alternatively, we can think of the disutility ci(k) as a monetary cost which reduces the final
wealth from trade xi . In this case, i’s utility from trade on market k is given by u(xi − ci(k)) =
u(xi) − ci(k) for the particular mean–variance utility function we assume.
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Fig. 1 Timing of events and actions

Observe that the timing is such that agents have to choose a market before
knowing their endowments.3 What we have in mind are, for example, institutional
investors who have to choose a market on behalf of customers whose endowments
they do not know yet.4 Moreover, we do not allow agents to simultaneously trade on
both markets, in other words the traders cannot arbitrage between the markets. This
imposes no restriction if, as in one interpretation of our model, the positions of the
markets represent different maturity dates for futures contracts and the positions
of the traders represent their most preferred maturity dates. In this case arbitrage
between the markets is ruled out by physical restrictions. Due to the disutility of
trade they face, agents will then trade on at most one market.

We solve the model backwards and first determine an equilibrium on any of the
two asset markets taking market participation as given.

2.1 Equilibrium on the asset market

Agent i’s optimization problem (P i) can be rewritten as5

(P̃ i) max
θ i

μθ i + R
(
ω̄ + q(θ̄ + ei − θ i)

) − γ

2
σ 2(θ i)2.

From the first order condition, which is necessary and sufficient for a solution θ i(q)

of (P̃ i), we obtain

θ i(q) = μ − qR

γσ 2
.

Let T be the set of agents trading on a market. Then, an equilibrium price q∗ is
determined by

∑

i∈T

θ i(q∗) =
∑

i∈T

θ̄ i .

3 See Pagano (1989b) for a model where actions are taken after the realization of endowments.
4 For example, brokers buying a seat in an exchange.
5 Observe that trader i knows her endowment θ̄ i when determining her demand for the risky

asset.
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Hence,

q∗ = 1

R

(
μ − γ σ 2

(
θ̄ + ēT

))
,

where ēT = 1
|T |

∑
i∈T ei . Since the ei are i.i.d., q∗ is a random variable which

depends on the number of agents participating in the market, |T |, but not on their
identity. It follows that

θ i(q∗) = θ̄ + ēT .

If we do not take into account the idiosyncratic preferences for trade, then agent
i’s ex post utility after trading on the market is given by

Ũ i(q∗, ei) :=μ(θ̄ + ēT ) + Rω̄ + (
μ − γ σ 2(θ̄ + ēT )

)
(ei − ēT ) − γ

2
σ 2(θ̄+ēT )2,

and her ex ante utility (prior to knowing her endowment and the endowments of
the other agents) is

U(T ) = Ui(T ) := E

(
Ũ i(q∗, ei)

)
= μθ̄ + Rω̄ − γ

2
σ 2θ̄2 − γ

2|T |σ
2σ 2

e ,

where we have used the fact that E(ei) = E(ēT ) = E
(
ēT (ei − ēT )

) = 0 and
E(ē2

T ) = σ 2
e /|T |. If we define U0 to be the utility from not trading on any of the

two markets (i.e. trading on a market with |T | = 1), hence

U0 := μθ̄ + Rω̄ − γ

2
σ 2(θ̄2 + σ 2

e ),

then

U(T ) = U0 + K

( |T | − 1

|T |
)

,

where K is the constant defined by K = γ σ 2σ 2
e /2. Observe that U is strictly

increasing and strictly concave in |T |. Let Tk be the set of agents trading on market
k, k = 1, 2. Then, taking into account the idiosyncratic preferences, i’s ex ante
utility for trading on market k with a set of traders Tk is given by

U(Tk) − ci(k).

Next we determine the participation at the two markets.
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2.2 Market participation

In our economy each trader has three options: she can trade on market 1 or on
market 2 or she can stay at home and consume her endowments. In the following
we will study the set of pure strategy Nash equilibria for the resulting strategic
game.

Let I be the set of players and let Si ≡ S = {0, 1, 2} be the strategy set for
player i, where 0 means that player i does not trade and k means that i trades on
market k, k = 1, 2. For a strategy profile s ∈ ∏

i∈I Si let Tk(s) = {i | si = k} be
the set of players trading on market k, k = 1, 2, at the strategy profile s. For any
i ∈ I trader i’s utility at the strategy profile s is given by

ui(s) =
{

U0, if si = 0,

U(Tk(s)) − ci(k), if si = k ∈ {1, 2}.
Then � = (I, (Si)i∈I , (ui)i∈I ) is a standard finite I -person normal form game. A
strategy profile s∗ is a (pure strategy) Nash equilibrium of �, if ui(s

∗) ≥ ui(si, s
∗
−i )

for all si ∈ Si and all i ∈ I .6

In a Nash equilibrium agents correctly anticipate their own liquidity effect on
a market. This, together with our assumption of price taking behavior on the asset
market, introduces an element of bounded rationality on the part of traders. Agents
who are aware of their influence on the market size may also be aware of their stra-
tegic influence on asset prices. However, a strategic manipulation of asset prices
requires knowledge of the price mechanism and hence of other traders’preferences
and endowments. At least traders would need to know the distribution of the other
agents’ characteristics. It seems safe to assume that, in general, they do not have
this information in real financial markets.7 Hence, we model agents as price takers
when they trade on an asset market. Observe that the only rationality requirement
then is that agents maximize their utility for given and observed asset prices. They
do not have to form rational expectations about future asset prices, since this is a
one-period model with short-lived assets and, as usual, our model is silent about
how asset prices adjust such as to clear the market. The same is true for the dynamic,
evolutionary model we study in the following section, which consists of a sequence
of static economies with short-lived assets and no capital accumulation. Even if
traders do not know the price mechanism and act as price takers, it is natural to
assume that by frequent trading they have learned how the market size influences
price volatility and hence ex ante utility. Agents then select the best market given
their expectation about the market participation of other traders. In a Nash equi-
librium it is assumed that these expectations are correct. As we have argued in the
introduction, this rationality assumption may not be realistic and we will abandon
it in our evolutionary approach, where we assume that agents play a best reply to
simple adaptive expectations.

