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deformations are related to standard algorithms like barrier, penalty or regularization
methods in optimization.
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306 D. Klatte, B. Kummer

1 Introduction

It is well-known that, in the context of various solution methods, statements on
“stability” of the equation are helpful tools for verifying convergence.

In this paper, we show that the applicability of certain solution methods is even
equivalent to some classical types of stability for equations and inclusions (also called
generalized equations) as well. In other words, we present solution procedures which
converge (locally and with linear order of convergence) exactly under the mentioned
stability condition and present stability criteria in terms of such solution procedures.
So we hope that our approach helps to decrease the gap between stability and its main
applications, the behavior of solution methods.

Our basic model is the generalized equation

Find x such that p ∈ F(x), F : X ⇒ P, (1.1)

where p ∈ P is a canonical parameter, P, X are Banach spaces and F is a closed
multifunction, i.e., F(x) ⊂ P and the graph of F , gph F = {(x, p) | p ∈ F(x)}, is a
closed set.

System (1.1) describes solutions of equations as well as stationary or critical
points of various variational conditions. It was Stephen M. Robinson who intro-
duced in several basic papers [32–34] generalized equations as a unified framework
for mathematical programs, complementarity problems and related variational prob-
lems. His work influenced much the development of stability analysis and of founda-
tions of solution methods in the last 20–25 years, for a survey of these developments
see [35].

In particular, for optimization problems, a deep analysis of critical points is mainly
required in hierarchic models which arise as “multiphase problems” if solutions of
some or several problems are involved in a next one. For various concrete models and
solution methods we refer, e.g. to [8,13,30], while a big scope of continuity results
for critical values and solutions of optimization problems in R

n can be found in [2].
Several further applications of model (1.1) are known for optimization problems, for
describing equilibria and other solutions in games, in so-called MPECs and stochastic
and/or multilevel models. We refer, e.g. to [1,3,6,8,13,21,22,30,36] for the related
settings.

We will study local stability of solutions to (1.1), i.e., we consider the map S(p) =
F−1(p) near some particular solution x0 ∈ S(p0).

As already in [23], we intend to characterize stable behavior of the solutions by
means of usual analytical techniques and by the behavior (uniform linear convergence
for starting points near (x0, p0)) of methods for solving (1.1) in original form or under
additional “small” nonlinear perturbations like

p ∈ h(x)+ F(x), h : X → P, (1.2)

where “+” denotes the elementwise sum.
Here, in contrast to [23], we permit errors in the iteration schemes. This is essen-

tial since it allows us to consider arbitrary Banach spaces X and P and to avoid
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Optimization methods and stability of inclusions 307

preparations via Ekeland’s variational principle [12]. The latter can be done since
we shall not aim at using the close relations between stability and injectivity of certain
generalized derivatives (which do not hold in general Banach spaces). For approaches
studying these relations, we refer the reader to the monographs [1,6,13,21,29,36].
Notice, however, that (up to now) there is no derivative-criterion for the Aubin property
or calmness of Lipschitz functions in arbitrary Banach spaces (even less for multifunc-
tions). In view of calmness, our discussion after Theorem 3 (see the torus-argument)
explains one reason for this fact. Furthermore, the way from derivative characteriza-
tions of “stability” to solution methods (particularly in Banach space) is usually long
and restricted to special problem-classes only. We shall establish a general and direct
approach.

For showing and characterizing the Aubin property, particular methods (basically
of Newton-type and successive approximation) have been already exploited in sev-
eral papers, cf. [7,10,15,21,24,25,28]. Further algorithmic approaches for verify-
ing stability of intersections of multifunctions, can be found in [17] and [26]. In
[17], calmness has been verified via Newton’s method for semismooth functions.
In [26], the Aubin property has been characterized by MFCQ-like conditions in
B-spaces.

Notice however, that Newton-type methods cannot be applied in our context due
to lack of differentiability (or of “semi-smoothness”), and successive approximation
techniques fail to work under calmness alone. Also the proper projection and penalty
methods applied in [23] require additional hypotheses for the existence of solutions
in Banach spaces.

The paper is organized as follows. In Sect. 2, some notions of local Lipschitz stability
are introduced which are well-known from the literature (cf. e.g. [1,3,13,21,36]), we
compile crucial interrelations between them and we point out the differences between
known conditions of calmness and Aubin property for usual C1 constraints in finite
dimension.

The main Sect. 3 is devoted to general stability criteria in terms of solution pro-
cedures. After starting with some basic algorithmic scheme ALG1 (which may be
seen as a descent method), Theorem 2 shows that linear convergence of an approx-
imate projection method PRO(γ ) for computing some xπ ∈ S(π) plays a key role.
In this way, we characterize calmness and the Aubin property in a constructive man-
ner and indicate the difference between both stability properties in an algorithmic
framework.

In particular, we pay attention to the case of F being a locally Lipschitz operator
and characterize calmness (Theorem 3, 4 via ALG2, ALG3) for (finite or infinite)
systems of inequalities. Using ALG3, we solve linear inequalities (with a convex
norm-condition) in order to characterize calmness for a system of nonconvex
C1-inequalities, or in order to solve this nonconvex system under calmness.

In Sect. 4, we discuss further interpretations of ALG1 and PRO(γ ) via projec-
tions (e.g. Feijer method) and penalizations as well as relations to modified successive
approximation and to Newton methods.

Finally, Sect. 5 is reserved for discussing the algorithms for nonlinearly perturbed
inclusions. In particular, modified successive approximation is used for verifying the
Aubin property (and computing related solutions) of the system (1.2)
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308 D. Klatte, B. Kummer

2 Notions of local Lipschitz stability

In the whole paper, S : P ⇒ X is a closed multifunction (the inverse of F), P, X
are Banach spaces and z0 = (p0, x0) ∈ gph S is a given point. We write ζ 0 in place
of (x0, p0) and say that some property holds near x if it holds for all points in some
neighborhood of x . Further, let B denote the closed unit ball in the related space and

Sε(p) := S(p) ∩ (x0 + εB) := S(p) ∩ {x | d(x, x0) ≤ ε}.

Note that we often write d(x, x0) for the (induced) distance in X , for better distin-
guishing terms in the spaces P and X (moreover, often X may be a complete metric
space). By conv M we denote the convex hull of a set M .

The following definitions generalize typical local properties of the multivalued in-
verse S = f −1 or of level sets S(p) = {x | f (x) ≤ p} for functions f : M ⊂ X → R.

Definition 1 Let z0 = (p0, x0) ∈ gph S.

a. S is said to be pseudo–Lipschitz or to have the Aubin property at z0 if

∃ ε, δ, L > 0 such that Sε(p) ⊂ S(p′)+L‖p′−p‖B ∀p, p′ ∈ p0+δB. (2.1)

b. If for sufficiently small ε and ‖p − p0‖, Sε(p) is even a singleton in (2.1), we
call S strongly Lipschitz stable (s.L.s.) at (p0, x0).

c. S is said to be calm at z0 if (2.1) holds for p′ = p0, i.e.,

∃ ε, δ, L > 0 such that Sε(p) ⊂ S(p0)+ L‖p − p0‖B ∀p ∈ p0 + δB. (2.2)

d. S is said to be locally upper Lipschitz (locally u.L.) at z0 if

∃ ε, δ, L > 0 such that Sε(p) ⊂ x0 + L‖p − p0‖B ∀p ∈ p0 + δB. (2.3)

e. S is said to be lower Lipschitz or Lipschitz lower semicontinuous (Lipschitz l.s.c.)
at z0 if

∃ δ, L > 0 such that S(p) ∩ (x0 + L‖p − p0‖B) 
= ∅ ∀p ∈ p0 + δB. (2.4)

Remark 1 Let us add some comments concerning the notions just defined.

