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Abstract
Objectives To diagnose Parkinson disease (PD) at the indi-
vidual level using pattern recognition of brain susceptibility-
weighted imaging (SWI).
Methods We analysed brain SWI in 36 consecutive patients
with Parkinsonism suggestive of PD who had (1) SWI at 3 T,
(2) brain 123I-ioflupane SPECTand (3) extensive neurological
testing including follow-up (16 PD, 67.4±6.2 years, 11 fe-
male; 20 OTHER, a heterogeneous group of atypical

Parkinsonism syndromes 65.2±12.5 years, 6 female). Analy-
sis included group-level comparison of SWI values and
individual-level support vector machine (SVM) analysis.
Results At the group level, simple visual analysis yielded no
differences between groups. However, the group-level anal-
yses demonstrated increased SWI in the bilateral thalamus
and left substantia nigra in PD patients versus other Parkin-
sonism. The inverse comparison yielded no supra-threshold
clusters. At the individual level, SVM correctly classified
PD patients with an accuracy above 86 %.
Conclusions SVM pattern recognition of SWI data provides
accurate discrimination of PD among patients with various
forms of Parkinsonism at an individual level, despite the
absence of visually detectable alterations. This pilot study
warrants further confirmation in a larger cohort of PD patients
and with different MR machines and MR parameters.
Key Points
• Magnetic resonance imaging data offers new insights into
Parkinson’s disease

• Visual susceptibility-weighted imaging (SWI) analysis
could not discriminate idiopathic from atypical PD

• However, support vector machine (SVM) analysis provided
highly accurate detection of idiopathic PD

• SVM analysis may contribute to the clinical diagnosis of
individual PD patients

• Such information can be readily obtained from routine MR
data
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Abbreviations
AD Alzheimer disease
DaTScan 123I-ioflupane SPECT
DN dentate nucleus (of the cerebellum)
DTI diffusion tensor imaging
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FA fractional anisotropy
GM grey matter
MCI mild cognitive impairment
MRI magnetic resonance imaging
MSA-P Parkinson variant of multiple system atrophy
PD Parkinson disease
PSP progressive supranuclear palsy
RBF radial basis function
RN red nucleus
ROI region of interest
SMO sequential minimal optimisation
SN substantia nigra
SPECT single-photon emission computed tomography
SVM support vector machine
SWI susceptibility-weighted imaging
TBSS tract-based spatial statistics
TFCE threshold free cluster enhancement
VBM voxel-based morphometry
WM white matter

Introduction

Brain iron deposition has attracted increasing attention in
neurodegeneration, occurring during normal aging [1] but
being more marked in various neurodegenerative disorders
[2], in particular in mild cognitive impairment (MCI) and
Alzheimer disease (AD) [3–5]. Brain iron deposition has
been proposed to play a key role in the pathogenesis of
Parkinson disease (PD) [6, 7].

In the current investigation, we assessed recently introduced
susceptibility-weighted imaging (SWI) [8] in PD. BrainMRI is
routinely performed in the diagnostic work-up of suspected
PD, mainly to exclude other confounding abnormalities. An
uncommon alteration visible on conventional MRI involves
narrowing or disappearance of the pars compacta of the sub-
stantia nigra (SN) on T2 weighted-imaging [9], yet this sign
has low sensitivity and specificity, and contributes marginally
to the diagnosis of PD, in particular at an early stage.

Based on the assumption that PD is associated with
systematic brain SWI alteration, which is too subtle to be
detected by visual analysis, we used an advanced computer-
based analysis. It is important to distinguish PD from other
degenerative or secondary forms of Parkinsonism, in view
of its long disease duration, its relatively good prognosis and
its remarkable response not only to dopaminergic agents but
also to deep brain stimulation, providing relief of motor
disability. This discrimination may sometimes be challeng-
ing based on clinical assessment alone, in particular in early
stages of the disease [10]. In order to achieve a potentially
clinically applicable diagnosis at the individual level, we
implemented a pattern recognition approach, which can be
illustrated by the example of face recognition. Individual

faces are not detected based on single features such as the tip
of the nose, ears or eyes, but by a combination of multiple
features, even though each individual feature may not be
significantly different between groups (review [11]). As the
most relevant clinical question is not the discrimination of
PD versus healthy controls, but the diagnosis of PD versus
other forms of Parkinsonism, we included 36 consecutive
community-dwelling subjects with suspected PD. Inclusion
criteria were brain 123I-ioflupane SPECT (‘DaTScan’) and
extensive neurological testing including long-term follow-
up as reference standard.