One immediately verifies that there always exists a trivial Nash equilibrium
where there is no trade: If all traders expect everyone to stay at home, then stay-
ing at home is indeed a best reply. We will see that depending on the parameters

6 If s ∈ ∏
i∈I Si is a strategy profile, then by s−i = (s1, . . . , si−1, si+1, . . . , sI ) we denote the

strategy profile for trader i’s opponents (with the obvious adjustment whenever i = 1 or i = I ).
7 Even if a trader would have this information, she may perceive a proper strategic analysis as

too complex.
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there are additional equilibria, one with trade on both markets, where traders split
equally among the markets (individualization), and one, where everyone trades on
the same market (standardization). Since our aim is to study the trade off between
liquidity considerations and costs we restrict our analysis to the set of costs for
which standardization is strictly individually rational for all traders. Therefore, we
make the following assumption, which implies that U(I)−ci(k) > U0 for all i ∈ I
and k = 1, 2:

Assumption c < K(I − 1)/I .

Consider the following strategy profiles:

s∗0 with s∗0
i = 0 for all i ∈ I,

s∗1 with s∗1
i = 1 for all i ∈ I,

s∗2 with s∗2
i = 2 for all i ∈ I,

s∗3 with s∗3
i =

{
1, if i ≤ I/2
2, if i ≥ I/2 + 1 .

The following theorem provides a complete characterization of the set of pure
strategy Nash equilibria.

Theorem 2.1

1. If c <
4K(I − 1)

I (I + 2)
, then the set of Nash equilibria is given by {s∗0, s∗1, s∗2}.

s∗1 and s∗2 are strict Nash equilibria, while s∗0 is non strict.

2. If c ≥ 4K(I − 1)

I (I + 2)
, then the set of Nash equilibria is given by {s∗0, s∗1, s∗2, s∗3}.

Again, s∗1 and s∗2 are strict Nash equilibria, while s∗0 is non strict. s∗3 is a

strict Nash equilibrium if and only if c >
4K(I − 1)

I (I + 2)
.

As we see there is always a no trade equilibrium but there is also a broad range
of costs for which trade on both markets as well as trade on one market only is
supported by a Nash equilibrium. Only for small c trade on both markets is not sup-
ported as an equilibrium. Observe that the coexistence of equilibria corresponding
to standardization and individualization is robust against an increase in the number
of traders: The interval for which these equilibria do not coexist becomes vanish-
ingly small if I → ∞. Hence, the Nash equilibrium concept does not have much
predictive power concerning the number of markets in our economy. Intuitively,
we may expect individualization to be more stable than standardization if the num-
ber of traders is large. In this case the liquidity gain from standardization is small
relative to its cost so that it should be more difficult to destabilize the individual-
ization equilibrium than to destabilize the standardization equilibrium. Section 3
will provide an evolutionary analysis which confirms this intuition.

2.3 Welfare analysis

Before we proceed with our evolutionary approach we analyze our economy from a
welfare theoretic point of view.We again restrict to the case where c < K(I − 1)/I .
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Obviously, the Nash equilibria of the game cannot be Pareto ranked since there
is always an agent who strictly gains and another one who strictly loses when
switching from one equilibrium to another. However, we can analyze which mar-
ket structure would be chosen by a social planner who aims at maximizing a purely
utilitarian social welfare function. Since any utility profile corresponds to a partic-
ular strategy profile chosen by the agents, the planner’s problem is given by8

max
s∈∏

i∈I Si

W(s) =
∑

i∈I

ui(s).

A straightforward computation shows that ŝ is a welfare maximizing strategy
profile if and only if

ŝ ∈
⎧
⎨

⎩

{
s∗1, s∗2

}
, if c < 4K(I − 1)/I 2,{

s∗3
}
, if c > 4K(I − 1)/I 2,{

s∗1, s∗2, s∗3
}
, if c = 4K(I − 1)/I 2.

Thus, for small c standardization is welfare maximizing, while for c large individu-
alization maximizes social welfare. Moreover, for all c individualization is welfare
maximizing if the number of traders is sufficiently large. This follows from the fact
that in a large economy the utility gain from merging two large markets is small
relative to the increase in individual costs, so that the welfare maximizing market
structure is the one that minimizes costs. Observe that a welfare maximizing strat-
egy profile is always a Nash equilibrium of the game for the range of costs we are
considering, but the converse is obviously false.

