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Abstract In this paper, we study a variational problem under a constraint on the
mass. Using a penalty method we prove the existence of an optimal shape. It will be
shown that the minimizers are Holder continuous and that for a large class they are
even Lipschitz continuous. Necessary conditions in form of a variational inequality in
the interior of the optimal domain and a condition on the free boundary are derived.
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1 Introduction

Let D € RV be a bounded domain and let a(x) and b(x) be positive, continuous func-
tions in D. Consider for an arbitrary real number p > 1 weighted Sobolev constants
of the following form
Sp(D) = inf/a(x)|Vv|p dx, v e K(D) where
v
D

K(D) = [w e WP (D):w>0ace., /b(x)wdx = 1]. (1.1)
D

It follows from the Sobolev embedding theorem that there exists a minimizer # which
solves the Euler-Lagrange equation

div(a(x)|VulP ~2Vu) + S,(D)b(x) =0 in D, u=0on dD. (1.2)
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482 C. Bandle, A. Wagner

The first question addressed in this paper is to study the smallest value s, (m) of S, (D)
when D ranges among all domains contained in a fixed bounded domain B ¢ RY, with
prescribed measure M (D) := [, b dx = m. We are mainly interested in the existence
of an optimal domain and the regularity of the minimizers.

For this purpose we follow a strategy used in [18] for eigenvalue problems. The idea
which goes back to the pioneering papers of Alt and Caffarelli [1] and Alt, Caffarelli
and Friedman [2], is to introduce a penalty term depending on m and to consider
a variational problem in B without constraints. It has the advantage that it involves
only the state function and not the optimal shape which is difficult to grasp. Such a
problem appeared for the first time in the literature in connection with the problem of
the torsional rigidity of cylindrical beams. In this case D is a simply connected domain
in the plane, p = 2 and a(x) = b(x) = 1 and B is a large circle such that |B| > m. It has
been conjectured by St.Venant in 1856 and proved by Polya cf. [14] that the optimal
domain is the circle. The same questions have been studied in [6] for the special case
p =2 and a(x) = 1. A major ingredient there is the isoperimetric inequality which is
not available for non constant a(x). Many references and results concerning Sobolev
constants with different types of weights can be found in [3,12,15]. For applications to
boundary value problems cf. [4,7] and the references cited therein. We shall assume
that a(x) and b(x) meet the following assumptions:

(AD) a(x),b(x) € C*(B);
(A2) there exist positive constants a,,;, and a,,,, such that a,,;, < a(x) < amay;
(A3) there exists a positive constant b,,;,;, and b,,qy such that by,in < b(x) < bpax.

The plan of this paper is as follows. First, we discuss the Sobolev constant S, (D) in
multiply connected domains D. It turns out that it behaves differently from other
similar quantities like the smallest eigenvalues. Then, we prove the existence of a
minimizer of an auxiliary problem in W(l)’p (B). The next chapter deals with the varia-
tional inequality which has to be satisfied by the minimizers, and the characterization
of the free boundary between their support and the region where they vanish. In the
last chapter we prove regularity results for the minimizers, in particular the Lipschitz
continuity. We can then use these results to prove the existence of a minimizer and an
optimal domain for s, (m).

2 Qualitative properties

In this section we list some general properties of S, (D), where D denotes an open
bounded domain in RV, Instead of (1.1) it will sometimes be more convenient to use
the equivalent form

Jp a@)|VvIP dx

S,(D) = in . (2.1)
T W) (Jp b@lvl dx)”
Every minimizer is a multiple of « where u is the unique solution of
div(a(x)|Vul’2Vu) + b(x) =0 in D, u=0on aD. (2.2)

Lemma 1 S, (D) is monotone with respect to D in the sense that S,(D1) > S,(D>) for
any two open bounded domains Dy and Dy in RN with D{ C D;.
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Optimization problems for weighted Sobolev constants 483

Proof The assertion is an immediate consequence of the fact that every admissible
function for S, (D), extended as 0 outside of D is an admissible function for S, (D).
o

Lemma 2 Let Dy and D be two open bounded domains in RN such that Dy N\ Dy = (.
Then
1

1
-1

_ __L
Sp(D1UD2) p=1 =8,(Dy) P14 §p(D2) P71,

Proof Letup, and up, be minimizers for S,(D1) or S,(D>), resp. which are solutions

of (2.2) in Dy or Dy, resp. Consequently,

_ 1
/a()c)|VuD1 Pdx = /b(x)upldx =S, »~1(Dy) and
Dy Dy

__1
/a(x)quDz PPdx = /b(x)uDzdx =S," " (D2)
Dy D,

Choosing as a test function in (2.1)

[LLD1 in Dq
VvV =

up, inD>
we get
S,(D1 U Dy) < ! - 23)
(S,,(Dl)*ﬁ +S,(Dy) 7 )
Let u be a minimizer of S, (D1 U D7). Then keeping in mind that
P
/a(x)|Vu|p dx > S,(Dy) /b(x)u dx
Dy 1
p
/a(x)|Vu|de > Sp(D7) /b(x)u dx | ,
Dy 2
we find
SpD) (fp, b dx)” +Sp(D) ( f, bGoyu dx)”
Sp(D1UDy) > (2.4)

(fDl b(x)u dx + sz b(x)u dx)p

Set ] := fD1 b(x)u dx + sz b(x)u dx, fD1 b(x)u dx := Al and fD2 b(x)udx =1 —MI.
Then

Sp(D1U D7) > Sp(D1)AP + Sp(D2)(1 — AP =t h()).
This function A()) achieves its minimum for

S (Dz)l/(”_l)
A= P )
Sp(DNY®=D + 8, (Dy)!/ =D
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Inserting this expression into /(1) we get
1