In particular, we addressed the question whether support
vector machine (SVM) [12] pattern recognition of SWI data
may contribute to the diagnosis of PD at an individual level.

Methods

Subjects

This retrospective study was approved by the local ethics
committee. We included all consecutive patients seen in our
institution between 2006 and 2010 with various forms of
Parkinsonism who met the following criteria: (1) SWI at 3 T
during clinical workup, (2) brain 123I-ioflupane SPECT
(‘DaTScan’) as reference standard, (3) extensive neurological
testing including clinical follow-up of at least 1 year and (4)
absence of evident morphological findings on brain MRI.

The final sample included 16 PD patients (PD, 67.4±
6.2 years, 9 female) and 20 patients with another form of
Parkinsonism (OTHER, 65.2±12.5 years, 8 female). Age,
sex and Fazekas score did not differ significantly between
the two groups.

For the PD group, a diagnosis of PD was made in the
presence of typical, asymmetrical and levodopa-responsive
Parkinsonism meeting the UK Parkinson’s Disease Society
Brain Bank criteria, including at least two supportive criteria
such as slow progression or peak-dose dyskinesia. PD was
moderately advanced (mean Hoehn & Yahr stage [13]: 2.3+
0.6), and none of these patients had atypical features, even
after at least 1 year of follow-up (mean follow-up duration:
6.4+3.3 years). In addition, all had an asymmetrical de-
crease of 123I-ioflupane uptake in the posterior aspect of
one or both putamen on SPECT. The OTHER group was
more heterogeneous, reflecting the prevalence of common
PD-mimicking conditions in the daily activity of a move-
ment disorders clinic. All of these patients exhibited Parkin-
sonism defined as the presence of bradykinesia associated
with resting tremor or rigidity. It included pathologies as
varied as multiple system atrophy (MSA, n04), progressive
supranuclear palsy (PSP, n01), dementia with Lewy body
(n02), vascular Parkinsonism (n01), atypical tremors (n05)
and psychogenic Parkinsonism (n02). In five cases, a firm
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clinical diagnosis could not be established at last assess-
ment, and these patients were labeled as having mixed
Parkinsonism.

MR Imaging

MR imaging was performed using a conventional clinical
3.0-T MR system (Magnetom Trio, Siemens, Erlangen,
Germany). We used a standard SWI sequence [8]: field of
view 352×448, 72 slices, voxel size 0.5×0.5×1.2 mm, echo
time TE 20 ms, repetition time TR 34 ms and 1 average.
Additional sequences (T1w, T2w, FLAIR) were acquired and
analysed to exclude major brain abnormalities. White matter
lesions were analysed according to the Fazekas score [14].

Statistical analysis

Age, ROI volume and ROI mean signal intensity were ana-
lysed in parametric unpaired t-tests, and gender and visual
rating of SWI in non-parametric unpaired Mann-Whitney
tests. P-values<0.05 were considered significant.

Visual Analyses

The presence of microbleeds was visually analysed because of
the near-random distribution. A visual rating scale (0-3) anal-
ysis [15] was applied to the SN, red nucleus (RN), dentate
nucleus (DN) of the cerebellum and putamen. The DN was
not covered in the investigated SWI volume in six subjects.

Voxel-wise analyses

The voxel-wise analyses were performed as in [5]. Pre-
processing of the SWI data was done in the FSL software
package [16]. All individual images were linearly trans-
ferred into Montreal Neurological Institute (MNI) standard
space using FLIRT (part of FSL). Since SWI images are
relative data, we performed intensity normalisation by nor-
malising each individual image with respect to the average
signal of the ventricular system [5].

Group-level analyses

Voxel-wise statistical analysis was performed in RANDOM-
ISE, part of FSL, corrected for multiple comparisons imple-
menting threshold-free cluster enhancement (TFCE)
considering fully corrected P-values<0.05 as significant [17].
Age and gender were used as non-explanatory co-regressors.

The linear spatial normalisation alignment of the infra-
tentorial structures was less accurate than for the supraten-
torial regions. In combination with the small volumes of the
SN and RN, these structures were additionally manually
segmented and analysed with respect to volume and mean

signal intensity. This manual segmentation was performed
on the spatially normalised data, which already compensate
for differences in global brain volume.