3 An evolutionary approach

We now consider a dynamic version of the static economy analyzed in the last
section. Assume that there is a sequence of static economies, which we index by
t = 1, 2, . . . , i.e. the game � is played repeatedly and in each period t the agents
have to decide on which market to trade. Since trade on the markets is anonymous,
there are no reputation effects and traders can base their decision on which market
to trade only on the observation of the attendance at both markets in previous peri-
ods. We assume that traders have to consume all they possess after each trading
round so that there is no capital accumulation. Alternatively, we may think of a
scenario, where after each trading round all traders die and are replaced by new
traders with the same characteristics.Also, assets are short-lived, i.e. they exist only
for one period and then are replaced by new assets with the same characteristics.

We now assume that traders, instead of having rational expectations about
the participation at the two markets, behave adaptively and play a best reply to
the observed market participation in the past. Thus, the rather strong rationality
assumption, namely that traders correctly anticipate the size of the two markets, is
abandoned in the evolutionary model.9 Information is available for the last m ≥ 1
periods, i.e. the state space H is the set of all histories h = (s1, . . . , sm) with
sl ∈ ∏

i∈I Si for all l = 1, . . . , m. Traders have a limited capacity to process
8 Observe that utility is transferable due to the additive separability of costs.
9 For a discussion of the behavioral assumptions, see Section 2.2.
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information, or alternatively, gathering information about the previous attendance
at the two markets is time consuming and hence costly. We therefore assume that
traders can process the information of at most n ≤ m periods and, when facing
history h = (s1, . . . , sm), play a best reply to a sample (sr1, . . . , srn) from h. Here,
si ∈ Si is defined to be a best reply to (sr1, . . . , srn), if it is a best reply to the joint
empirical distribution of the other players’ actions in the sample:

1

n

n∑

l=1

ui(si, s
rl

−i ) ≥ 1

n

n∑

l=1

ui(s
′
i , s

rl

−i ) for all s ′
i ∈ Si. (1)

Observe that in order to determine a best reply in the sense of (1) a trader only
needs information about the attendance at the two markets in the sampled periods
and in addition she has to recall whether and if so on which market she traded in
these periods.

We assume that for a given history h trader i plays strategy si with positive
probability if and only if it is a best reply to some sample of size n from h. If all
agents simultaneously and independently of each other choose a best reply in this
way, then we obtain a Markov process P 0 on H which is called adaptive play with
memory m and sample size n.10 Obviously, a state h is absorbing for P 0 if and
only if it is a convention, i.e. h consists of a strict pure strategy Nash equilibrium
played m times in a row. It turns out that adaptive play converges to a convention
if sampling is sufficiently incomplete.

Theorem 3.1 For any strategy profile s ∈ ∏
i∈I Si , let L(s) be the length of the

shortest directed path in the best reply graph from s to a strict Nash equilibrium
and define L = maxs L(s).11 If n ≤ m/(L + 2), then adaptive play converges
almost surely to a convention.

For the convergence result it is crucial that sampling is sufficiently incomplete
since this creates enough stochastic variability in order to prevent the process from
getting stuck in cycles. The following example shows that adaptive play may fail
to converge if the condition in Theorem 3.1 is not satisfied.

Example 3.1 Let I = 10, K = 1, c = 9/29 and m = n = 1. Consider the
following strategy profiles s and s ′ with

si =
{

1, if i ≤ 4
2, if i ≥ 5 and s ′

i =
{

1, if i ≤ 3 or i = 5,
2, if i ≥ 6 or i = 4.

.

Then adaptive play exhibits the cycle s → s ′ → s, more precisely P 0
ss ′ = P 0

s ′s = 1.

From Theorem 3.1 it immediately follows that adaptive play almost surely

converges to the convention corresponding to standardization if c ≤ 4K(I − 1)

I (I + 2)
,

since standardization is the unique strict Nash equilibrium in this case. However,

10 For a formal definition of P 0 see Young (1993).
11 The best reply graph of � is given by (V , E), where V = ∏

i∈I Si is the set of vertices and
E is the set of directed edges such that (s, s ′) ∈ E if and only if s 
= s ′ and there exists a unique
player i such that s ′

−i = s−i and s ′
i is a best reply to s−i .
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if c >
4K(I − 1)

I (I + 2)
, then individualization and standardization are both strict Nash

equilibria and convergence may depend on initial conditions. In order to analyze
whether in this case convergence to standardization or to individualization is most
likely to be observed, we now consider perturbations of the adaptive play process.
Such perturbations arise if traders do not always choose a best reply to their obser-
vations but occasionally make mistakes or experiment with nonoptimal strategies.

We therefore assume that in each period with probability ε > 0 trader i does
not play a best reply to some sample of size n but randomly chooses a strategy from
Si . These mistakes or experimentation activities are independent across traders and
independent of the time period t . If a trader experiments she chooses any strategy
si with positive probability. The exact specification of these probabilities turns out
to be irrelevant. In this way we obtain a perturbed process P ε which is aperiodic
and irreducible for all ε > 0.12 The latter implies the existence of a unique station-
ary distribution με on H satisfying μεP ε = με. A state h ∈ H is stochastically
stable relative to the process P ε if limε→0 με

h > 0. Hence, the stochastically stable
states are those states that are most likely to be observed in the long run when the
experimentation probability becomes small.