(i) The constant L is called a rank of the related stability.
(ii) If S = f −1 is the inverse of a C1 function f : R

n → R
n with S(p0) = {x0},

all these properties coincide and are equivalent to det D f (x0) 
= 0. If f is only
locally Lipschitz, even more for model (1.1), they are quite different.

(iii) With respect to the Aubin property (2.1) it is equivalent to say that S−1 is met-
rically regular resp. pseudo-regular, see e.g. [21] for details. Strong Lipschitz
stability of S is the counterpart of strong regularity of S−1 as used in [21]. Note
that “strong regularity” of multifunctions has been also defined in an alternative
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manner in [33] via local linearizations and requiring that the linearized map is
s.L.s. in the above sense.

(iv) Setting p = p0 in (2.1), one obtains S(p′) 
= ∅ for p′ ∈ p0 + δB due to
x0 ∈ Sε(p0). Thus p0 ∈ int dom Sε follows from (2.1).
This inclusion means that solutions to (1.1) are locally persistent, and the
Lipschitz l.s.c. property quantifies this persistence in a Lipschitzian manner.

(v) The Aubin property is persistent with respect to small variations of z0 ∈ gph S
since (2.1) holds (if at all) also for L , ε′ = ε

2 , δ
′ = δ

2 and z0′ = (p0′
, x0′

) ∈
gph S with d(x0′

, x0) < ε′ and ‖p0′ − p0‖ < δ′. Decreasing ‖p0′ − p0‖ if
necessary, one obtains the same for the strong Lipschitz stability. On the con-
trary, the properties c., d. and e. in Definition 1 may fail to hold after arbitrarily
small variations of z0 ∈ gph S.

Remark 2 For fixed z0 = (p0, x0) ∈ gph S, one easily sees by the definitions:

(i) S is locally u.L. at z0 ⇔ S is calm at z0 and x0 is isolated in S(p0).
(ii) S is pseudo-Lipschitz at z0 ⇔ S is Lipschitz l.s.c. at all points z ∈ gph S near

z0 with fixed constants δ and L .
(iii) S is pseudo-Lipschitz at z0 ⇔ S is both calm at all z ∈ gph S near z0 with

fixed constants ε, δ, L and Lipschitz l.s.c. at z0.

The example of C1 constraints in R
n

For every constraint system of a usual optimization model in X = R
n , namely

Σ(p1, p2) = {x ∈ R
n | g(x) ≤ p1, h(x) = p2}, (g, h) ∈ C1(Rn,Rm1+m2), (2.5)

the Aubin property can be characterized by elementary and intrinsic means. Let z0 =
(0, x0) ∈ gphΣ .

Lemma 1 For the multifunction Σ (2.5), the following statements are equivalent:

1. Σ is Lipschitz l.s.c. at z0.
2. Σ obeys the Aubin property at z0.
3. The Mangasarian-Fromowitz constraint qualification (MFCQ) holds at z0, i.e.,

rank Dh(x0) = m2, and ∃u ∈ ker Dh(x0)

such that gi (x0)+ Dgi (x0)u < 0 ∀i .
(2.6)

Proof The equivalence of 2. and 3. is well-known, it follows from Robinson’s basic
paper [31], by taking the equivalence of Aubin property and metric regularity into
account. Further, 2. implies 1., by Remark 2 (ii).

The remaining implication 1. ⇒ 3. is a consequence of g, h ∈ C1: Since, for
small ‖p‖, solutions x(p) ∈ Σ(p) exist with ‖x(p)− x0‖ ≤ L‖p‖, one obtains first
rank Dh(x0) = m2 (otherwise choose p(t) = (0, tp2) where p2 /∈ Im Dh(x0), t ↓
0) and next the second condition in (2.6) by considering p(t) = (tp1, 0), where p1 =
(−1, . . . ,−1), and choosing a cluster point u of ‖x(p(t))− x0‖/t . ��
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310 D. Klatte, B. Kummer

Analyzing calmness ofΣ at z0 seems to be even simpler since it suffices to investigate
calmness of the inequality system

˜Σ(t) = {x ∈ R
n | gi (x) ≤ t, −t ≤ hk(x) ≤ t ∀ i = 1, . . . ,m1, k = 1, . . . ,m2}

(2.7)
at (0, x0) ∈ R × X only and, in addition, calmness requires less than the Aubin prop-
erty. Nevertheless, its characterization is more complicated, provided the functions
involved are not piecewise linear (then calmness holds true). So it is known from [18]
that the Abadie constraint qualification required at x0 ∈ M = Σ(0), is necessary (but
not sufficient) for calmness of Σ at (0, x0). Furthermore, there are several sufficient
calmness conditions which fit to our problem class (2.5), see e.g. [17,18]. For example,
Theorem 3 of [18] says for Σ (2.5) without equations:

Σ is calm at (0, x0) ∈ gphΣ if (at x0) both the Abadie CQ holds true and MFCQ
with respect to the set M(J ) := {x | gi (x) ≤ 0 ∀i ∈ J } is satisfied, whenever
J fulfills gi (ξ

k) = 0 (∀i ∈ J , ∀k ∈ N) for ξ k → x0 with ξ k ∈ bd M \ {x0}.
This sufficient condition is not satisfied for the linear (and calm) example

Σ(p1, p2) = {(x1, x2) | x2 ≤ p1, −x2 ≤ p2}: MFCQ does not hold at 0 ∈
M({1, 2}).

Surprisingly, we nowhere found a necessary and sufficient calmness criterion in terms
of the original data, though for this situation there is a condition which is similar to
MFCQ, cf. Theorem 3.

For convex C1 inequalities, calmness of Σ at (0, x0) holds true if and only if
the Abadie CQ holds at all points of Σ(0) in some neighborhood of x0, see [5,27].
However, checking the latter is nontrivial, too (since—up to now—there is no efficient
analytical condition for this property).

3 Stability and algorithms

Let S = F−1 : P ⇒ X be given as under (1.1). Though we are speaking about closed
multifunctions which act between Banach spaces, our stability properties for S are
classical properties of non-expansive, real-valued functions only.

This is true since calmness at (p0, x0) is a monotonicity property with respect to two
canonically assigned Lipschitz functions: the distance ψ(x, p) = dist ((p, x), gph S)
and the distance of x to S(p0). In terms of ψ , calmness of S at (p0, x0) ∈ gph S
equivalently means that

∃ε > 0, α > 0 such that α dist (x, S(p0)) ≤ ψ(x, p0) ∀x ∈ x0 + εB, (3.1)

where ψ is defined via the norm ‖(p, x)‖ = max{‖p‖, ‖x‖} or some equivalent
norm in P × X . For details of the equivalence proof and estimates of ψ for partic-
ular systems, we refer to [20]. Condition (3.1) requires that ψ(., p0) increases in a
Lipschitzian manner if x leaves S(p0). Clearly, this property depends on the local
structure of the boundaries of gph S and S(p0) and (approximate) normal directions
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only. For convex multifunctions (i.e. gph S is convex), ψ and d(., S(p0)) are even
convex and (globally) Lipschitz.