S(D1UDy) = —
1 1
(S,;(leﬁ +Sp(D2) 7T )

This together with (2.3) proves the assertion. ]

From this lemma we get immediately the estimate: If S, (D) < Sp(D2) then

Sp(Dl) Sp(DZ)
201 p—1 7

<S5D1UDy) <

Remark 1 Notice that the formula for S, (D U D7) in multiply connected domains
differs from the one for the principal eigenvalue

Vv|Pd.
p(D) = inf JpaIVviPdx V; )
Wi (D) Jp b@)|vIPdx

In this case Lemma 2 has to be replaced by
Ap(D1UDy) = 2p(D1), where Ap(D1) < Ap(D3).
Definition 1 For all positive M < M(B) [, b(x)dx set
sp(M) :=inf{S,(D) : D C B open, M(D) < M}

If for some domain D( with measure M we have s,(M) = S, (Do), then Dy is called
optimal domain for s, (M).

By Lemma 1 the infimum is the same if D’ varies in the smaller class of open
domains with M (D) = M. In the chapter on regularity we shall need the quantity

= inf MPP/N=lg (M). 25
Op (0,}\141(3)) Sp(M) (2.5)

The following lemma will be crucial for our considerations.
Lemma 3 Assume (Al), (A3) and the weaker form of (A2), namely

(A2):0 < amin < a(x).
Then o) > 0.

Proof We have

Amin . Jp IVVIP dx
Sp(D) > %meé’p(D)m'
Let
Jp IVvIP dx
(Jp Ivldx)””

If D* denotes the ball with the same volume as D then by a symmetrization and a
scaling argument we get

Ty(D) := ian&,p(D)

By \PtP/N-1
Q) Tp(By).

Ty(D) = T,(D*) = ( D
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Hence

Sp(D) = | D|1=P=PINe(N, p) > S0t pptpIN=1pfl=p=pIN (N p),

binax Dpax
where ¢(N,p) := |By[PP/N=1T,(By),
which implies that
bp{-p/N—l

op > "””Ta’”mcw, ») > 0. (2.6)
max

More results on o, can be found in [5].

3 Existence

Let B ¢ RY be a bounded fundamental domain, e.g.alargeball,andlet M(B) > t > 0,
€ > 0 be arbitrary fixed numbers. We consider the functional J¢ : Wé’p (B) — R*

given by
[ a@)|Vv|P dx
- 7 +/fe / b(x)dx |,

(fb(x)|v| dx) {v>0}
B

1 .
< _t) Los>t

_ ) =G >
fs(s)—‘ 0 : s<

Jer(v) =

where

Forv =0 we set J.;(v) = o0.
At first we are interested if the following variational problem has a minimizer

Ter = }ér(l};) Je (V). 3.1)

Theorem 1 Under the assumptions (A1)-(A3) there exists a function u. € K(B),
depending on t such that

Je,t(us) = Te -

Proof Since the functional is bounded from below there exist minimizing sequences
{ukli>=1 C K(B). Assume that Je () < co for all k. Without loss of generality we
may normalize uy, such that

/ bx)uy dx = 1.
B

Therefore fB a|Vug|P dx < co and by (A2) also || Vugl| () is uniformly bounded from

above. Hence there exists a function u € Wé’p (B) (if no ambiguity occurs we write u
instead of u,) and a subsequence which will again be denoted by {u}x>1, such that
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486 C. Bandle, A. Wagner

e Vuy — Vu weakly in L?(B);
e u; — ustronglyin L9(B), for g < Np/(N —p) if p < N and for all g > 1 otherwise;
e u; — u € K(B) almost everywhere in B.

For the last statement see e.g. [16] Theorem 3.12. This result implies in particular that

/b(x)u dx =1. 3.2)

B

Since { f g a(X)|VulP dx}l/ P is a norm in Wé’p (B) and since norms are lower semicon-
tinuous with respect to weak convergence, the inequality

/a(x)IVuV’ dx < likm inf/a(x)quk 1P dx (3.3)
—00
B B

holds.
For simplicity we shall use in the sequel the following notation: for any w € K(B) set

D, ={x:wkx) >0aec.}, M, := / b(x)dx.
DM}

Next, we want to prove that

M, <liminf M, . 34)
k—o0

We denote by |G| the Lebesgue measure of a measurable set G. The sequence {1y }x>1
satisfies the assumptions for Egoroff’s theorem. Hence for any § > 0 there exists a
measurable set Es such that |Es] < § and such that {uy}x>1 converges uniformly on
B\ Es. Set O := U2 Nk Du,- Since ux — u uniformly as k — oo on Dy, \ E;s
we deduce that D, \ Es € Q. This together with the fact that fQ b dx < liminf; M,,
implies

M, = / b(x)dx + / b(x)dx < lim inf My + 8y
—00
Dy\Es Es

Moreover, since § can be chosen arbitrarily small, this establishes (3.4). The assertion
now follows from (3.2), (3.3) and (3.4) . O

Observe that u. does not have to be unique. Next, we study the sequence {u.} as
€ — 0 where u, is any minimizer of 7 ;.

Lemma 4 For every positive t < M(B) there exists a subsequence {u¢} C K(B) such

that
ue — ug weakly in Wé’p(B) , /b(x)uo dx =1
B
Mu() <t and /u(x)IVu0|p dx = x7t,
B
where

Ji = lim Jo < 5p(0).
€'—0
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Proof Let D' C B be an open domain in B such that [, b(x)dx =t. Letw € Wé’p (D))
be a minimizer of S, (D) withw = 0in B\ D’. Then J ;(ue) < Je (W), i.e.