In order to characterize the set of stochastically stable states define a mistake in
the transition h → h′ to be a component si of the right-most element s of h′ which
is not a best reply by agent i to any sample of size n from h. Then, for h, h′ ∈ H
define the resistance r(h, h′) to be the total number of mistakes involved in the
transition h → h′ if h′ is a successor of h, otherwise r(h, h′) = ∞. For k = 1, 2, 3,
let hk = (s∗k, . . . , s∗k) be the convention consisting of a repetition of the Nash
equilibrium s∗k . Intuitively, h1 and h2, i.e. the conventions corresponding to stan-
dardization (one market) are stochastically stable if and only if we need (weakly)
less mistakes to go from individualization (two markets) to standardization than
we need for the opposite direction. Similarly, h3, i.e. the convention correspond-
ing to individualization is stochastically stable if and only if we need (weakly) less
mistakes to go from standardization to individualization than we need for the oppo-
site direction. For a formal statement of this claim, define r∗ to be the minimum
resistance over all paths from h1 (or h2) to h3, i.e.

r∗ = min
(h1,... ,hτ )

r(h1, h2) + r(h2, h3) + · · · + r(hτ−1, hτ ),

where the minimum is taken over all directed paths (h1, . . . , hτ ) with h1 = h1 and
hτ = h3. Similarly, define r̃ to be the minimum resistance over all paths from h3
to h1 (or h2). We then have the following result.

Lemma 3.2

h1 and h2 are stochastically stable ⇐⇒ r̃ ≤ r∗,
h3 is stochastically stable ⇐⇒ r̃ ≥ r∗.

In order to see, under which conditions it is true that r̃ > r∗, assume we are in
the convention h3, where there is trade on both markets. Then, for going from h3 to
any convention with trade on one market only, e.g. h1, we need a certain number of

12 For a formal definition of P ε see Young (1993).
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traders to switch from market 2 to market 1 by mistake. This number has to be suffi-
ciently large, i.e. these traders have to create enough liquidity at market 1, so that
it is a best reply for the remaining players at market 2 to switch as well. The higher
the cost c, the more liquidity is needed in order to induce a “best reply switch” to
the more distant market, i.e. r̃ is non-decreasing in c. Conversely, assume we are
in convention h1, where everyone trades on market 1. Again a certain number of
traders has to switch from market 1 to market 2 by mistake in order to induce a
best reply switch to market 2 by the remaining players, who are closer to market 2
than to market 1. The higher the cost c the more attractive it is for a trader to go the
the closest market, in which case less traders are needed, who switch by mistake.
In other words, r∗ is non-increasing in c. Hence, if c is large, it is easier to switch
from h1 or h2 to h3, and therefore h3, the convention with trade on both markets,
is stochastically stable. Conversely, if c is small, then h1 and h2, the conventions
with trade on one market only, are stochastically stable. This is the intuition for the
following theorem.

Theorem 3.3 Let I > 4n and n ≤ m/(L + 2). Then there exist c∗
1, c

∗
2

∈
(

4K(I − 1)

I (I + 2)
,
K(I − 1)

I

)
, c∗

1 ≤ c∗
2 , such that h1 and h2 are the unique sto-

chastically stable states if c < c∗
1 , and h3 is the unique stochastically stable state

if c > c∗
2 . If c∗

1 < c∗
2 , then all states h1, h2, h3, are stochastically stable for

c ∈ (c∗
1, c

∗
2).

The coexistence of stochastically stable states in the interval (c∗
1, c

∗
2) is due to the

fact that we only have a finite number of traders, which implies that the resistances
r∗ and r̃ are step functions in c. Hence, one can conjecture that the indetermi-
nacy vanishes if the number of traders goes to infinity, which is confirmed by the
following theorem.

Theorem 3.4 For fixed n, if we write r∗, r̃, c∗
1, c

∗
2 , as functions of the number of

traders I , then there exists I0 = I0(c, K) such that

r∗(I ) ≤ n
c + K

c
for all I ≥ I0.

Moreover,

lim
I→∞

r̃(I ) = ∞,

and

lim
I→∞

c∗
1(I ) = lim

I→∞
c∗

2(I ) = 0.13

In order to understand the effect of an increase in the number of traders on the
stability of the different conventions consider first the case where the economy
is in a state of standardization, where everyone trades on the same market, let’s
say on market 2. In order to trigger a transition to the convention with trade on
both markets we need a certain number of traders, F ∗, to switch to market 1 by

13 Observe that we cannot fix both n and m and let I → ∞ since L depends on I . From the
proof of Theorem 3.1 it follows that L ≤ 2I , i.e. L increases with I at most linearly.
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mistake.14 This number has to be large enough so that for the marginal trader, who
is sitting next to the “mutants”, the cost reduction from switching to market 1 is
larger than the utility loss she suffers due to the decrease in liquidity. If I goes to
infinity the cost reduction converges to c, independent of the number of mutants,
while the utility loss is bounded above by K/F ∗. Hence, the number of mutants
necessary to equate the cost reduction and the utility loss, i.e. to trigger a transition
from standardization to individualization is bounded above by (c +K)/c since F ∗
is an integer.