Combined with Remark 2 (iii), condition (3.1) characterizes the Aubin property,
too. Concerning similar characterizations of other stability properties we refer to [23].

The distance ψ can be also applied for both characterizing optimality and comput-
ing solutions in optimization models via penalization [20,26] and [21, Chapt. 2]; for
the particular context of exact penalization techniques, see also [4,6,9].

The approximate minimization ofψ (defined by a norm ‖(p, x)‖ = λ−1‖p‖+‖x‖)
will play a main role below.

3.1 The algorithmic framework

We continue considering closed mappings S = F−1.
Given (p, x) ∈ gph S near z0 = (p0, x0) and π near p0 (briefly: given initial points

x, p, π near z0), we want to determine some xπ ∈ S(π) with d(xπ , x) ≤ L‖π − p‖
by algorithms. The existence of xπ is claimed under the Aubin property (or under
calmness if π = p0).

Notice that, under the viewpoint of solution methods, we usually have π = p0 = 0,
and p0 ∈ F(.) is the “equation” we want to solve with start at some (x, p) ∈ gph F .

In stability theory, some solution x0 ∈ S(p0) is considered to be given and the local
behavior of solutions to π ∈ F(.) (π near p0) is of interest.

So we unify these two viewpoints by discussing how π ∈ F(.) can be solved (and
solutions can be estimated) with initial points (p, x) near z0. Evidently, it suffices
to minimize d(ξ, x) s.t. ξ ∈ F−1(π) for this purpose. However, this nonlinear prob-
lem requires some concrete algorithm, in general, and the existence of a minimizer is
questionable, too. Therefore, we are interested in procedures which find xπ with well-
defined rate of convergence, exactly under the Aubin property (or under calmness,
respectively).

By saying that some algorithm has this specific property (for initial points near z0)
we try to connect stability and solution methods in a direct and fruitful manner.

Due to the aimed generality, our crucial methods ALG1 and PRO(γ ) are of quite
simple type. Nevertheless they involve several more or less fast local methods under
additional assumptions.

The subsequent first algorithm should be understood like a framework for more
concrete procedures which compute xπ ∈ S(π). Suppose that some λ ∈ (0, 1) is
given.

ALG1 Put (p1, x1) = (p, x) ∈ gph S and choose (pk+1, xk+1) ∈ gph S in such a
way that

(i) ‖pk+1 − π‖ − ‖pk − π‖ ≤ −λ d(xk+1, xk) and
(ii) ‖pk+1 − π‖ − ‖pk − π‖ ≤ −λ ‖pk − π‖. (3.2)

Definition 2 We call ALG1 applicable if related (pk+1, xk+1) exist in each step (for
some fixed λ > 0).
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312 D. Klatte, B. Kummer

Having calmness in mind, we apply the same algorithm with fixed π ≡ p0.

Interpretation:

Identifying pk with some element f (xk) ∈ F(xk) condition (3.2)(i) requires more
familiar

‖ f (xk+1)− π‖ − ‖ f (xk)− π‖
d(xk+1, xk)

≤ −λ for xk+1 
= xk, (3.3)

and (3.2)(ii) is one of various conditions which ensure ‖ f (xk) − π‖ → 0 for this
(non-increasing) sequence. In this interpretation, ALG1 is a descent method for the
function x �→ ‖ f (x)− π‖.

Reducing the stepsize:

As in every method of this type, one may start with some λ = λ1 > 0 and, if
(pk+1, xk+1) satisfying (3.2) cannot be found, decrease λ by a constant factor, e.g.
λk+1 = 1

2λk while (pk+1, xk+1) := (pk, xk) remains unchanged. In this form, being
applicable coincides with

inf λk ≥ α > 0,

and we shall need the same α with respect to the possible starting points.
This modification or reduction of λ (like for the Armijo-Goldstein stepsize rule in

free minimization problems) is possible for all algorithms we shall speak about, though
we make explicitly use of it only for ALG2 and ALG3, cf. Theorem 4.

Theorem 1 Let S : P ⇒ X be closed. If ALG1 is applicable for given initial points
x, p, π near z0, then the sequence converges (pk, xk) → (π, xπ ) ∈ gph S, and

d(xπ , x) ≤ 1

λ
‖π − p‖. (3.4)

Moreover,

(i) The Aubin property of S holds at z0 = (p0, x0) ⇔ ALG1 is applicable, for some
fixed λ ∈ (0, 1) and all initial points x, p, π near z0.

(ii) The same statement, however with fixed π ≡ p0, holds in view of calmness of S
at z0.

Proof If ALG1 is applicable then, beginning with n = 1 and x1 = x , the estimate

d(xn+1, x) ≤
n

∑

k=1

d(xk+1, xk) ≤ ‖p1 − π‖ − ‖pn+1 − π‖
λ

(3.5)

follows from (3.2)(i) by complete induction. So, a Cauchy sequence {xk} will be gen-
erated and (3.5) ensures (3.4) for the limit xπ = lim xk . Taking also (3.2)(ii) into
account, it follows pk → π . Since S is closed, so also xπ ∈ S(π) is valid.
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(i), (ii) (⇒) Let the Aubin property be satisfied with related constants L , ε, δ in
(2.1). Then we obtain the existence of the next iterates whenever 0 < λ < L−1 and
‖π − p0‖ + d((p, x), z0) was small enough. Indeed, if ε̂ := min{ε, δ} and

max{ ‖p − p0‖ + ‖π − p0‖
λ

, d(x, x0) } < 1
2 ε̂

then d(xk, x0) < ε̂ and ‖pk − p0‖ < ε̂ follow from (3.5) by induction. Thus, for any
pk+1 in the convex hull conv {pk, π} satisfying (3.2)(ii) there is some xk+1 ∈ S(pk+1)

such that

d(xk+1, xk) ≤ L‖pk+1 − pk‖ ≤ ‖pk+1 − pk‖
λ

= ‖pk − π‖ − ‖pk+1 − π‖
λ

.

Hence also xk+1 exists as required in (3.2)(i).
Having only calmness, the existence of a related element xk+1 ∈ S(pk+1) is ensured

by setting pk+1 = π = p0 (whereafter the sequence becomes constant).
(i), (ii) (⇐) If the Aubin property is violated and λ > 0, then (by definition) one

finds points (p, x) ∈ gph S arbitrarily close to z0, and π arbitrarily close to p0, such
that dist (x, S(π)) > ‖p−π‖

λ
. Consequently, it is also impossible to find some related

xπ by ALG1.
In view of calmness, the same arguments apply to π ≡ p0. ��

Remark 3 (i) Theorem 1 still holds after replacing (3.2)(ii) by any condition which
ensures, along with (3.2)(i), that pk → π . Hence, instead of (3.2)(ii), one can
require that the stepsize is linearly bounded below by the current error

d(xk+1, xk) ≥ c ‖pk − π‖ for some c > 0. (3.6)

Evidently, (3.2)(i) and (3.6) imply (3.2) with new λ.
(ii) Generally, (3.6) does not follow from (3.2), take the function F(x) = 3

√
x . So

requiring (3.2) is weaker than (3.2)(i) and (3.6).
(iii) Theorem 1 remains true (with the same proof) if one additionally requires

pk ∈ conv {p1, π}∀k in (3.2).

Without considering sequences explicitly, the statements (i), (ii) of Theorem 1 can be
written as stability criterions.