Individual-level SVM analysis

The individual SVM classification analysis is identical to
previous studies [5, 18] and analysed in the freely available
WEKA software package (http://www.cs.waikato.ac.nz/ml/
weka, Version 3.6.1). In a first step, we performed a “Relief”
[19] feature selection because not all voxels discriminate
between groups. Both the inclusion of non-discriminative
voxels and the exclusion of discriminative voxels reduce the
classification accuracy.We selected the top 100, 250, 500, 750
and 1,000 features, implementing ten-fold cross validation.
The second step consisted of the SVM classification sequen-
tial minimal optimisation (SMO) [20] with a radial basis
function (RBF) kernel [21]. There are two fundamental
parameters. GAMMA represents the width of the radial basis
function, and C represents the error/trade-off parameter that
adjusts the importance of the separation error in the creation of
the separation surface. Based on our previous experience of
similar analyses in the domain of mild cognitive impairment,
which showed best results for C01 [5, 18], GAMMA was
iteratively explored from 0.01 to 0.09, with an increment of
0.01, while C was fixed to 1.00. We performed ten repetitions
of a ten-fold cross validation technique.

Results

Visual analysis

Only one patient (of the PD group) had one microbleed. Due
to the small number of microbleeds, no additional statistical
analyses were performed.

There was no significant difference in the visual rating
scale [15] between groups (Fig. 1).

Group-level analyses

PD versus OTHER patients had increased SWI values in the
bilateral, right-dominant thalamus (Fig. 2, Table 1). The
inverse comparison yielded no supra-threshold clusters.
The additional ROI analysis in SN and RN yielded no
significant difference in volume between groups, yet signif-
icantly (P<0.05) increased signal intensity in PD versus
OTHER in the left SN (Fig. 3).

Individual-level SVM analysis

SVM analysis of SWI provided a correct classification of
PD versus OTHER with an accuracy of up to 86.92±
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16.59 % (Table 2). The spatial distribution of the most
discriminative voxels (features) overlapped substantially
with the results of the group-level analysis in particular in
thalamus bilaterally, while additional discriminative voxels
were identified in bilateral head of caudate nucleus (Fig. 2).

Discussion

Computer-based SVM analysis of brain SWI data provided
an accurate individual detection of PD patients despite the
absence of visually detectable differences. Given the exten-
sive use of brain MRI during routine clinical workup of
Parkinsonism and the operator-independent and almost au-
tomatic post-processing of the data, this analysis features
easy applicability and significant benefit at the bedside. The
method is not intended to replace but to complement exist-
ing tests, ideally as combined multi-modal assessment in-
cluding other imaging parameters such as 3DT1 and DTI as
well as laboratory, neurological testing, nuclear medicine,
etc., to further improve accuracy and robustness of an indi-
vidual diagnosis of PD.

Visual analysis of SWI images in PD

In the investigated sample, only one microbleed was pres-
ent. The presence of microbleeds thus does not represent a
clinically useful parameter for the discrimination PD versus
other forms of Parkinsonism.

The previously proposed semi-quantitative visual rating
scale in PD [15] found no significant difference between
groups. The original study included 11 patients with PD, 12
with PSP, 12 with the Parkinson variant of MSA (MSA-P)
and 11 healthy controls. The RN discriminated PSP from
PD and MSA-P. The putamen differentiated PSP from PD.
The rating score could however not differentiate MSA-P and
PD. In conclusion, the score proposed in this study appeared
best suited to detect PSP, while the visual rating was not
sufficient to discriminate PD from the other forms of Par-
kinsonism. Our results are in agreement with these findings.

Group-level analysis of SWI

The voxel-wise analysis of the SWI images yielded signifi-
cantly increased SWI values in PD patients versus other
Parkinsonism in bilateral, right-dominant thalamus. The addi-
tionally performed ROI analysis, which was performed be-
cause of the inaccuracy of automatic spatial normalisation in
the infratentorial region in relation to the small size of SN and
RN, demonstrated a significant increase of the physiological

0 

1 

2 

3 

right RN left RN right SN left SN right 
putamen 

left 
putamen 

right DN left DN 

Visual rating scale 
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Fig. 1 Visual rating of SWI in PD. In accordance with a previous
investigation [15], the SWI in substantia nigra (SN), red nucleus (RN)
and dentate nucleus (DN) of the cerebellum and putamen was visually
assessed and graded from 0-3. There was no significant difference in
this visual rating score between PD versus OTHER. Average visual
rating score separated into left and right for PD (dark grey) and
OTHER (light grey). Error bars indicate standard deviation