Consider now the case where the economy is in a state of individualization,
where there is trade on both markets. Again, in order to trigger a transition to stan-
dardization, where, for example, everyone trades on market 1, we need enough
players to switch to market 1 by mistake. The number of mutants has to be large
enough so that for the marginal trader sitting next to the mutants the utility gain
due to the increase in liquidity is larger than the increase in cost for trading on the
more distant market. If I goes to infinity both the cost increase, as well as the utility
gain go to zero. The former is due to the fact that for a fixed number of mutants the
marginal trader moves closer and closer to the trader in the middle of the interval
as I goes to infinity. The utility gain goes to zero because for a fixed number of
mutants the difference in liquidity at the two markets has a negligible effect on
utility, if I becomes large since marginal utility converges to zero. Moreover, an
inspection of the traders’ preferences reveals that the utility gain goes to zero at a
higher rate (O(I−2)) than the increase in cost (O(I−1)), i.e. liquidity considerations
become relatively unimportant compared to costs. Hence, in order to trigger a tran-
sition from individualization to standardization we need more and more mutants
if I becomes large. This informal argument shows that we need a much smaller
number of mistakes to go from standardization to individualization than we need
in the reverse transition, if the economy is large. Hence, trade on both markets with
traders splitting equally between the markets is the unique stochastically stable
state if I is large.

Theorem 3.4 is an important result. It shows that for all 0 < c < K and I
sufficiently large there is a unique stochastically state which is given by the con-
vention with trade on both markets.15 Hence, recalling the result from Section 2.3,
in a large economy the evolutionary process selects the welfare maximizing market
structure. By way of contrast we have seen that the indeterminacy of Nash equilib-
ria is robust against an increase in the number of traders. Theorem 3.4 also implies
that convergence to the market structure with trade on both markets is reasonably
fast.16 The following theorem provides a bound on the expected waiting time until
the process reaches the stochastically stable convention. It shows that in our model
the evolutionary forces are already effective in the medium run.

Theorem 3.5 Let W(h, ε) be the expected number of periods until the conven-
tion h3 is first reached given that the process P ε starts in h. Then, there exists an
I0 = I0(c, K) such that for I ≥ I0 and any h 
= h3,

14 For an exact definition of F ∗ see the Appendix. The argument, however, can be made without
specifying F ∗.

15 Recall that we assumed c < K(I − 1)/I and limI→∞ K(I − 1)/I = K .
16 Several authors (see Kandori et al. 1993; Ellison 1993) have pointed out that equilibrium

selection theories only give reasonable predictions when the selection is already effective in the
medium run.
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W(h, ε) = O
(
ε−n(c+K)/c

)
as ε → 0.

We see that the bound on the expected waiting time is independent of the number of
traders. In this sense, evolution in our model can be considered as fast (cf. Ellison
2000).

Finally, we analyze how the stability of the different conventions is influenced
by the traders’ risk aversion and by the risk present in the economy, namely by the
idiosyncratic endowment and the aggregate dividend risk.

Theorem 3.6 Let I > 4n and n ≤ m/(L + 2). Then the thresholds c∗
1 and c∗

2
are non-decreasing in the coefficient of risk aversion γ and in the variances of
dividends σ 2 and of endowments σ 2

e .

This result is intuitive given our observations concerning an increase in the number
of traders. Here, we just get the opposite effect: If traders become more risk averse
or if the variances of dividends or endowments increase, then liquidity consider-
ations become more important relative to idiosyncratic preferences and the range
of costs for which standardization is stochastically stable becomes larger.

4 Conclusion

We have studied the choice of markets in the presence of trading frictions and
liquidity effects. While the static model has multiple Nash equilibria including a
no trade equilibrium, the evolutionary process selects a unique equilibrium for a
large range of costs: For sufficiently low costs, all agents will meet on one market
(most of the time), while for sufficiently high costs, there will be trade on both
markets (most of the time). Hence, we observe standardization (e.g. of maturity
dates or trading platforms) if and only if liquidity considerations are relatively more
important than idiosyncratic preferences for the two markets. Different from the
static model, the interval of costs, for which standardization as well as trade on
both markets (individualization) are stochastically stable, vanishes if the number
of traders becomes large. Moreover, our analysis suggests that in economies with
a large number of traders we will observe individualization rather than standardi-
zation, which is also the welfare maximizing market structure. While evolutionary
models are often subject to the criticism that the evolutionary forces are only effec-
tive in the ultra-long run, here we are able to show that the convergence to the
stochastically stable market structure is reasonably fast.

5 Appendix: Proofs

Proof of Theorem 2.1. It is immediate to see that s∗0, s∗1 and s∗2 are always Nash
equilibria, and that s∗1 and s∗2 are strict, while s∗0 is not strict. Let s∗ be a Nash
equilibrium and let tk := |Tk(s

∗)| for k = 1, 2. Assume by way of contradiction
that there exists i and j < i such that s∗

i = 1 and s∗
j 
= 1. Assume first that s∗

j = 0.
Then,

t1

t1 + 1
K ≤ c

j − 1

I − 1
< c

i − 1

I − 1
,



Evolutionary choice of markets 467

which is a contradiction since i could improve by choosing si = 0 instead of
s∗
i = 1. Assume next that s∗

j = 2. Then,

t2 − 1

t2
K − c

I − j

I − 1
≥ t1

t1 + 1
K − c

j − 1

I − 1
,

which implies that

t2

t2 + 1
K − c

I − i

I − 1
>

t1 − 1

t1
K − c

i − 1

I − 1
.

This is again a contradiction since i could improve by choosing si = 2 instead of
s∗
i = 1. In a similar way one shows that s∗

i = 2 implies that s∗
j = 2 for all j > i.