Corollary 1 (i) The Aubin property of S holds at z0 = (p0, x0) ⇔ For some
λ ∈ (0, 1) and all initial points x, p, π near z0 there exists some (p′, x ′) ∈ gph S
such that

(i) ‖p′ − π‖ − ‖p − π‖ ≤ −λ d(x ′, x) and
(i i) ‖p′ − π‖ − ‖p − π‖ ≤ −λ ‖p − π‖. (3.7)

(ii) The same statement, with fixed π ≡ p0, holds in view of calmness of S at z0.
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Proof It suffices to show that ALG1 is applicable under (3.7). Denoting (p′, x ′) by
φ(p, x), define

(p1, x1) = (p, x) and (pk+1, xk+1) = φ(pk, xk). (3.8)

Due to (3.5), (pn, xn) belongs to an arbitrary small neighborhood Ω of z0 for all
initial points (x, p), π sufficiently close to z0 and p0, respectively. Hence ALG1 is
applicable. ��

3.2 The behavior of ALG1

The similarity of the statements for calmness and the Aubin property does not imply
that ALG1 runs in the same way under each of these properties:

Aubin property:

If ALG1 is applicable for all initial points near z0 ∈ gph S, we can first fix any
pk+1 ∈ conv {pk, π} satisfying (3.2)(ii) and next find (since the Aubin property holds
at z0 by Theorem 1 and (pk, xk) is close to z0) some xk+1 ∈ S(pk+1) satisfying
(3.2)(i).

In other words, xπ can be determined by small steps. This is not important for esti-
mating d(x, xπ ), but for constructing concrete algorithms which use local information
for F near (pk, xk) in order to find (pk+1, xk+1).

Calmness:

Though every sequence in (3.2) leads us to xπ ∈ S(π), we can guarantee that some
feasible xk+1 exists for some already given pk+1, only if pk+1 = π = p0.

In other words, the sequence could be trivial, (pk, xk) = (π, xπ ) ∀ k ≥ k0,
since calmness allows (by definition) that S(p) = ∅ for p /∈ {p1, p0}. In this case,
local information for F near (pk, xk) cannot help to find xk+1 for given pk+1 ∈
int conv {p1, π}.

However, for many mappings which describe constraint systems or solutions of
variational inequalities, this is not the typical situation. In particular if gph S is convex
then S(pk+1) 
= ∅ holds for each pk+1 ∈ conv {p1, π} (since S(π) and S(p1) are
non-empty by assumption). This remains true if gph S is (as in various MPCP prob-
lems) a finite union of closed convex sets Ci since I (z) := {i | z ∈ Ci } ⊂ I (z0) holds
for all initial points z = (p, x) ∈ gph S near z0. More general, it would be sufficient
that the sets F(xπ + εB) are star-shaped with center π .

3.3 Stability in terms of approximate projections

The following approximate projection method (onto gph S) has, in contrast to ALG1,
the advantage that iteration points throughout exist (for γ > 0). “Stability” is now
characterized by linear order of convergence. Let γ ≥ 0.
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PRO(γ ) Put (p1, x1) = (p, x) ∈ gph S and choose (pk+1, xk+1) ∈ gph S in such
a way that

d(xk+1, xk)+ ‖pk+1 − π‖
λ

≤ inf
(p′,x ′) ∈ gph S

[ d(x ′, xk)+ ‖p′ − π‖
λ

] +γ ‖pk −π‖.
(3.9)

Theorem 2 (i) The Aubin property of S holds at z0 = (p0, x0) ⇔ PRO(γ ) gener-
ates, for some λ > 0 and all initial points x, p, π near z0, a sequence satisfying

λ d(xk+1, xk) + ‖pk+1 −π‖ ≤ θ‖pk −π‖ with some fixed θ < 1. (3.10)

(ii) The same statement, with π ≡ p0, holds in view of calmness of S at z0.

Note. Obviously (3.10) means

‖pk+1 − π‖ − ‖pk − π‖ ≤ −λ d(xk+1, xk)− (1 − θ)‖pk − π‖

which implies (3.2)(i) and again convergence xk → xπ ∈ S(π) satisfying (3.4).
Further, having the related stability property, the next proof shall indicate that one
may apply PRO(γ ) with any positive γ , provided that λ is sufficiently small, see the
requirement λ(L + γ ) < 1.

Proof (i) (⇒) Suppose the Aubin property with rank L , and fix λ ∈ (0, (L + γ )−1).
Considering again points near (p0, x0) one may apply the existence of x̂ ∈ S(π) with
d(x̂, xk) ≤ L‖π − pk‖. This yields for the approximate minimizer in (3.9)

d(xk+1, xk)+ 1

λ
‖pk+1 − π‖ ≤ d(x̂, xk)+ 1

λ
‖π − π‖ + γ ‖pk − π‖

≤ (L + γ )‖pk − π‖

and implies

λ d(xk+1, xk)+ ‖pk+1 − π‖ ≤ λ (L + γ ) ‖pk − π‖

as well as (3.10) with θ = λ(L + γ ) < 1.
(⇐) Conversely, assume that PRO(γ ) (or any algorithm) generates a sequence sat-

isfying (3.10) with some λ > 0, θ ∈ (0, 1) and all related initial points. Then also
(3.2)(i) is valid for the current sequences and ‖pk+1 − π‖ vanishes. By Theorem 1
and Remark 3(i) so the Aubin property must be satisfied.

(ii) Applying the modification for calmness in the same manner, the assertion
follows. ��

Combining condition (3.1) for calmness of S at z0 (with the norm λ‖.‖X + ‖.‖P in
X × P) and condition (3.10) with π = p0, one directly obtains the calmness estimate

θ ‖pk − p0‖ ≥ λ d(xk+1, xk)+ ‖pk+1 − π‖ ≥ α dist (xk, S(p0)). (3.11)
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3.4 The particular case of F = f being a locally Lipschitz operator

We shall see that, in this situation, condition (3.2) can be written (up to a possibly new
constant λ) as

‖ f (xk+1)−π‖−‖ f (xk)−π‖ ≤ −λ d(xk+1, xk) and d(xk+1, xk) ≥ λ‖ f (xk)−π‖
(3.12)

or equivalently as

‖ f (xk)− π‖ − ‖ f (xk+1)− π‖ ≥ λd(xk+1, xk) ≥ λ2‖ f (xk)− π‖.

This permits a stability characterizations in terms of minimizing sequences with a
stepsize estimate as in Remark 3(i).

Corollary 2 Let f : X → P be locally Lipschitz near a zero x0. Then S = f −1 obeys
the Aubin property at (0, x0) ⇔ ∃λ ∈ (0, 1) such that, for each x1 near x0 and π near
the origin, there is a minimizing sequence {xk}k≥1 to the function x �→ ‖ f (x) − π‖
satisfying (3.12). With fixed π = 0, this condition describes calmness of S at (0, x0).

Proof If ALG1 is applicable then convergence of {xk} and (3.2) yield with p = f (x),
since f is locally Lipschitz,

−Cd(xk+1, xk) ≤ ‖ f (xk+1)− π‖ − ‖ f (xk)− π‖ ≤ −λ‖ f (xk)− π‖

for some C > 0, hence (3.6) is now necessarily satisfied. The latter implies, up to a
new constant in (3.2)(ii), that (3.2) and the requirements

‖ f (xk+1)−π‖−‖ f (xk)−π‖≤−λ d(xk+1, xk) and d(xk+1, xk) ≥ c ‖ f (xk)− π‖

(for λ, c > 0) are equivalent. Setting λ := min{λ, c}, we need one constant only
which gives (3.12). ��
Remark 4 As in Corollary 1, in order to show the related stability, it suffices to verify
that (3.12) holds for x1 near x0 and appropriate x2 only. Moreover, due to Remark
3(iii), Corollary 2 remains true after adding the requirement f (xk) ∈ conv { f (x1), π}.