/a(x)qu€ PP dx + fe(My,) < Sp(D"). (3.5)
B

Hence f 5 @(X)|Vue|P dx and by the assumption (A3) also f g |VuelP dx are bounded
from above by a constant which is independent of €. Therefore there exists a subse-
quence u, such that

uos — up, weakly in Wé’p (B), ue — ugp strongly in L! (B) as €’ — 0.
This implies that ug € K(B). (3.5) also implies
My, —t)+ -0 ase—0.
Consequently

limsupM,, <t,
e—0

and by the same arguments as in Theorem 1, M,,, < t. It is easy to see that

Jy = inf /a(x)Wvlp dx, with M, <t. (3.6)
K(B)

ve

The quantity at the right-hand side of (3.6) could be interpreted as Jy;. Thus by the
definition of s, (f) where the infimum is taken only among functions v such that D, is
open we conclude that J; < s, (?). O

Open problem We expect that for € sufficiently small, 7., = J¢,, for all 0 < € < €.

4 Necessary conditions
4.1 First variation

Theorem 2 Let u., € > 0, be a minimizer of J.; which is normalized such that

b(x)ue dx = 1. Then for all nonnegative functions ¢ € Wl’p(B), the followin
B 8 0 8
inequality holds:

/a(x)|Vu€ P~2Vu Ve dx < A/b(x)q) dx,
B B
where )\ .= /a()c)qu6 |” dx. 4.1)
B

Proof For short we shall write u instead of u.. Since u is a minimizer we have J ; (1) <
Jei((u—8¢)4) for every § > 0. Set v := (u — 8¢)4+ and note that D, C D,. Hence by
the monotonicity of f, () we have

Je(My) = fe(My)
@ Springer



488 C. Bandle, A. Wagner

and thus

Jpa)|VulP dx - Jpax)|Vv|P dx
([zbudx)’ = ([ybe)vdx)’

Using the normalization we get

P
0< /a(x)|Vv|p dx — /a(x)|Vu|p dx </ b(x)v dx) . 4.2)
B

B B

We now discuss the integrals in more detail. Keeping in mind that [, budx and [, bedx
are bounded we find, setting

Iy = / b(x)u dx,

BN{u>3¢}
P p
(/ b(x)v dx) = / b(x)(u — S¢)dx
B N{u>38¢p}
=15 —psi! / b(x)¢ dx + O(52). (4.3)
BN{u>s¢}
Next, we compute
/a(x)|Vv|P dx = / a(x)|V(u —8¢)|P dx
B BN{u>§¢}
= / a(x)|VulP dx — ps / a(x)|VulP~2VuVe dx + n.
BN{u>6§¢} BN{u>5¢}

44
The remainder term 7 contains a finite number of expressions of the form
Cq1q25511+112 /a(x)|vu|17—q1—qz|v¢|41 (Vu, V)92 dx
B

with ¢ 4+ g2 > 2. They can be bounded from above by means of [ a|Vul? dx and
[z alVeP dx. This implies that

n = 0.
Plugging the expressions (4.3) and (4.4) into inequality (4.2) we get

0< / a(x)|VulP dx — pé / a(x)|[VulP~>VuVe dx

{u>d¢p) {u>ép}
- / a()|VulP dx | I — psi? ™! / b(x)g dx | + O(8?). (4.5)
B {u>é8¢}
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Observe that for small 6,

/ b(x)udx < S/b(x)(p dx = 0(9),

(u<sp) B
and
Iy=1- / b(x)u dx,
{u=sp)
=1-p / b(x)u dx + O(8%),
{u<éop}
psIl" = ps + 0(8?).

Introducing these expressions into (4.5) and rearranging terms we conclude that

)22 / a(x)|VulP~2VuVe dx

{u>é¢}

5/a(x)|Vu|p dx {p / b(x)u dx + ps / bx)p dx t + O(5%).
B {u=sp) {u>38¢)

The expression in the brackets at the right-hand side of this inequality is bounded
from above by

p(S/b(x)(p dx.

B

Hence we obtain, dividing by pé > 0 and then letting § tend to 0

/a(x)|Vu|p_2VuV<p dx < /a(x)|Vu|p dx/b(x)q) dx.
B B B
This proves the theorem. O

Corollary 1 In the interior of Dy, every normalized minimizer u. of Je;, satisfies the
Euler-Lagrange equation

div(a(0)|VuelP2Vue) + 2b(x) =0,  where A = /a(x)|Vu€ 1P dx,
B

in the weak sense.

Proof Let xo be an inner point in D, and suppose that the ball B,(xp) centered

at xo of radius p satisfies B,(xo) C Dy, . Let ¢ € Wé’p (B, (xp)), extended as zero in
B\ B,(x0). In contrast to the previous theorem, ¢ is allowed to change sign. Choose
8 so small that v := u £ 8¢ > 0in B, (x9). Hence D, = D, . The same arguments as
before apply and yield

/ a(x)|VulP~2VuVe dx = ) / b(x)e dx.

By (x0) By (x0)
@ Springer



490 C. Bandle, A. Wagner

This proves the assertion. |

Remark 2 The proof of the previous Theorem holds also for uy which is the minimizer
corresponding to s, (M) [cf. Lemma 4].

4.2 Boundary condition

We derive a necessary condition for the minimizers u. which has to be satisfied on
aD,, where it is smooth. For simplicity we will write u instead of ..