Assume now that there exists i with s∗
i = 1. Since c < K(I − 1)/I , it follows

that K(j − 1)/j > c(j − 1)/(I − 1) for all 2 ≤ j ≤ I . Hence, s∗
i+1 ∈ {1, 2}.

Similarly, if there exists i with s∗
i = 2, then s∗

i−1 ∈ {1, 2}.
Assume that s∗ 
= s∗0. By the above this implies the existence of some i∗, 0 ≤

i∗ ≤ I , such that s∗
i = 1 for i ≤ i∗ and s∗

i = 2 for i ≥ i∗ + 1. Hence, if i∗ = 0,
then s∗ = s∗2, and if i∗ = I , then s∗ = s∗1. If 1 ≤ i∗ ≤ I − 1 it follows that

K
i∗ − 1

i∗
− c

i∗ − 1

I − 1
≥ K

I − i∗

I − i∗ + 1
− c

I − i∗

I − 1
(2)

and K
I − i∗ − 1

I − i∗
− c

I − i∗ − 1

I − 1
≥ K

i∗

i∗ + 1
− c

i∗

I − 1
. (3)

If i∗ < (I − 1)/2, then (2) and (3) are equivalent to

c

I − 1
≥ K

i∗(I − i∗ + 1)
(4)

and
c

I − 1
≤ K

(I − i∗)(i∗ + 1)
. (5)

This implies that i∗ ≥ I/2 which is a contradiction. In the same way we obtain a
contradiction in the case i∗ > (I + 1)/2. Hence, if s∗ /∈ {s∗0, s∗1, s∗2} is a Nash
equilibrium, then s∗ = s∗3 and c ≥ 4K(I −1)/(I (I +2)), where the latter follows
from (2) for i∗ = I/2. Finally, it is immediate to see that s∗3 is indeed a Nash
equilibrium if c ≥ 4K(I − 1)/(I (I + 2)). The Nash equilibrium is strict if and
only if the inequality is strict. This proves the theorem. �
Proof of Theorem 3.1. A game � is weakly acyclic, if from any strategy profile
there exists a directed path in the best reply graph of � to some strict pure strategy
Nash equilibrium of �. AsYoung (1993) (Theorem 1) has shown, for a weakly acy-
clic game adaptive play converges almost surely to a convention if n ≤ m/(L+2).
We cannot directly apply this theorem in our context since Young defines a best
reply to a sample to be a best reply to the product of the other players’ empirical
distribution of play, while we define it to be a best reply to the joint empirical
distribution of play. However, an inspection of the proof in Young (1993) reveals
that it only involves arguments where agents play a best reply to a sample with
identical strategy profiles, in which case the two different notions of best replies
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to a sample obviously coincide. Hence, we can use the same proof to show an
analogue of Young’s theorem for our best reply dynamic.

It remains to prove that our game � is weakly acyclic. To this end, let s∗ be
an arbitrary strategy profile. First consider the case, where s∗ = s̄F for some
0 ≤ F ≤ I , and s̄F is defined by

s̄F
i =

{
1 , i ≤ F,
2 , i ≥ F + 1.

(6)

Without loss of generality let F ≤ I/2. If c 
= 4K(I − 1)/(I (I + 2)), then all
Nash equilibria except for the no trade equilibrium are strict. In particular, if s̄F is
a Nash equilibrium then it is strict. Hence, if s̄F is a Nash equilibrium we are done.
Otherwise, s̄F

i is not the best reply to s̄F
−i for i = F or i = F + 1. If s̄F

i = 1 is
not the best reply to s̄F

−i for i = F , then si = 2 is a best reply (observe that si = 0
cannot be the unique best reply for i = F ). Hence, s̄F → s̄F−1 in the best reply
graph. Since by construction s̄F−1

i is a best reply to s̄F−1
−i for i = F , it follows

that either s̄F−1 is a (strict) Nash equilibrium or s̄F−1
i is not a best reply to s̄F−1

−i

for i = F − 1. In the latter case s̄F−1 → s̄F−2. Proceeding in this manner, after
a finite number of steps we reach s̄0 = s∗2 which is a strict Nash equilibrium. If
s̄F
i is not a best reply to s̄F

−i for i = F + 1, then a similar argument shows that
after a finite number of steps we either reach s̄I/2 = s∗3 and stop, if the latter is a
Nash equilibrium. Or otherwise we reach s̄I = s∗1, which always is a strict Nash
equilibrium.

If c = 4K(I − 1)/(I (I + 2)), then s∗1 and s∗2 are the unique strict Nash
equilibria. Hence, if F = 0 we are done. If 1 ≤ F ≤ I/2, then s̄F

i is not the unique
best reply to s̄F

−i for i = F since

K

(
I − F

I − F + 1
− F − 1

F

)
≥ c

I − 1
(I − 2F + 1),

which is fulfilled for all 1 ≤ F ≤ I/2. Hence s̄F → s̄F−1 and either F − 1 = 0
and we are done or by the same argument as above s̄F−1 → s̄F−2. Again, after a
finite number of steps we reach the strict Nash equilibrium s̄0 = s∗2.