Calmness and the relative slack for inequality systems

In particular, Corollary 2 applies to system (2.5) after defining f by f (x) =
(g(x)+, h(x)).

However, for the sake of simplicity we assume that the equations are written as
inequalities, and study, first with I = {1, . . . ,m}, calmness of

Σ(p) = {x ∈ X | gi (x) ≤ pi , ∀ i ∈ I } (3.13)

at (0, x0) with locally Lipschitzian gi and a Banach space X .
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We write gm(x) = maxi gi (x) and define, for gm(x) > 0, some relative slack of
gi in comparison with gm ,

si (x) = gm(x)− gi (x)

gm(x)
(≥ 0). (3.14)

In the special case of g ∈ C1, X = R
n , the following condition (3.16) differs just by

the additionally appearing quantities si (x) from the MFCQ-condition (or the Aubin
property, cf. Lemma 1) for inequalities.

Theorem 3 Let gm(x0) = 0. Then Σ (3.13) is calm at (0, x0) if and only if there
exist some λ ∈ (0, 1) and a neighborhood Ω of x0 such that the following holds:

For all x ∈ Ω with gm(x) > 0 there exist u ∈ bd B and t > 0 satisfying

gi (x + tu)− gi (x)

t
≤ gm(x)− gi (x)

t
− λ ∀i and λgm(x) ≤ t ≤ 1

λ
gm(x). (3.15)

Moreover, if g ∈ C1, one may delete t and replace (3.15) by

Dgi (x
0)u ≤ si (x)

λ
− λ ∀i. (3.16)

Proof We study the system f (x) := (gm)+(x) = r which is calm at (0, x0) iff so is
Σ . In accordance with Remark 4, calmness means that some λ ∈ (0, 1) satisfies:

∀x near x0 with gm(x) > 0 ∃x ′ such that

(gm)+(x ′)− gm(x) ≤ −λ d(x ′, x) and d(x ′, x) ≥ λ gm(x). (3.17)

Defining Qi = gi (x ′)−gi (x)
d(x ′,x) we have gi (x ′) = gi (x) + d(x ′, x)Qi . Then the first

condition of (3.17) implies

d(x ′, x) ≤ gm (x)
λ

and
gi (x)+ d(x ′, x)Qi ( = gi (x ′) ) ≤ gm(x)− λd(x ′, x) ∀ i

(3.18)

and vice versa.Writing here x ′ = x + tu with ‖u‖ = 1 and t > 0, so (3.17) claims
exactly (3.15). It remains to investigate the case of g ∈ C1. First note that (3.15) yields,
due to λgm(x) ≤ t ,

gi (x + tu)− gi (x)

t
≤ gm(x)− gi (x)

λ gm(x)
− λ ∀i and λgm(x) ≤ t ≤ 1

λ
gm(x).

(3.19)
Since also uniform convergence

sup
i∈I, ‖u‖=1

| gi (x + tu)− gi (x)

t
− Dgi (x

0)u | → 0 as x → x0, t ↓ 0 (3.20)
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is valid, now (3.19) implies (3.16) (with possibly smaller λ). Hence (3.15) implies
(3.16). Conversely, having (3.16) it suffices to put t = λgm(x) in order to obtain
(3.15) (possibly with smaller λ, too). This completes the proof. ��
Notes (modifying Theorem 3):

(i) Instead of considering all x ∈ Ω with gm(x) > 0, it suffices to regard only

x ∈ Ω with 0 < gm(x) < λ‖x − x0‖ (3.21)

since, for gm(x) ≥ λ‖x − x0‖, it holds the trivial calmness estimate

dist (x,Σ(0)) ≤ ‖x − x0‖ ≤ 1

λ
gm(x) (3.22)

and one may put u = x0−x
‖x0−x‖ , t = ‖x0 − x‖ in the theorem. Since λ may be

arbitrarily small, so calmness depends only on sequences x → x0 satisfying
gm(x) = o(x − x0) > 0.

(ii) Trivially, (3.15) is equivalent to

gm(x + tu) ≤ gm(x)− λt and λ2gm(x) ≤ λt ≤ gm(x). (3.23)

(iii) For g ∈ C1, condition (3.16) can be replaced by

Dgi (x)u ≤ si (x)

λ
− λ ∀i (3.24)

(possibly with smaller Ω and λ). Moreover, if si (x) ≥ √
λ, i.e.,

(1 − √
λ)gm(x) ≥ gi (x), and λ is small enough, then (3.16) (and (3.24))

is always satisfied. Hence, recalling (3.21) and (3.22), only points x near x0

with dist (x,Σ(0)) > λ−1gm(x) and (3.21) and constraints gi with gi (x) >
(1 − √

λ) gm(x) are of interest for condition (3.16).

The torus-condition (3.15):

Generally, since the stepsize t in condition (3.15) is restricted to a compact interval
in the positive half-line, the left-hand side in (3.15) compares points the difference tu of
which belongs to a torus. Therefore, without additional assumptions, the assigned quo-
tients cannot be described by known (generalized) derivatives since such derivatives
consider always arbitrarily close preimage points. The quotients on the right-hand
side

gm(x)− gi (x)

t
= gm(x)

t
si (x) where

gm(x)

t
∈ [λ, 1

λ
]

may vanish or not as x → x0.
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Remark 5 (Infinitely many constraints.) As in usual semi-infinite programs, one can
considerΣ (3.13) with a compact topological space I , ‖p‖ = supi |pi |, and a contin-
uous map (i, x) �→ gi (x) which is uniformly (in view of i ∈ I ) locally Lipschitz w.r.
to x near x0. Further, write g ∈ C1 if all Dgi (x) w.r. to x exist and are continuous on
I × X . Then, due to (3.20),

Theorem 3 and the related Notes remain true without changing the proof. The
same holds for all subsequent statements of this subsection, in particular for
Theorem 4.

Using the relative slack for deforming and solving system g(x) ≤ 0, g ∈ C1

In the C1 case, the above calmness condition for Σ (3.13) becomes stronger after
adding ε‖x − x0‖2 to all gi : Indeed, the set of all x ∈ Ω with

gm(x)+ ε‖x − x0‖2 > 0

is not smaller than before and the relative slack si is now smaller. Hence, the original
system is calm whenever so is the perturbed one.

In order to solve the inequality system Σ(0) of (3.13), we recall that the minimiz-
ing sequence of Corollary 2 can be obtained by the successive assignment x �→ x ′ =
x + tu, cf. (3.8).

It is clear that finding u may be a hard task in general. However, if g ∈ C1, we may
replace (3.16) by condition (3.24) and put t = λgm(x). This yields both an algorithm
for finding some xπ ∈ Σ(0) and a calmness criterion as well.

ALG2: Given xk ∈ X and λk > 0, solve the system

Dgi (x
k)u ≤ si (xk)

λk
− λk ∀i ‖u‖ = 1. (3.25)

Having a solution u, put xk+1 = xk + λk gm(xk)u, λk+1 = λk ,
otherwise put xk+1 = xk, λk+1 = 1

2λk .