Theorem 3 Let u be a minimizer of Ji. Let A C B be an open set such that AN 9Dy
is smooth and u € C' (A N Dy,). Then the following identity holds

a(x)|VulP = const.b(x) forxe ANaD,.
Consider the function
i(x) ;== u(x + dn(x)). (4.6)

n denotes a smooth vector field in B with compact supportin A satisfying the additional
constraint

/ b(x)n(x)-vdS=0. 4.7)

AN3D,

8 denotes a positive constant which is chosen so small, such that x + §n(x) € B for all
x € B. A consequence of this assumption is

LemmaS5 Letn e Cy° (A,RM) for some open subset A C B. Then
/b(x)dx = /b(x)dx+0(8). (4.8)
Dﬂ Du

Proof The claim follows by direct computation. We set y = x + §n(x). Then dx =
(1 — 8divn)dy + o(8). Hence, we get because of (4.7).

/b(x)dx = / b(y — sn)(1 — &divy)dy + o(8) = /b(y)dy -6 / b(y)divn dy

Dy, D, D, ANDy
) / n-Vb(y)dy + o(8) =/b(y)dy+o(8).
AND, Dy
This proves the lemma. O

A consequence of this lemma is, that

feMy) = fe(My) +0(5). 4.9
This will be needed in the following proof.

Proof of the Theorem By our assumption there holds
Je,t(u) =< Je,t(ﬁ)~ (410)
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We first make a change of variable y = x + 8n(x) and then expand the terms of the
right hand side with respect to §. We get

/a(x)|Vit|p dx = /a(y)|Vu|p dy — 3§ / a(y)|VulPdivn dy

D;, Dy ANDy

o [ - vawivur dy

AND,
+ 8p / a(y)|VulP~>Vu - Dy - Vu dy + 0(5).
ANDy,

We integrate by parts, making use the smoothness of dD,, locally in A, and we obtain

/ a(y)|[VulP™2Vu - Dy - Vudy = — / div(a(y)|VulP~2Vu)n - Vu dy
AND, ANDy,
— / a(y)|\VulP~2Vu - D*u - n dy
ANDy

+ / a()|VulP~>Vu - vy - Vu dS
ANaD,

Next, we observe that since u =0on ANaD,

ay)|\VulP™>Vu - vy - Vu dS
ANdD,

= / ay)|[VulP72(Vu - v)(n - v)(v - Vu)dS

AN3Dy,

= / ay)|VulP~2(Vu - v)*(n - v)dS
ANoDy,

= / a(y)|VulPn - v dS
ANoDy,

We argue analogously for the other integrals and we obtain the equality:

/a(x)IVL?Ip dx = /a(y)qul” dy —8p / div(a(y)|[VulP~2Vu)n - Vu dy
D, Dy ANDy,

+8(p-1 / a()|VulPn - v dS + o(8).
ANID,

Similarly, we have

/b(X)ft dx = / b(y)u(y)dy + 5p / b(y)n(y) - Vu(y)dy + o(5).

Da Du AND,

@ Springer



492 C. Bandle, A. Wagner

We insert the above expansions into (4.10) and use (4.9) and Corollary 1. After
rearranging terms we get for § — 0:
/ a(@)|VulPn-vdS=0 (4.11)
AN3D,

The equality comes from the fact that - v can have any sign. Because of (4.7) and the
assumption that u € C'(A N D,) this implies the pointwise equality

a(x)|Vu(x)|P = const. b(x) forxe ANaD,.

This proves the theorem. O

5 Regularity

This section is devoted to the regularity of the minimizers of 7, ;. The notation will
be the same as in the last section. In particular, we shall need the quantity o, defined
in (2.5). If p > N it follows immediately from the embedding theorems that the
minimizers are Holder continuous.

Theorem 4 Every solution u of (4.1) belongs to L*°(B) and satisfies

e < (x )p-lipm p+Np—N
oo =
p

bl

%p
provided [z budx = 1.

Proof Let t be any positive number. By testing (4.1) with (u — £)+ we obtain, setting
D) :={xeD:ulx) >t}and M) := M(D(t)),

/ a(x)|VulPdx < A / b(x)(u — t)dx. (5.1)

D) D(t)

Notice that M(¢') = 0 implies M(¢) = O for all # > ¢, and in addition u(x) < ¢ a.e.
Using the fact that o, > 0 we have, as long as M(¢) # 0

p
op /(u—t)b(x)dx MRr < /a(x)qulpdx
) D(0)
This together with (5.1) implies
p
op / (u—Ob)dx | M'"=8P() < a / b(x)(u — t)dx. (5.2)
() D(t)

Integration by parts yields

/ (u — Hb(x)dx = / M(s)ds =: M ().
D(1) t
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Inserting this expression into (5.2) we get

1
Op\ 775/N—T Nooa o pol
(l)”*”/” U< BB T
! <

1 .
P.ut for short y = ("71’) P—T4/N and o = pﬂ’;/%. Since M(0) = 1 we find after integra-
tion

yd—a)<1-—Mop.
Hence
[ < 1 _(k)p+p/lN1p+Np—N

T (A-a)y Op p '

This establishes the assertion. m}

Next, we we will prove the Holder continuity of minimizers. For this purpose we
need the additional condition on b.
(A4) for all x € B and all © > 1 there exist 0 < a < N such that b(ﬁ) < u¥b(x) holds.

Theorem 5 Let B be convex and 0 € B. Assume (Al)-(A4) and 1 < p < oo. Let

u € K(B) be any minimizer of Jy. Then u € C?O’f (B) forall0 < B < 1.

The proof is done in several steps. Let us first collect some useful auxiliary results. Put
Br(xp) :={x € B:|x —x0| < R}.

In the sequel ¢ denotes a constant which is independent of R. Our arguments rely on
a lemma of Morrey (see e.g. [11] Theorem 1.53 and [13]).