Fig. 2 Voxel-wise SWI analysis in PD. PD patients versus OTHER
had increased signal intensity in bilateral, right-dominant thalamus
(red). The inverse comparison yielded no supra-threshold clusters.
The most discriminative voxels (features) identified using the RELIEF
feature selection algorithm, which are the basis for the individual-level
SVM analysis, are illustrated for comparison in blue. Note the good
overlap despite the fundamentally different methodology. Compared to
the group-level voxel-wise analysis, the RELIEF additionally identi-
fied bilateral head of caudate nucleus as discriminative regions. These
regions also displayed a trend in the group-level analysis, which did
not reach multiple comparisons corrected significance. Axial slices at
the indicated position in MNI (Montreal Neurological Institute) stan-
dard space coordinates (radiological convention with right hemisphere
on left hand side). Grey: Mean SWI value. Threshold-free cluster
enhancement (TFCE) corrected for multiple comparisons at P<0.05.
Supra-threshold voxels were enlarged using TBSS fill (part of FSL) for
illustrative purposes
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low SWI signal in the left SN in PD patients, and a clear yet
non-significant trend in the contralateral SN. This observation
is in agreement with previous studies [15]. This asymmetry
might be related to Parkinsonism being clinically more prom-
inent on the right in the majority of PD patients (12 right
versus 4 left dominant parkinsonism).

Only few previous studies used SWI to assess brain iron
deposition in PD. The visual analysis study of SWI at 1.5 T
discussed above showed brain iron in the putamen, SN, RN
and DN in PD patients (and healthy controls) compared to
MSA-P and PSP patients [15]. Another SWI study at 1.5 T
in 16 PD, 8 MSA-P patients and 44 age-matched healthy
controls used manually defined ROIs. MSA-P patients had
higher iron deposition in the putamen and thalamus [22].
Both investigations are in principle agreement with our
results.

SWI-derived phase shift values were analysed using a
ROI approach in 40 patients with PD without dementia and
26 controls [23]. The SN was the only region that differed

between PD and controls. Huang et al. evaluated SWI at 3 T
in 30 PD patients and 19 controls in a manual ROI analysis
[24]. The mean phase values of both the SN and globus
pallidum differed significantly between the PD group versus
normal controls. Three studies focussed more on methodo-
logical aspects. A study in 51 patients with symptoms of PD
compared several pulse sequences at 3 T to assess brain
iron concentrations [25]. SWI contrast correlated well
with brain iron concentration. One study assessed SWI-
derived phase radians in 42 PD patients and 30 control
subjects at 1.5 T, and demonstrated lower phase radians
of the SN, caudate nucleus and RN in PD patients [26].
Finally, SWI-derived phase shift was assessed at 3 T in
12 PD patients and 5 controls [27]. Most of these
studies provide group-level results; application of these
findings in daily clinical neuroradiology is therefore
limited.

The group-level comparisons in the current investigation
should be interpreted with caution because of the composition

Table 1 Lists all significant voxels in SWI signal intensity between PD and OTHERS. Significant TFCE corrected differences were observed for PD
versus OTHERS in bilateral thalamus, while the inverse comparison of OTHER versus PD yielded no supra-threshold clusters

Cluster
index

Voxels Z-MAX Z-MAX X
(mm)

Z-MAX Y
(mm)

Z-MAX Z
(mm)

Z-COG X
(mm)

Z-COG Y
(mm)

Z-COG Z
(mm)

Side Anatomic
location

PD > OTHER

1 1705 0.997 9 −21 −1 14.6 −21 5.16 right thalamus

2 194 0.988 −11 −29 5 −12 −26 5.81 left thalamus

3 14 0.964 −16 −32 7 −16.1 −29.8 7.5 left thalamus

OTHER > PD

No supra-threshold voxels

Cluster index 0 number of cluster, voxels 0 number of supra-threshold voxels in cluster, Z-MAX 0 maximum Z value (or 1 - p-value) within each
cluster, Z-MAX X,Y,Z 0 location of maximum p-value per cluster in MNI standard space (X, Y, Z) and Z-COG X,Y,Z 0 centre of gravity of the
cluster in MNI standard space (X, Y, Z), side and anatomic location
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Fig. 3 ROI analysis of red nucleus and substantia nigra. The region of
interest analysis of red nucleus (RN) and substantia nigra (SN) yielded
no significant difference in volume between groups (A). Concerning