Corollary 3 (ALG2). Let g ∈ C1. Then Σ is calm at (0, x0) if and only if there is
some α > 0 such that, for ‖x1 − x0‖ small enough and λ1 = 1, it follows λk ≥ α ∀k.
In this case, the sequence xk converges to some xπ ∈ Σ(0) and

gm(xk+1) ≤ (1 − β2)gm(xk) whenever 0 < β < α and gm(xk) > 0. (3.26)

Proof The first statements follow from Corollary 2 and Theorem 3. The estimate is
ensured by formula (3.23) and t = λgm(x). ��

We used condition ‖u‖ = 1 in (3.25) for obtaining the simple estimates (3.26). If
one requires ‖u‖ ≤ 1 instead (in order to define a more convenient convex auxiliary
system), then Corollary 3 is still true, only formula (3.26) becomes more complicated.
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ALG3: Given xk ∈ X and λk > 0, solve the (convex) system

Dgi (x
k)u ≤ si (xk)

λk
− λk ∀i ‖u‖ ≤ 1. (3.27)

Having a solution u, put xk+1 = xk + λk gm(xk)u, λk+1 = λk ,
otherwise put xk+1 = xk, λk+1 = 1

2λk .

Theorem 4 (ALG3). Let g ∈ C1. Then Σ is calm at (0, x0) if and only if there is
some α > 0 such that, for ‖x1 − x0‖ small enough and λ1 = 1, it follows λk ≥ α ∀k.
In this case, the sequence xk converges to some xπ ∈ Σ(0), and it holds

gm(xk+1) ≤ (1 − β2)gm(xk) whenever 0 < β < α2/C and gm(xk) > 0 (3.28)

with C = 1 + supi ‖Dgi (x0)‖.

Proof We verify the first statement, the estimate then follows from the proof. In view
of Corollary 3, we have only to show that λk ≥ α > 0 for ALG3 implies inf λk > 0
for ALG2. Hence let λk ≥ α > 0 hold, with x1 near x0, for ALG3. We obtain ‖u‖ > 0
from (3.27) since there is always some i = i(k) with si (xk) = 0. Moreover, for xk

close to x0, we have ‖Dgi(k)(xk)‖ ≤ C and obtain even ‖u‖ ≥ λk/C . Setting now

u′ = u/‖u‖ and λ′
k = λk‖u‖ (3.29)

we generate the same points

xk+1 = xk + λk gm(xk)u = xk + λ′
k gm(xk)u′, (3.30)

and λk ≥ α implies

λ′
k = λk‖u‖ ≥ λ2

k/C ≥ α′ := α2/C.

Finally, it holds for all i , as required in (3.25),

Dgi (x
k)u′ = Dgi (xk)u

‖u‖ ≤ si (xk)

λk‖u‖ − λk

‖u‖ = si (xk)

λ′
k

− λ′
k

‖u‖2 ≤ si (xk)

λ′
k

− λ′
k .

This tells us that, up to getting new constants, it suffices to claim ‖u‖ ≤ 1 in ALG2.
The estimate (3.26) implies, due to (3.29) and (3.30),

gm(xk+1) ≤ (1 − β2)gm(xk) whenever 0 < β < α′ and gm(xk) > 0.

This is exactly (3.28). ��
In order to demonstrate the content of system (3.27) for different original problems

we consider two examples.
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Example 1. Ordinary differential equation:

Let X = C[0, 1] consist of functions x = x(t) and identify I = [0, 1] and i = t in
order to describe constraints gt (x) := g(x(t)) ≤ 0 ∀t .

Put G(x) = x − y with

y(t) = a +
t

∫

0

f (x(s), s)ds, 0 ≤ t ≤ 1, f ∈ C1.

Then G(x) = 0 describes the solutions of ẋ = f (x, t), x(0) = a. With

gt (x) = G(x)(t) = x(t)− a −
t

∫

0

f (x(s), s) ds

the differential equation becomes gt (x) ≤ 0,−gt (x) ≤ 0 ∀t . Further, it holds

DG(x)(u)(t) = u(t)−
t

∫

0

fx (x(s), s) u(s) ds

and the inequalities (3.27) require with

mk = supt |gt (xk)|, Ak(s) = fx (xk(s), s) and ‖u‖ ≤ 1

for all t ,

u(t)−
t

∫

0

Ak(s) u(s) ds ≤ st (xk)

λk
− λk, where st (x

k) = mk − gt (xk)

mk
,

−u(t)+
t

∫

0

Ak(s) u(s) ds ≤ st (xk)

λk
− λk, where st (x

k) = mk + gt (xk)

mk
.

The auxiliary problems of ALG3 are now linear integral inclusions (which can be
solved via discretization arbitrarily precise) and xk+1 = xk + mkλku.

Example 2. Stationary points for optimization in R
n: For the problem

min f0(x) s.t. x ∈ R
n, fµ(x) ≤ 0, f0, fµ ∈ C2, µ = 1, . . . ,m (3.31)

the Karush-Kuhn-Tucker (KKT) points (x, y) ∈ R
n+m are given by g(x, y) ≤ 0

where

g1
j (x, y) = ∂ f0(x)

∂x j
+ ∑

µ yµ
∂ fµ(x)
∂x j

, g2
j (x, y) = −g1

j (x, y),

g3
µ(x, y) = fµ(x), g4

µ(x, y) = −yµ, g5
µ(x, y) = −yµ fµ(x).

(3.32)
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Clearly, gm(x, y) denotes the maximum of all functions, and the first set of conditions
in (3.27) requires that, for (u, v) ∈ R

n+m, ‖(u, v)‖ ≤ 1 and

s1
j (x

k, yk) := gm(xk, yk)− g1
j (x

k, yk)

gm(xk, yk)
,

one has

Dx g1
j (x

k, yk)u + Dy g1
j (x

k, yk)v ≤ s1
j (x

k, yk)

λk
− λk . (3.33)

Analogously, the other conditions of ALG3 are defined by linear inequalities. With

s5
µ(x

k, yk) := gm(xk, yk)− g5
µ(x

k, yk)

gm(xk, yk)
,

we consider the last ones explicitly

− ( yk
µDx fµ(x

k)u + fµ(x
k)vµ ) ≤ s5

µ(x
k, yk)

λk
− λk (3.34)

in order to check the role of strict complementarity in the KKT system restricted to the
set ∆ := {(x, y)| max{−yµ, fµ(x)} ≥ 0 ∀µ ∈ I 0}, where I 0 := {µ | y0

µ = fµ(x0) =
0}. Note that ALG3 can easily be adapted to this case.

If strict complementarity is violated at the reference point, i.e., y0
µ = fµ(x0) = 0

(for some µ), then g5
µ(x

k, yk) > 0 yields, for
{(xk, yk)} ⊂ ∆ with (xk, yk) → (x0, y0),

g5
µ(x

k, yk) << max{−yk
µ, fµ(x

k)} ≤ gm(xk, yk) and s5
µ(x

k, yk) → 1.

If g5
µ(x

k, yk) ≤ 0 then even s5
µ(x

k, yk) ≥ 1 follows. Hence condition µ of (3.34) is
always fulfilled for {(xk, yk)} ⊂ ∆with sufficiently small ‖(xk, yk)− (x0, y0)‖+λk .
This implies for problem (3.31):

Corollary 4 Calmness of the KKT-system restricted to∆ does not depend on the fact
whether strict complementarity is violated or not at the reference point.