Lemma 6 (Morrey’s Dirichlet growth theorem) Letu € W' (B), 1 < p < N. Suppose
that there exist constants 0 < ¢ < oo and B € (0, 1] such that for all balls B,(xo) C B

\VulPdx < crN-PHPP,

BNB;(x0)

then u € CO# (B).
In order to apply the above lemma we shall also need
Lemma 7 Let ¢(t) be a nonnegative and nondecreasing function. Suppose that
7\«
_ B
o <v[(5) +8]e® +«R

forall 0 <r < R < Ry, where y, k, a and B are positive constants with 8 < «. Then
there exist positive constants 5o = 8o(y,a, B) and c = C(y,«, B) such thatif § < 8o, then

B
o) =c(7) [#(R) +«R]

forall0 <r <R < Ry.
@ Springer



494 C. Bandle, A. Wagner

For the proof of this Lemma we refer to [10], Lemma 2.1 in Chapter III. Next, we
construct a comparison function for the functional 7y (cf. (3.6)) which will play an
important role in the proof of the Holder and Lipschitz continuity of the minimizer
u € K(B). Let xg € B be such that Byg(xg) C B and Br(xg) N D,, # @. Set

N freB
Vx) = v(x) 1 X € Br(xo) (5.3)
u(x) ifx e Dy, \ Br(xp)
where v is the solution of
div(a()|VPP~2V9) + Ab(x) = 0in Br(xp), ¥ =u on dBr(xo), (5.4)
A= /a(x)|Vu|p dx.
B

Since
div(a(x)IVulp’ZVu) + Ab(x) >0 in Br(xgp),

the maximum principle gives ¥ > u in Br(xp). Also observe that

/ a(x)|Vv|P dx < / a(x)|VulP dx + A / b(x)(V — u)dx. (5.5)
BRr(x0) Br(xo) Br(x0)

Since ¥ > u in Br(xg) we have D, € D,. Hence in general v(x) cannot be used as a
test function in the variational principle for 7. We therefore define w(x) := v(ux)
and choose p > 1 such that M,, = M,, = M. Since B is convex and contains the origin,
it follows that D,, C B and w(x) can be used as a test function of the variational
characterization of 7. In the sequel we shall frequently use the notation

N, =B\D,={xeB:ukx)=0ae.}.
The following elementary estimate will be needed later on.

Proposition 1 Let u be a minimizer and let v and p be defined as above. Let C be a
constant such that

2bmax — C(N — ) < 0.
Then . satisfies the estimate

[N, N BRr(xo)l

l<pu<14C
=p=1l+ M

(5.6)
Proof To simplify notation we write By instead of Br(xg). For i > 1 set
~ - X
g(i) == fi N/b (7) dx.
n
D,

By definition of u we have

g(u) = /b(x)dx = /b(x)dx =M.
DW DLl
@ Springer



Optimization problems for weighted Sobolev constants 495

On the other hand, by the construction of v we have g(1) > M. The idea is now to find
a 1o > 1 such that g(fig) < M. Then necessarily the bound 1 < u < i follows.

gGi) < =N / b(x)dx
D,

< jp*N / b(x)dx + byax|Ny N Bg|

u

o b IN, N BR|
o—N max |1 Vu
= M1+ —————).
e (14 el
If we evaluate the expression above at
N,NB
fio=1+ C% =1+ Cy(R),

N

and if we expand %~ w.r.t. n(R) we get for sufficiently small R > 0

1
g(o) = (1 +tyle- N)Cn(R)) M (1 + byaxn(R))

< (1 + [bmax + %(O{ —N)C] ﬂ(R)) M.

Thus for R > 0 we find that g(@to) < M, if 2b,c — C(N — o) < 0. This proves the
assertion. O

Lemma 8 Let u € K(B) be any minimizer of Jy and let v and v be defined as above.
Then forl <p <2

/ aWIV @ — )P dx < RN PN, A Br(xo) |5 (57)
BRr(xo)
and forp > 2
/ a(x)|V(u— )P dx < c|N, N Br(xo)|. (5-8)
BRr(xo)

Proof By definition we have, with w(x) = v(ux) as above,

p
- Jpax)|VwP dx

Im =< . 5.9
M ([z bW dx)’ (59)
Observe that
/a(x)|Vw|P dx = MP*N/aM(x)WwP dx
B D,
and

/b(x)wdx:,u_N/bﬂ(x)v dx,

B D,
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where a,(x) = a (ﬁ) and b, (x) = b (ﬁ) From (5.9) and the definition of w it then
follows that
P

TupN—P—Np /b,l(x)v dx| < /a,t(x)IVvlp dx. (5.10)
v DV
Without loss of generality we can assume that B € D,. By the strong maximum

principle [17] we have ¥ > 0 in Bg. We write D, = (D, \ Br) U Bg and get

/bﬂ(x)vdx= / b#(x)vdx—i—/bﬂ(x)f/dx

D, Dy\Bg Br
:/bu(x)u dx—l—/bu(x)(f/—u)dx
Dy, Br
= /b(x)u dx+/(bﬂ(x) — b(x))u dx
Dll Du

+/bﬂ(x)(f/ —u)dx
Bgr

>1- Lb(mélx |x])(u — 1) / udx. (5.11)
Dy

For the last inequality we used the normalization |, p, bu dx =1, the Lipschitz
continuity of b with Lipschitz constant L; and the fact that ¥ > u in Bg. We estimate

M
udx < ||u||L°°(B)b :
Dy

min

where ||u||z~(p) is estimated in Theorem 4. We now take into account Proposition 1

and choose the constant there as C = 2-2nalmin_ e arrive at:
L, maxp |x|

/bu(x)v dx > 1 —2bpaxllull L) | Ny N BR|. (5.12)
D,

In order to estimate the right hand of (5.10) side we use the Lipschitz continuity of a
and obtain