signal intensity, there was a uniform tendency of increased signal
intensity in PD (dark grey) versus OTHER (light grey), which was
significant (P<0.05) in left SN
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of the control group. The focus of the current investigation
was the individual diagnosis of PD subjects. The clinically
relevant analysis was thus oriented towards detection of PD in
a group of individuals with a variety of PD-like conditions.
The inclusion of healthy controls would have been irrelevant
in this context. Even a classifier that perfectly discriminates
between confirmed PD and healthy controls does not neces-
sarily discriminate between PD and other forms of Parkinson-
ism. Indeed, the group composition of the control group may
influence the performance of a classifier depending on the
prevalence of each condition. For example, the frequency of
PD (69.6 % of Parkinsonian syndromes) is approximately 22
times higher than the prevalence of MSA (3.2 %) [28]. This
means that a “dummy” or null classifier that simply always
gives the diagnosis of PD would obtain 95 % accuracy for the
correct diagnosis of PD versusMSA in a community-dwelling
sample. The pre-selection of patients with specific diseases
might represent a systematic confound with respect to the
performance of a classifier in the clinical setting, and we
consequently included consecutive, unselected patients from
our institution. Moreover, the presence of a 123I-ioflupane
SPECT was an inclusion criterion in this study, but this is
not available in healthy controls because of radiation
exposure. The apparent disadvantage of using unselected
consecutive patients is that it is difficult to interpret
group-level results. We present these group-level results
mainly to visualise detectable SWI changes between PD
versus OTHER as the basis for the individual-level
pattern recognition analysis.

Individual-level SVM classification analysis

In order to obtain an individual discrimination of PD sub-
jects, we adopted a complex methodology including a spa-
tial and intensity normalisation of SWI data, feature
selection of the most discriminative voxels, and subsequent
SVM classification [5, 18]. The best classification accuracy
was about 86 %.

The already-discussed manual ROI analysis study by
Huang et al. evaluated SWI at 3 T in 30 PD patients and
19 age-matched normal controls [24]. The best diagnostic
accuracy for the detection of PD was 59.2 % (29/49), which
is actually close to the null classification accuracy. The other
study by Wang et al. [22] analysed SWI phase shift in
manually defined ROIs in 16 PD, 8 MSA-P and 44
age-matched healthy controls. The putamen provided
the best differentiation of MSA-P versus PD with an
area under the curve of 0.92, which translates into a
sensitivity of approximately 90 % and a specificity of
approximately 82 %. The approach of voxel-wise data
preprocessing followed by SVM classification described
in this study is operator independent and nearly auto-
matic, and yielded higher classification accuracy com-
pared to these manual ROI investigations. Moreover, as
discussed above, the pre-selection of specific diagnoses
such as MSA-P, which do not mirror the prevalence of
these conditions in a community-dwelling sample, may
systematically confound the results of such classification
analyses with respect to potential clinical applications in
prospective, unselected cases.

It is noteworthy that SVM [12] analyses for individual
classification are fundamentally different from the group-
level ROI or voxel-wise analyses discussed above. Such
voxel-wise analyses are univariate tests, which separately
analyse each included ROI or voxel between two (or more)
groups. Given the multiple tests for voxel-wise analyses, it
is necessary to implement a correction for multiple compar-
isons as a second step. By comparison, individual-level
SVM analyses are multivariate tools that originate from a
field called “machine learning” or multi-voxel pattern anal-
ysis (MVPA), a branch of artificial intelligence. The aim is
to identify patterns that allow for the discrimination of
individual subjects. There is only one resulting parameter
per subject; hence, there is no need for corrections for
multiple comparisons (review [11]). There are only a few
previous applications of SVM classification in the domain

Table 2 Individual SVM classification of PD based on SWI

SVM classification

16 PD, 20 OTHER-NULL classification accuracy 55.6 % (20/36)

No. of features Accuracy TP rate FP rate TN rate FN rate

100 86.92(16.59) 0.87(0.28) 0.14(0.23) 0.87(0.23) 0.13(0.28)

250 82.83(18.38) 0.87(0.28) 0.21(0.28) 0.79(0.28) 0.13(0.28)

500 83.42(18.18) 0.87(0.28) 0.20(0.27) 0.80(0.27) 0.13(0.28)

750 81.58(18.44) 0.83(0.31) 0.20(0.26) 0.81(0.26) 0.18(0.31)