Now let s∗ be an arbitrary strategy profile. If s∗ is a strict Nash equilibrium we
are done. Otherwise, we construct a path from s∗ to some s̄F in the best reply graph
by defining s0, s1, . . . , sI , as follows: s0 = s∗ and si = (si, s

i−1
−i ) for i = 1, . . . , I ,

where si is a best reply of i to si−1
−i and si = 0 only if 0 is the unique best reply. By

construction, si
i 
= 0 for all i since c < K(I − 1)/I . Let j ≥ 1 be minimal such

that s
j

j = 2, i.e. si
i = 1 for all i < j . Then it is straightforward to see that si

i = 2
for all i = j + 1, . . . , I . Hence sI = s̄j−1 and we are done by the first part of the
proof. �
Proof of Lemma 3.2. Let G be the graph with vertices {hk}, k = 1, 2, 3, and di-
rected edges ({hk}, {hl}) with weight rkl = min(h1,... ,hτ ) r(h1, h2) + r(h2, h3) +
· · ·+r(hτ−1, hτ ), where the minimum is taken over all directed paths (h1, . . . , hτ )
with h1 = hk and hτ = hl . By symmetry, r13 = r23 = r∗, r31 = r32 = r̃ and
r12 = r21 =: r . Define a tree rooted at vertex {hk} to be a spanning tree in G
such that from every vertex {hl} different from {hk} there is a unique directed path
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from {hl} to {hk}. The resistance of a rooted tree is defined to be the sum of the
resistances on the edges that compose it. Finally, the stochastic potential γk of the
recurrent communication class {hk} is defined to be the minimum resistance over
all trees rooted at {hk}.

As Young (1993) (Theorem 2, resp. Theorem 4 in the Appendix) has shown,
the stochastically stable states of adaptive play P ε are the states contained in the
recurrent communication classes of P 0 with minimum stochastic potential. By
Theorem 3.1 the recurrent communication classes of the process P 0 are singletons
and contain the conventions as their unique element. Hence, it remains to deter-
mine the stochastic potential of each class {hk}, k = 1, 2, 3. Since it is obviously
true that r ≥ max{r∗, r̃}, we find that γ1 = γ2 = r∗ + r̃ and γ3 = 2r∗, which
immediately implies the claim of the lemma. �
Proof of Theorem 3.3. By Lemma 3.2, h1 and h2 are the unique stochastically sta-
ble states for c ≤ 4K(I − 1)/(I (I + 2)), since in this case r̃ = 0 < r∗. Hence, it
remains to consider the case c > 4K(I − 1)/(I (I + 2)), for which s∗1, s∗2 and s∗3

are all strict Nash equilibria. For 0 ≤ F ≤ I let s̄F ∈ ∏
i∈I Si be defined as in (6)

and let F ∗ be the minimal F ≥ 1 such that si = 1 is a best reply to s̄F
−i for i = F .

We obtain

F ∗ =
⎡

⎢⎢
⎢

I + 1

2
−

√(
I + 1

2

)2

− K(I − 1)

c

⎤

⎥⎥⎥
.17 (7)

Similarly, let F̃ be the minimal F ≥ 1 such that si = 1 is a best reply to s
I/2+F

−i

for i = I/2 + F . Then

F̃ =
⎡

⎢⎢
⎢

1

2
+

√(
I + 1

2

)2

− K(I − 1)

c

⎤

⎥⎥⎥
. (8)

Observe that F ∗, F̃ ≥ 2. Assume now that the economy is in state h2. Any path
from h2 to h3 has to reach a state h with the following property (P):

If s is one of the n right-most elements of h, then there exists F =
F(s), F ∗ ≤ F ≤ I/2, such that si = 1 for all i ≤ F and si = 2 for
all i ≥ I/2 + 1.18

We will show that there exists a path of zero resistance from h to h3. To this end,
let (s1, . . . , sn) be the sample of the last n observations in h and let F l = F(sl)
as defined in property (P). Let si be a best reply of i to this sample. Then si = 2
for all i ≥ I/2 + 1 (otherwise going to market 1 would also be a best reply to s∗3

−i).
Moreover, by definition of F ∗ it follows that si = 1 for all i ≤ minl F

l and si = 1
for i = minl F

l + 1, whenever minl F
l < I/2. Let h0 = h and for all l ≥ 1 let hl

be the successor of hl−1, such that if sl is the last element of hl , then for all i, sl
i

is a best reply of i to the last n observations in hl−1. Given our observation above,
if F ∗ = I/2 or F ∗ + 1 = I/2, then sl = s∗3 for all l ≥ 1, and therefore hm = h3

17 By �x� we denote the smallest integer larger or equal to x ∈ R.
18 For example, h3 itself has this property.
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and we are done. If F ∗ + 1 < I/2, then by the same reasoning as above sl
i = 1

for all i ≤ F ∗ + 2 and l ≥ n + 1. Again, if F ∗ + 2 = I/2, then sl = s∗3 for all
l ≥ n + 1 and it follows that hn+m = h3. If F ∗ + 2 < I/2 we repeat the argument.
In any case we see that there exists N ≥ 1 such that hN = h3, i.e. there is a path
of zero resistance from h to h3.