/aﬂ(x)|Vv|p dx < /a(x)leV’ dx+/|au(x) —ax)||Vv|P dx (5.13)
D, D, Dy
< /a(x)|Vu|p dx+/a(x)|Vf/|p dx—/a(x)|Vu|p dx+c(p—1).
D, Bgr Bg

By Proposition 1 and the definition of 3 we conclude that

/aﬂ(x)|Vv|p dx < Iy +/a(x)(|Vf/|p — |VulP)dx + ¢|Ny, N Bg| (5.14)
D, Bg
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for R small enough. Thus (5.10) and (5.12) yield

TN PN (1= 2bpaxl|ull ()| Nu N BRD)”

< Ju+ [ aw(VIp ~ [Vulds + clN, 0 Bl
Br
and rearranging terms we find for the expression
I := /a(x)(|Vu|P — |VVIP)dx,
Bgr

the estimate

I <d—uNP=Np) / a(x)|VulP dx + O(|N, N Bg)). (5.15)

Dy,

Let u,(x) := tu(x) + (1 — ©)v(x) for 0 < ¢t < 1. Then we have

1
d
I:/a(x)/EIVutlp dt dx
0

Bgr

1
=p / a(x) / Vi |P~2Vu; - V(i — D)dt dx.
Bg 0

Since v > u
/a(x)|vo|P—2W SV —D)dx = A / bx)(» — uydx > 0,
Br Br

and thus

1
I zp/a(x)/ (qutV’_ZVu, - |v0|1’—2v9) -V — D)d dx.
Bg 0

Replacing u — ¥ by %(u[ — V) we get

1
1
I Zp/;/a(x) (|Vut|P*2Vu,— |W|P*2W) Y (u — P)dx dt. (5.16)
0 Bg

Now, we use the following inequalities, which can be found e.g. in [11], Lemma 5.7

(I€1P~28 — |€'/P72E") - (6 — &) = (N, p)(I&] + |E')P 21 — &) if 1 <p <2,
(5.17)

and

(161726 — |'1P72') - (6 — &) = c(N,p)|§ — &) ifp>2 (5.18)
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498 C. Bandle, A. Wagner

for all £, € RV, Inserting the second inequality into (5.16) we get for p > 2

1
1> C(N,p)p/% / a()|V(u, — V)P dx dt
0

BRr(xo)
1

= c(N,p)p/tP*1 dt / a(x)|V(u — D) dx

0 Br(xo)
= c(N,p) / a(x)|V(u— )P dx.
BR(x0)

From inequality (5.15) we deduce that

/ a@)|V(u =P dx < O(Ny N Br(xo))). (5.19)

Br(xo)

This proves the second assertion (5.8) of the lemma.
For the case 1 < p <2 we have

1
1 . . _
I= c(N,p)p/;/a(xﬂvm,—v)F IVl + 1V9DI)" 2 de e
0 B

1
> c(N,p)lz—’/rdr/au)W(u C R (Yl + 19D d
0 B

1 _
= eN.p) / a(@) [V — D)2 (V] + VD) d.
Bgr

We use Holder’s inequality and get

/a(x)|V(u — V)P dx

Br
=/ a5 @IV — P (vl + 190D) T a8 ) (19ul + (Vopl) F d
Bgr
< /a(x)|V(u— )12 (IVul + |va|)|)”*2 dx /a(x) (IVulHVIDI)? dx
R R
(5.20)

@ Springer



Optimization problems for weighted Sobolev constants 499

This together with (5.5) gives

/ a() |V — 0P (1Vul + Vo))~ dx
Bgr

2 2
1-2 2 1-

> 2+p/b(x)(f/ — u)dx /a(x)lV(u — V)P dx /a(x)quIp dx
Bg

R R

<
SN

Observe that by the maximum principle, ¥ < V where
div(a(x)|VVIP2VV) + Ab(x) = 0in Bg, V = |u|e On dBg.
From the same arguments as for Theorem 4 it follows that |V |, < co. Thusfor R < R’
2 1-2

I>c(N,p,R,|uls) /a(x)|V(u — V)P dx /a(x)|Vu|P dx

R R

=
=

For the case 1 < p < 2 inequality (5.15) then implies
-4
/a(x)IV(u—f/)V’ dx <c /a(x)quV" dx |NuﬁBR|%
Bgr R

The integral |, B @) VulP dx can be estimated by means of a Caccioppoli type inequal-
ity, for solutions of the inequality (4.1), as follows. Choose ¢ = un” for solutions of
(4.1) where n € C3°(Bag) such that n = 1 in Bg and |Vy| < & for some positive
number ¢ = c(N). Some elementary calculation based on Holder’s and Young’s
inequalities implies that there exists a constant ¢ = ¢(N, p) such that for R < 1

/a(x)|Vu|1’ dx < c(n,p) | R7? / uP dx + A / b(x)u dx

Bgr Bor Bor
< c(n,p) ([ul + Abmax| tloc) RN P, (5.21)
Thus
/a(x)|V(u —D)IP dx < cRN-PI=D|N, N Bg|Z (5.22)
Bg
for 1 < p < 2. This completes the proof of the lemma. O

The next lemma gives a local estimate for 7.