The same is obviously true if additional equations are required in (3.31), and remains
also valid for related local descriptions of variational inequalities where D f0(x), in
(3.32), is replaced by a C1- vector function H = H(x) ∈ R

n .

4 Interrelations with known methods

Next we consider particular methods and their relations to ALG1 and PRO(γ ), respec-
tively.
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4.1 PRO(γ ) as Feijer and Penalty method

Interpretations of PRO(γ ) are possible in the form of classical first-order methods.

PRO(γ ) as Feijer method:

The construction of the sequence can be understood as a Feijer method with respect
to the norm ‖.‖X + 1

λ
‖.‖P and the subsets M1 = {π}× X and M2 = gph S of (P, X):

Given zk = (pk, xk),
find first the point U k = (π, xk) by projection of zk onto M1 (a trivial step) and
next some V k by projection of U k onto M2 (up to error γ ‖pk − π‖).
Write zk+1 = V k = (pk+1, xk+1) and repeat.

PRO(γ ) as penalty method:

The term 1
λ
‖p′ − π‖ in the objective of (3.9) can be understood as penalizing the

requirement p′ = π . So we simply solve (again approximately)

min d(x ′, xk) s.t. (p′, x ′) ∈ gph S, p′ = π

by penalization of the equation p′ = π . The quantity pk then turns out to be the
current approximation of p′ = π , assigned to xk .
Condition (3.10) requires, as already (3.2), linear convergence. Hence, summarizing,
this ensures

Corollary 5 Calmness and the Aubin property at z0 = (p0, x0) are equivalent to
uniform locally linear convergence of the classical solution methods mentioned above
with initial points x, p, π near z0, where

(i) one has to requireπ = p0 (calm) andπ near p0 (Aubin property), respectively,
and

(ii) approximate solutions (up to error γ ‖pk − π‖) may be permitted.

For solving the auxiliary problems, several approaches are thinkable in concrete
situations.
So, for a continuous function f : X → P, S = f −1 and π = 0, PRO(γ ) requires to
put pk = f (xk) and to find xk+1 such that

λd(xk+1, xk)+ ‖ f (xk+1)‖ ≤ λγ ‖ f (xk)‖ + inf
x ′ [λd(x ′, xk)+ ‖ f (x ′)‖]. (4.1)

The crucial condition (3.10) means explicitly

λ d(xk+1, xk) + ‖ f (xk+1)‖ ≤ θ ‖ f (xk)‖ with some θ < 1 (4.2)

and is, for a locally Lipschitz function f , equivalent to (3.2) and (3.12) (up to choice
of the constants), cf. Corollary 2.

Using Ekeland’s variational principle [12] and continuity of ‖ f ‖, each xk+1 can be
obtained by (exact) minimizing

λ d(x ′, xk)+ ‖ f (x ′)‖, x ′ ∈ X,
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i.e., by computing “Ekeland points” with weight λ (which always exist). For a Hilbert
space X , this is a “proximal point” step applied to ‖ f ‖ where ‖x ′ − xk‖2 is replaced
by λ‖x ′ − xk‖.

4.2 The situation for the Lyusternik/Graves theorem I

To show how condition (3.10) can be verified via Newton’s method, we consider
PRO(γ ) under the assumption of the closely connected (cf. [19]) classical theorems
of Lyusternik [28] and Graves [15]:

Let F = g be a C1 function and DF(x0) map X onto P . (4.3)

Then we have (pk , xk) = (F(xk), xk), F(x ′) = F(xk)+DF(xk)(x ′−xk)+o(x ′−xk)

and PRO(γ ) requires to minimize (approximately)

d(x ′, xk)+ 1

λ
‖F(x ′)− π‖.

For this reason, forget d(x ′, xk) and consider approximate Newton equations to
F(x ′) = π , namely

pk − π + Ak(x
′ − xk) = 0 (4.4)

with some linear operator Ak . Since DF(x0)maps onto P there are positive c,C such
that, if ‖Ak − DF(x0)‖ < c, there exists a solution satisfying

d(x ′, xk) ≤ C‖pk − π‖. (4.5)

Clearly, usually one takes Ak = DF(xk) and chooses x ′, among the solutions to (4.4)
sufficiently close to xk . This corresponds to the distance rule (4.6) in the context of
successive approximation.

Now specify λ ∈ (0, C−1), choose δ > 0 with θ := (δ + λ)C < 1 and put
(pk+1, xk+1) = (F(x ′), x ′). Next we apply standard arguments: Since

o(x ′ − xk) := F(x ′)− F(xk)− DF(xk)(x ′ − xk)

=
1

∫

0

[DF(xk + t (x ′ − xk))− DF(xk)](x ′ − xk)dt

and

‖DF(xk + t (x ′ − xk))− DF(xk)‖ < δ

2

hold for all x ′, xk , sufficiently close to x0, it follows

‖o(x ′ − xk)‖ ≤ δ

2
d(x ′, xk).
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Using (4.4) and also ‖DF(xk)− Ak‖ < δ
2 (otherwise decrease c), this yields

‖pk+1 − π‖ = ‖F(xk)+ DF(xk)(x ′ − xk)+ o(x ′ − xk)− π‖
= ‖(DF(xk)− Ak)(x

′ − xk)+ o(x ′ − xk)‖
≤ δ d(x ′, xk) ≤ δC‖pk − π‖.

Recalling (4.5) we thus obtain (3.10) due to

λ d(xk+1, xk) + ‖pk+1 − π‖ ≤ λC‖pk − π‖ + δC‖pk − π‖ = θ‖pk − π‖,

and (3.10) implies (3.9) with γ = θ/λ.

4.3 PRO(γ ) for “contractive” multifunctions

Let T : X ⇒ X (closed) obey the Aubin property with rank L = q < 1 at (x0, t0)

and let d0 := d(t0, x0) be small enough such that d(t0,x0)
1−q < ε̂ := min{ε, δ} (with ε, δ

from Def. 1). Then the existence of a fixed point x̂ ∈ T (x̂) near x0 can be shown by
modified successive approximation based on the steps x1 := t0 and

select xk+1 ∈ T (xk) with d(xk+1, xk) ≤ q d(xk, xk−1) (4.6)

where k ≥ 1, x̂ = lim xk and d(x̂, x0) ≤ d(t0,x0)
1−q since one obtains a Cauchy

sequence with

d(xk+1, x0) ≤ d(xk+1, xk)+ · · · + d(x1, x0) ≤
⎛

⎝

∑

n≥0

qn

⎞

⎠ d(x1, x0). (4.7)

Next we show how PRO(γ ) can be used to derive the same result.
Put G(x) = T (x) − x and apply PRO(γ ) to S = G−1 with π = 0. Hence, given

(pk, xk) ∈ gph S, k ≥ 1 we have to find (pk+1, xk+1) ∈ gph S such that

d(xk+1, xk)+ ‖pk+1‖
λ

≤ inf
(p′,x ′) ∈ gph S

[ d(x ′, xk)+ ‖p′‖
λ
) ] + γ ‖pk‖. (4.8)

By the structure of G it holds

pk = tk − xk ∈ T (xk)− xk = G(xk) and p′ = t ′ − x ′ ∈ T (x ′)− x ′ = G(x ′).