This implies, that the minimum resistance over all paths from h2 to h3, r∗,
can be characterized as the minimum total number of mistakes such that, starting
from h2 the adaptive play process reaches a state h having property (P). Therefore,
r∗ is non-decreasing in F ∗. We will now construct such a path and determine its
resistance, which will give an upper bound on r∗. Starting from h2 let the players
i = 1, . . . , F ∗, choose si = 1, n times in succession (either as a best reply or by
mistake) and let any i > F ∗ sample from the last n observations in any history
and play a best reply. In this way we obtain a path of histories h0, h1 . . . , hn, with
h0 = h2 and such that for the last element sl of hl (l = 1, . . . , n) it is true that
sl
i = 1 for all i ≤ F ∗ and sl

i is a best reply to the last n observations in hl−1 for
all i ≥ F ∗ + 1. Then sl

i = 2 for all i ≥ I/2 + 1 and all l = 1, . . . , n. Hence, hn

has property (P) and the resistance of the path from h2 to hn, and hence from h2
to h3, is less than or equal to nF ∗. Since starting from h2 one obviously needs at
least F ∗ mistakes to reach h3, we conclude that

F ∗ ≤ r∗ ≤ nF ∗. (9)

In a similar way we obtain that r̃ is non-decreasing in F̃ and

F̃ ≤ r̃ ≤ nF̃ . (10)

Let I > 4n. Since F ∗ is non-increasing in c and r∗ is non-decreasing in F ∗

it follows that r∗ is non-increasing in c. Similarly, since F̃ is non-decreasing in c

and r̃ is non-decreasing in F̃ it follows that r̃ is non-decreasing in c. If c is close
to K(I − 1)/I , then F ∗ = 2 and F̃ = I/2. Hence, it follows that r∗ ≤ 2n and
r̃ ≥ I/2. Since I > 4n we conclude that r̃ > r∗. On the other hand, if c is close to
4K(I −1)/(I (I +2)), then F ∗ = I/2 and F̃ = 2. In this case r∗ ≥ I/2 and r̃ ≤ 2n
and hence r∗ > r̃ since I > 4n. Thus, given the monotonicity property of r∗ and r̃

we obtain the existence of some c∗
1, c

∗
2 ∈

(
4K(I − 1)/(I (I + 2)), K(I − 1)/I

)
,

c∗
1 ≤ c∗

2, such that r̃ < r∗ for c < c∗
1, r̃ > r∗ for c > c∗

2 and r̃ = r∗ for all
c ∈ (c∗

1, c
∗
2) in case c∗

1 < c∗
2. This proves the theorem. �

Proof of Theorem 3.4. We fix the sample sizen. In the following we writeF ∗, F̃ , r∗
and r̃ as functions of I . By the definition of F ∗ in (7) it follows that

F ∗(I ) ≤ I + 3

2
−

√(
I + 1

2

)2

− K(I − 1)

c
=: g(I).

If (c+K)/c is not an integer, let δ > 0 be such that �(c + K)/c� > (c+K)/c+δ.
Otherwise, if (c+K)/c is an integer, let 0 < δ < 1 be arbitrary. We will show that
there exists I0 = I0(c, K) such that

g(I) ≤ c + K

c
+ δ, (11)
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for all I ≥ I0. For I sufficiently large (11) is equivalent to

δI ≥
(

c + K

c
+ δ

)2

− 3

(
c + K

c
+ δ

)
+ 2 − K

c
, (12)

which follows from a straightforward computation. Clearly, there exists I0 =
I0(c, K) such that (12) and hence (11) is satisfied for all I ≥ I0. By the choice of
δ this proves that F ∗(I ) ≤ (c + K)/c, since F ∗(I ) is an integer. Hence, by (9) it
follows that r∗(I ) ≤ n(c + K)/c for I ≥ I0.

By (10), in order to prove that limI→∞ r̃(I ) = ∞ it suffices to show that
limI→∞ F̃ (I ) = ∞. By the definition of F̃ in (8) it follows that

F̃ (I ) ≥ −1

2
+

√(
I + 1

2

)2

− K(I − 1)

c
(13)

and it is immediately seen that the right hand side of this inequality goes to infinity
for I → ∞. This proves the first part of the theorem.

Hence, for all 0 < c < K there exists I (c) such that r̃(I ) > r∗(I ) for all
I ≥ I (c). By Theorem 3.3 this implies c ≥ c∗

2(I ) for all I ≥ I (c). Since c
was arbitrary it follows that limI→∞ c∗

2(I ) = 0 and therefore limI→∞ c∗
1(I ) =

limI→∞ c∗
2(I ) = 0. �

Proof of Theorem 3.5. By Ellison (2000) (Lemma 6), W(h, ε) = O(ε−CR), where
CR is the coradius of the basin of attraction of the recurrent class {h3}. CR is defined
by CR = maxh 
=h3 min(h1,... ,ht ) r(h1, h2)+ r(h2, h3)+· · ·+ r(ht−1, ht ), where the
minimum is taken over all paths (h1, . . . , ht ) with h1 = h, ht = h3 and hτ 
= hτ ′

for all τ, τ ′ ∈ {1, . . . , t}, τ 
= τ ′. Hence, CR = r∗ and the claim follows from
Theorem 3.4. �
Proof of Theorem 3.6. Since F ∗ is non-decreasing and F̃ is non-increasing in K
it follows that r∗ is non-decreasing and r̃ is non-increasing in K for fixed cost
c. Hence, the endpoints of the interval (c∗

1, c
∗
2) on which the graphs of r∗ and r̃

intersect are non-decreasing in K . The claim then immediately follows if we recall
that K = γ σ 2σ 2

e /2. �
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