Lemma 9 Letu € K(B) be any minimizer of Jy and let v be as defined in (5.4). Denote
by h the unique solution of

div(|VAP=2Vh) =0 in Br(xo), h=u on dBr(xg).
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500 C. Bandle, A. Wagner

Then the following local estimate holds for all 1 < p < oo:

r\N
/ a(x)|Vf/|pdx§c((E) +R)/|Vu|de+cRN, (5.23)
Bpr

By (x0)

where c is some positive constant which is independent of r and R.
Proof We estimate

/ a(x)|VoP dx < 2P~1 / a(x)|V@ — h)|P dx + / a(x)|Vh|P dx

B (x0) Br(x0) By (xo0)

The first integral is estimated as in the proof of Lemma 5.8 in [11]:

Step 1 Starting with the weak formulation for ¥ and 4 we obtain

/ (a(x0)|Vf/|p_2Vf/ - a(xo)|Vh|P—2Vh) V(& — hydx

BRg(xo)
<2L.R / IVIP~Y IV — h)| dx + A / b(x)( — h)dx
BRr(xo) BRr(xg)
E 1 Np—] +1 1
<2L,RI" I3 + Abyaxc(N.p)R" 7 T [}

where we set

I :=/|Vf/|1’ dx and b :=/|V(17—h)|P dx,
Br Br

and L, is the Lipschitz constant of a. For the last inequality we also used Holder’s

inequality and the continuity of the embedding of H Lr(Bg) into L?" (BR) (p* = NLZ:)

(applied to the function v — k). Hence, we obtain

1 p=1 =
/ (a(x0)|Vf/|P_2Vf/ - a(x0)|Vh|P—2Vh) V(- hydx < cR I (11” +R T) .

Br(xo)

¢ depends on L, byax, A, N and p.

Step 2 We use (5.17), (5.18) and get

/ (a(xo)waw—zva _ a(x0)|Vh|p_2Vh) V(& — h)dx
Bpr
> a(xo)c(N,p)/ (IVD] + |Wl|)p_2 IV(® — h)|* dx

Bgr
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forl <p <2and
/ (a(xo)wﬂl’*zvo - a(xo)|Vh|p’2Vh) V() — h)dx
Bgr

ZH(XO)C(N,P)/ IV —h)|P dx
Bgr

forp > 2.

Step 3 We first consider the case 1 < p < 2. We use (5.20), Holder’s inequality and
get

/ IV —h)P dx
Bgr

[SS)
.
|
[S1S)

< /(|sz|+|Vh|)p_2|V(fz—h)|2 dx /(|V17|+|Vh|)p dx

R R

The first integral on the right hand side is estimated with the help of Step 1 and 2. For
the second integral we use the fact that || Br |VAIP dx < |, Br |VV|P dx. This gives

P
=3

1 E Np—] %
/|V(f/—h)|” dxfc(RIz” (111’ +R 7)) 2P/|va|l’ dx ,
Bgr

Bg
Thus, we get the inequality
LR (BT 4 RNOD) I <o (RI+ RN ET) < (R + RY72).

For the last inequality we used Young’s inequality. From (5.5) and the assumption
that R < 1 we derive the inequality

/|Vf/|pdx§c RN+R/|VM|de
Bgr Bgr

This together with Step 5 gives (5.23).

Step 4 For p > 2 we get (using also (5.5))
/ IV — h)]P dx < ¢ RN+R/ |VulP dx |,
Bgr Bgr

where ¢ depends on the same quantities as the constant in Step 3. Together with Step
5 this gives (5.23)
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Step 5 The integral fBR a(x)|Vh|P dx can be estimated using the following growth
result by DiBenedetto [8] Proposition 3.3 (see also [11] Theorem 3.19):

/a(x)|Vh|p dx < CIIVhllLOO(B,(xO))"N < c / IVAP dx < c / |[VulP dx,
B,
where ¢ = ¢(N, p, Gmax, Amin)- =

After this preparation we are in position to proceed, as in [18], to the proof of the
Theorem 5.

Proof of Theorem 5 We use the setting as given by the previous lemmas. In the sequel
we assume xg € dD,. Forr < Rand 1 < p < oo we estimate

/ a(0)|VulP dx <201 / a(x)|V(u — D) dx + / a(x)|VyP dx
Br(xo) By (x0) Br(x0)

The first term on the right-hand side is estimated by Lemma 8, while the second is
estimated by Lemma 9.

We consider the case p > 2. Taking into account (5.8) with [N, N Br(xp)| < ¢RN and
(5.23) we arrive at

N
/ |VulP dx <y ((%) +R) / |VulP dx + kRVN. (5.24)

B, (xp) BR(xo)

y and « are two constants which do not depend on u. Now, we apply Lemma 7. This

gives
14 A 4
/ [Vu| dx<y( ) [VulP dx

B (x0) BR(xo)

for all0 < 8 < N. From Lemma 6 it follows that u € C?D": (B) forall0 <« < 1.
Next, we consider the case 1 < p < 2 and assume that xo € dD,,. (5.7) with the right

2
hand side replaced by RV —r+p together with (5.23) gives

PN
/ |VulP dx <y ((E) —|—R) / |VulP dx + k RN-PFeop (5.25)

B (x0) BRr(xo)

where aq := ’% Lemma 7 now gives

p
/|Vu|pdx§y(%) / \Vul? dx

B, (x0) BRr(xp)

forall0 < B < N — p + agp. Then Lemma 6 gives u € C?O"’C‘(B) forall 0 < o < «ag.
This information can now be used to improve estimate (5.21) then (5.22) and con-

sequently (5.7). Let u € CloC (B) for some a < o then the right hand side of (5.21)
can be replaced by ¢cRV P+ hence the right hand side of (5.22) will be replaced
by cRWN —prep)1-D)|N, N Bng and consequently the right side of (5.7) is bounded
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Br(0) /

D'L'l

Br(x0)

Fig. 1 First illustration in the proof of theorem 7

by cRN-PHP(5H+(1=5)) Set oy := £ 4 a(1 — §). This implies that (5.25) holds with
ap replaced by . Lemma 7 and Lemma 6 then imply u € C?{;‘z (B) for0 < a < .
Thus, we obtain a bootstrap argument which gives in the k -th step: there exists
a sequence (ag)k>1 such that inequality (5.24) holds with «o replaced by oy and
api1 =5 +ar(l — 5). Since g = § we get o = 1 — (1 — §)¥*1. Clearly o is an
increasing sequence with limit 1. This proves u € C?(;‘Z(B) forall0 <o < 1. O

We are now in position to prove our main theorem.