1000 82.25(18.98) 0.81(0.32) 0.17(0.26) 0.83(0.26) 0.19(0.32)

Accuracy, true positive (TP), false positive (FP), true negative (TN) and false negative (FN) rates for individual classifications using a SVM
classifier using the indicated number of selected features for the individual classification of PD versus OTHER. Note that the accuracy is calculated
as average accuracy of ten repetitions using ten-fold cross validation (average and standard deviation)
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of PD. The majority of these studies applied SVM classifiers
to behavioral data of gait analysis [29], fine motor force
tracking [30], analysis of wearable accelerometer sensors
[31] or joint movement [32], and even voice recording
[33]. The only previous SVM application to MRI data in
the domain of PD analysed VBM pre-processed grey matter
in 21 PD, 11 MSA-P and 10 PSP, and 22 healthy controls
[34]. The best classification accuracy up to 96.8 % was
obtained for PSP versus PD, while the accuracy was
71.9 % for MSA versus PD. PD could not be discriminated
from controls. These classification accuracies are consistent
with the clinical neuroradiological experience that PSP has
the most pronounced visible alterations in brain MRI with
selected atrophy of the mesencephalon, referred to as the
“king penguin” or “hummingbird” sign [35], while changes
in MSA-P are more subtle and PD-associated changes are
almost always absent. Concerning analyses of white matter
derived from diffusion tensor imaging (DTI) data, there are
currently no SVM investigations in the domain of PD.
However, a previous stepwise logistic regression analysis
study discriminated PD versus PSP based on apparent dif-
fusion coefficient (ADC) values in ROIs in the basal gan-
glia, notably the putamina, with a sensitivity of 90 % and a
positive predictive value of 100 %, while this region did not
discriminate between PSP and MSA-P [36]. Another related
study demonstrated that ADC discriminates between MSA-
P versus PD and controls, yet not between PD and controls
[37]. Assessment of SWI may be a complimentary parame-
ter with respect to the discussed VBM grey matter and DTI
white matter data. Ideally, a classification analysis should
integrate multiple imaging contrasts e.g., T1w VBM, DTI
and SWI, preferably in combination with other parameters
such as gait analysis, laboratory tests, neuropsychology, etc.,
with the intention to further increase the accuracy and ro-
bustness of individual diagnosis. It is however not trivial to
optimise such multimodal classification analyses, which is a
domain of current research. The SVM analysis can be per-
formed on standard computer hardware within minutes us-
ing free software, which is thus eventually potentially
applicable in a clinical routine setting.

Limitations

The major limitation of this investigation is the relatively
small sample size. The high accuracy rates of individual
classification exceeded our expectations. These values were
obtained by a well-established ten-fold cross validation
where nine parts are used for training and the remaining
part is used for testing the classifier. Even though this cross-
validation approach is an appropriate method and for the
number of subjects involved in our study, the present results
seem too optimistic, probably related to some degree of
overfitting of the data. Moreover, we first performed a

feature selection. The rationale behind this approach is that
not all voxels discriminate between groups and the inclusion
of non-discriminative voxels will decrease classification
performance. Also, the number of voxels without feature
selection clearly exceeds the number of subjects. This pro-
cessing chain of feature selection followed by SVM classifi-
cation was successfully applied in a few recent investigations
[5, 18, 38], but it might still contribute to some degree of
overfitting of the data. We present our data as a pilot study
showing the feasibility of this methodology in the domain of
Parkinson disease. Additional validation in larger independent
data sets, which should be ideally acquired on different MR
systems, field strengths and MR parameters, which might
influence the image contrast [39], is warranted to confirm
the present findings.

Most previous research-oriented SWI studies used phase
images [40]. These phase images are not used for clinical
diagnosis and are infrequently stored on image servers. We
analysed SWI images taking into account that these SWI
images correspond to relative values and that iron deposi-
tion is not the only origin for lower SWI values. Other
origins of decreased SWI values include haemorrhage, cal-
cifications, post-operative debris and deposition of other
metals. We normalised the SWI images with respect to the
water signal in the cerebrospinal fluid, inferring a constant
SWI value in water [5]. A recent study compared several
pulse sequences at 3-T MRI implementing a similar ap-
proach showed that SWI correlates well with brain iron
content [25]. Although this approach is less direct than the
analysis of the phase images, it allows for a wider applica-
tion of the presented analysis strategy.
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