The variety of quasi-Stone algebras does not have the amalgamation property

Sara-Kaja Fischer

ABSTRACT. We give an example showing that the variety of quasi-Stone algebras does not have the amalgamation property.

The question whether the variety **QSA** of quasi-Stone algebras has the amalgamation property is posed as an open problem in [2]. In this note, we show that the answer is negative by providing a counterexample. In particular, this also provides a counterexample to the claim made in [1] that the class of all finite quasi-Stone algebras has the amalgamation property.

An algebra $(L; \wedge, \vee, ', 0, 1)$ of type (2, 2, 1, 0, 0) is a quasi-Stone algebra (in the following: a QSA) if $(L; \wedge, \vee, 0, 1)$ is a bounded distributive lattice and the unary operation ' satisfies the following conditions for all $a, b \in L$:

- (QS1) 0' = 1 and 1' = 0,
- (QS2) $(a \lor b)' = a' \land b'$ (the \lor -DeMorgan law),
- (QS3) $(a \wedge b')' = a' \vee b''$ (the weak \wedge -DeMorgan law),
- $(QS4) \quad a \wedge a'' = a,$
- (QS5) $a' \vee a'' = 1$ (the Stone identity).

We write QSA's as pairs (L, ') where L stands for the underlying bounded distributive lattice. QSA-homomorphisms are defined in the obvious way.

In [1], it is shown that the category of all QS-spaces together with QS-maps is dually equivalent with the category QSA. Here, a QS-space is a pair (X, \mathcal{E}) consisting of a Priestley space X and an equivalence relation \mathcal{E} on X satisfying certain conditions.

For a given QSA (L, '), its QS-space is constructed as follows: Let X = D(L) be the (standard) Priestley space of all prime filters of L and set

$$\mathcal{E} = \left\{ (P,Q) \in D(L) \times D(L) \, | \, P \cap B(L) = Q \cap B(L) \right\},$$

where $B(L) = \{a' \mid a \in L\}$ is the skeleton of L. Then (X, \mathcal{E}) is the dual QS-space of (L, '). We write $[x]_{\mathcal{E}}$ for the \mathcal{E} -class of $x \in X$, and $\mathcal{E}(U) = \bigcup_{x \in U} [x]_{\mathcal{E}}$ for any subset $U \subseteq X$.

QS-maps are defined as follows: Let (X, \mathcal{E}) and (Y, \mathcal{F}) be QS-spaces. Then a continuous, order preserving map $\varphi \colon X \to Y$ is a QS-map if

$$\mathcal{E}(\varphi^{-1}(U)) = \varphi^{-1}(\mathcal{F}(U))$$

Presented by J. Berman.

Received October 12, 2009; accepted in final form November 11, 2009.

2000 Mathematics Subject Classification: Primary: 06D75; Secondary: 06D50, 08B25.

Key words and phrases: quasi-Stone algebras, amalgamation property, duality theory.

2 S. Fischer Algebra Univers.

for each clopen increasing set $U \subseteq Y$. For a given QSA-homomorphism $f \colon L \to K$, its dual QS-map is given by $D(f) \colon D(K) \to D(L)$ with $D(f)(P) = f^{-1}(P)$ for $P \in D(K)$. Crucially for our purposes, QSA-embeddings correspond bijectively to onto QS-maps.

Now we can present our example of a tuple (L, M, N, i, j), where L, M, N are QSA's and $i: L \to M$, $j: L \to N$ are QSA-embeddings, which can not be amalgamated within **QSA**. The failure of amalgamation will be shown by means of the duality described above.

Let L be the three-element Stone algebra (0' = 1 and a' = 1' = 0), M the four-element Boolean lattice, and N a six-element Stone algebra as defined in Figure 1:

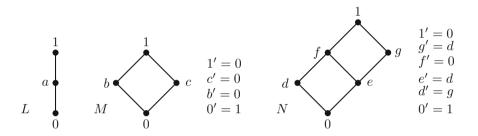


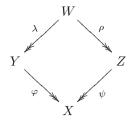
Figure 1

We choose QSA-embeddings $i\colon L\hookrightarrow M$ such that $i(0)=0,\ i(a)=b,$ $i(1)=1,\ \text{and}\ j\colon L\hookrightarrow N$ such that $j(0)=0,\ j(a)=f,\ j(1)=1.$ The corresponding QS-spaces are given in Figure 2 (putting $X=D(L),\ Y=D(M),$ and Z=D(N)):

Figure 2

With it we have the onto QS-maps $\varphi = D(i)$: $Y \twoheadrightarrow X$ with $\varphi(y_1) = x_1$, $\varphi(y_2) = x_2$, and $\psi = D(j)$: $Z \twoheadrightarrow X$ with $\psi(z_1) = \psi(z_3) = x_1$, $\psi(z_2) = x_2$.

Assume that there is a QSA K and embeddings $h: M \hookrightarrow K$, $k: N \hookrightarrow K$ amalgamating (L, M, N, i, j), i.e., such that $h \circ i = k \circ j$. Let (W, \mathcal{H}) be the dual space of K with W = D(K), and let $\lambda = D(h)$, $\rho = D(k)$ be the duals of h and k, respectively. Then, by duality, the following diagram commutes:



Since ρ is onto, there is some $w_1 \in W$ such that $\rho(w_1) = z_3$. But then $\rho(w) = z_3$ for all $w \in [w_1]_{\mathcal{H}}$ because $\{z_3\}$ is a clopen increasing set, and therefore $[w_1]_{\mathcal{H}} \subseteq \mathcal{H}(\rho^{-1}(\{z_3\})) = \rho^{-1}(\mathcal{G}(\{z_3\})) = \rho^{-1}(\{z_3\})$. Thus, for all $w \in [w_1]_{\mathcal{H}}$, we have $\psi \circ \rho(w) = x_1$, and by the commutativity of the diagram, it follows that also $\varphi \circ \lambda(w) = x_1$ for all $w \in [w_1]_{\mathcal{H}}$. This implies that $[w_1]_{\mathcal{H}} \subseteq \lambda^{-1}(\{y_1\}) \subseteq \lambda^{-1}(\mathcal{F}(\{y_2\}))$ and that $[w_1]_{\mathcal{H}} \cap \mathcal{H}(\lambda^{-1}(\{y_2\})) = \emptyset$. Hence, $\lambda^{-1}(\mathcal{F}(\{y_2\})) \neq \mathcal{H}(\lambda^{-1}(\{y_2\}))$ which is a contradiction, since $\{y_2\}$ is a clopen increasing set.

A different counterexample has been obtained independently by S. Solovjov (private communication).

References

- [1] Gaitán, H.: Priestley duality for quasi-Stone algebras. Studia Logica 64, 83–92 (2000)
- [2] Sankappanavar, N. H., Sankappanavar, H. P.: Quasi-Stone algebras. Math. Logic Quart. 39, 255–268 (1993)

Sara-Kaja Fischer

Mathematical Institute, University of Bern, CH-3012 Bern, Switzerland e-mail: sara.fischer@math.unibe.ch