Theorem 6 Assume (A1)-(A4) and let m < M(B) be any given positive number. Then
there exists an optimal domain Dgy with M(Dgy) < m and a minimizer ugy € Wé’p (Do)
such that S, (Do) = sp(m).

Proof By Lemma 4 there exists a minimizer ug of 7,,,. By the preceding theorem D,
is open. Hence s, (m) = J,,, see Lemma 4, which establishes the assertion. O

Based on this we now prove the Lipschitz continuity of any minimizer.

Theorem 7 Assume (Al)—(A4) and 2 < p < oo. Let u € K(B) be a minimizer of
sp(M). Then u € ! (B).

loc

Proof The proof follows closely the proof of Theorem 2.31in [2]. Set d(x) := dist(x, N,,).
Since u is continuous the set D,, is open. We will use (5.8):

/ |V(u— )P dx < c|Ny N Br(xo)|.
Br(xo)

Let x¢ be any point in B be such that d(x¢) < %dist(xo, dB). We will prove, that the
estimate u(xp) < cd(xp) must hold for some positive constant ¢ which does not depend
on xp (Fig. 1). We set

. uxo)
"~ d(xo)

(5.26)
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Br(0)

Fig. 2 Second illustration in the proof of theorem 7

and then to derive an upper bound for M. Let R = d(xp) and consider the ball Bg(xp).
It is contained in D,,. Since

div(a(x)|Vu@)P2Vu(x)) + Ab(x) =0 in Br(xo) C Dy, (5.27)
we can apply Harnack’s inequality cf. e.g. [9] and we have

inf  u > cu(xg) = cMR. (5.28)

B3, (x0)
iR

by (5.26). ¢ does not depend on xp. Since R = d(xp) the boundary d Bgr(xp) touches
N, in at least one point. Let y € dBr(xp) N N,. After translation we may assume that
y = 0 (see Fig. 1). Next, we consider the ball Bg(0). Let ¥ the solution to

div(a(x)|VPIP~2VD) + Ab(x) =0 in Bg(0)
v=u in 9BR(0)

This is the same function as in (5.3). Thus ¥ > u in Bg(0) and (5.8) holds. From (5.28)
we deduce

P(x) > cMR in B%R(xo) N Br(0). (5.29)
We apply Harnack’s inequality once more and get
V(x) > C* in B%R(O) (5.30)
with C* = cMR. We introduce the function
w(x) :=C* (e"“‘2 — e"‘Rz)

for u > 0. Direct computation gives
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div(a(x)|Vw(x)|p’2Vw(x)) 4+ Ab(x) >0 in Bg\ B%R(O)
if u is sufficiently large but independent of R for R < 1. Since w = 0 in 0 Bg we get
w<C" <V in dB;,4(0).
2

The maximum principle then implies

(R —IxD)
R

where the last inequality is verified by direct calculations (with 8 = 2uexp(—p)).
From (5.31), (5.30) and the definition of C* we get

P(x) = wx) = C*B in Bg\ By (0), (5.31)

P(x) > cM(R — |x|) in Bg(0). (5.32)
We now use exactly the same construction as in [2] Lemma 2.2. Choose two points
y1 and y> in B%R(O) such that B%R(yl) N B%R()q) = ¢ (see Fig. 2). Given a point
R¢ € dBR(0) with &€ € dB1(0) we consider the segments L;(§) joining RE with y;.
Denote by /;(§) C L;(§) the largest segment with endpoints RE and »;(§) such that
ni(€) ¢ BéR(yi) and u(n;(&)) = 0. We set n;(§) = & if u(R¢) > 0. Denote by S; the

union of all the segments /;(£) and set S := S1 U S2. We set x = n;(§) in(5.32) and
compute

R
. d .
cM(R — [n;(E)) = v(ni(§)) = / 7 Wit - v(ré))dr
ni(§)

R
< / V() — $(r&))] dr.
ni(§)

Next, we integrate over d Bg(0):

M |(B(O)\ Byx0) N N,

< C(N)/IV(u—ﬁ)l dx
Si

Adding this inequality for i = 1,2 gives the inequality

cM|S| §/|V(u—f/)|dx.
N

This implies

cM|S| < c(N)/ IV (= D) dx < c(N)IS|"~7 (/ IV(u—D)P dx) .
S S

Hence

MP|S| < c/lV(u—f))lp dx.
S
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Now, we apply (5.8) in Lemma (8) for p > 2. Thus
MP|S| < cINy N Br(0)| < clS],

and this gives an upper bound for M which does not depend on xp. From this we
deduce the Lipschitz continuity as it was done in [2] Theorem 2.3. Letx € B'ND, NV,
where B’ is any subdomain of B with B’ CC B. V is a sufficiently small neighbourhood
of the free boundary. The smallness of V' is such, that by the previous argument we
have

u(x 4+ dx)x') < cd(x) forall x' € B1(0).

This implies that

wx') = Lu(x+ dx)x') <c¢ forall x' € B1(0).
d(x)

The scaled function # solves

div (a(x’)wa(x’) |P—zva(x’)) +2d()b(x) =0 forall X' e By (0),

where a(x') = a(x + d(x)x’) and b(x') = b(x + d(x)x’). Hence interior regularity gives
[Va(0)| <c.

From this we conclude [Vu(x)| < c. O
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