So (4.8) requires tk+1 ∈ T (xk+1) and

d(xk+1, xk)+ ‖tk+1 − xk+1‖
λ

≤ inf
(x ′,t ′) ∈ gph T

[ d(x ′, xk)+ ‖t ′ − x ′‖
λ

] + γ ‖pk‖.
(4.9)
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Here, p0 = t0 − x0 with norm d0 is given and initial points (p1, x1) ∈ gph S may be
taken arbitrarily close to (p0, x0). Because of p1 = t1 − x1 ∈ T (x1) − x1 the latter
means that ‖x1 − x0‖ and ‖t1 − t0‖ are sufficiently small. In particular, one finds for
x1 = t0 (and more general for small ‖x1−x0‖+d0) some t1 ∈ T (x1) with ‖t1−t0‖ ≤
q‖x1 − x0‖.

Now, beginning with k = 1, points (pk, xk) and tk = pk − xk ∈ T (xk) are given.
Since λ is (generally) small, the main term ‖tk+1−xk+1‖ has to be sufficiently small in
(4.9). Using the Aubin property and tk ∈ T (xk), this induces to put xk+1 = tk (k ≥ 1)
and, as long as (xk, tk) ∈ gph T is close enough to (x0, t0), to select

tk+1 ∈ T (xk+1) with d(tk+1, tk) ≤ q d(xk+1, xk). (4.10)

So one obtains ‖pk+1‖ = ‖tk+1 − xk+1‖ ≤ q‖tk − xk‖ = q‖pk‖ and

λd(xk+1, xk)+ ‖pk+1‖ ≤ λd(xk+1, xk)+ qd(xk+1, xk)

= (λ+ q)‖tk − xk‖ = (λ+ q)‖pk‖.

Thus the crucial estimate (3.10) holds true if λ satisfies λ+q = θ < 1. The inequalities

‖pk+1‖ = ‖tk+1 − tk‖ ≤ qk‖p1‖ and ‖tk+1 − t1‖ ≤ q

1 − q
‖p1‖

ensure that (tk, xk) remains in fact close to (t0, x0), provided that both

‖p1‖ = ‖t1 − x1‖ and ‖(p1, x1)− (p0, x0)‖

were small enough. As above, this can be guaranteed if (t0, x0) forms already a suf-
ficiently exact “approximate fixed point” (with small d0). Again, we obtain a feasible
γ in (3.10) by setting γ = θ/λ = (λ+ q)/λ. The estimate (3.4) yields

d(x̂, x1) ≤ 1

λ
‖p1‖ = 1

λ
‖t1 − t0‖ ≤ q

λ
‖x1 − x0‖ = q

θ − q
‖t0 − x0‖.

In consequence, the given straightforward realization (4.10) of PRO(γ ) coincides with
successive approximation (4.6) if x1 = t0.

5 Successive approximation and perturbed maps

Modified successive approximation is the typical method for proving the theorems of
Lyusternik and Graves for functions g : X → P under the already mentioned assump-
tions (4.3). Similarly, it can be used for verifying the Aubin property (and computing
related solutions) of multifunctions Γ = (h + F)−1 after nonlinear perturbations h
as in (1.2),

p ∈ h(x)+ F(x),
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where F is closed and h : X → P is locally a Lipschitz function, i.e.,

‖h(x ′)− h(x)‖ ≤ α d(x ′, x) for all x ′, x ∈ x0 + δ0 B and ‖h(x0)‖ ≤ β. (5.1)

Then the key observations consist of two facts:

(i) There hold the identities

x ∈ Γ (p) ⇔ p − h(x) ∈ F(x) ⇔ x ∈ S(p − h(x)) (5.2)

and (obviously) the composed mapping Tp(x) = S(p−h(x)) obeys the Aubin
property with rank q = Lα at (x0, p + h(x0)) if S obeys the Aubin property
with rank L at z0 = (p0, x0).

(ii) If T : X ⇒ X obeys the Aubin property with rank q < 1 at (x1, x2) ∈ gph T
and d(x2, x1) is sufficiently small (compared with q and ε, δ in Def. 1), then
modified successive approximation (4.6) can be applied with start at (x1, x2).

For T = Tp and small ‖p − p0‖+α+β the existence of appropriate initial points
x1 and x2 is ensured: With x1 = x0 (or x1 close to x0) there exists x2 ∈ T (x1) =
S(p − h(x1)) such that

d(x2, x0) ≤ L ‖ (p − h(x1))− p0 ‖ (5.3)

is arbitrarily small. So successive approximation can be really applied and fulfills
again xk → x̂ ∈ T (x̂) and

d(x̂, x1) ≤ d(x2, x1)

1 − q
. (5.4)

The inequalities (5.3), (5.4) can be directly used for proving the Aubin property of
Γ and deriving estimates of solutions in terms of the perturbation of (1.2). For sharp
dual estimates (using co-derivatives) we refer to [11].

Theorem 5 Let S = F−1 obey the Aubin property with rank L at z0, let δ0 > 0 and
let h satisfy (5.1) . Then, if ‖π − p0‖, α and β are sufficiently small (depending
on δ0 and the constants L , ε, δ in Def. 1), the mapping Γ = (h + F)−1 obeys the
Aubin property at (p0 + h(x0), x0) with rank L

1−Lα and, moreover, there exists some
xπ ∈ Γ (π) with

d(xπ , x0) ≤ βL + L

1 − Lα
( ‖π − p0‖ + αβL ). (5.5)

Proof Since, for small ‖π − p0‖, α and β, the mapping Tπ = S(π − h(.)) obeys
the Aubin property near x0 with rank q = Lα < 1, a proof can be directly based on
(5.2), (5.3) and (5.4). Detailed estimates can be found in [23]. ��
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5.1 The situation for the Lyusternik/Graves theorem II

Under (4.3), let A = Dg(x0). Then A−1 : P ⇒ X is pseudo-Lipschitz by Banach’s
inverse mapping theorem applied to the canonical factorization A : X |ker A → P .
Setting

F(x) = g(x0)+ A(x − x0) and h(x) = g(x)− F(x),

so the suppositions of Theorem 5 are satisfied for small δ0. Since π = h(x)+ F(x) ⇔
π = g(x), this proves again local solvability of the latter equation with related esti-
mates which is the Lyusternik/Graves theorem.

In order to solve g(x) = π with initial point x0, p0 = g(x0) and π close to p0,
one may use that h(x0) = 0. The iterations in (4.6), i.e., xk+1 ∈ T (xk), now stand for
solving (with k > 1) the linear equation F(x) = π − h(xk), i.e.,

p0 + Dg(x0)(x − x0) = π − h(xk) and d(x, xk) ≤ q d(xk, xk−1). (5.6)

The equations of the projection method in (4.4) for Ak ≡ Dg(x0), namely

pk − π + Dg(x0)(x ′ − xk) = 0

and (5.6) coincide after the equivalent settings

h(xk) = pk − p0−Dg(x0)(xk −x0) and pk = h(xk)+ p0+Dg(x0)(xk −x0). (5.7)

This yields

Corollary 6 The successive approximation steps (5.6) turn out to be approximate pro-
jection steps (4.4), for Ak = Dg(x0), and vice versa, after the assignment pk ↔ h(xk)

(5.7).

5.2 Modifying the inclusion in solution procedures

In the most applications of Theorem 5, the function h describes the difference between
a C1 function g(x) and its local linearization lx0(x) := g(x0) + Dg(x0)(x − x0) as
in Sect. 5.1, where it’s no matter whether the initial problem is an equation g(x) = p
or an inclusion p ∈ F(x) := g(x)+ G(x), cf. [33].

In view of solution methods, inclusions p ∈ F(x) can be successfully replaced by
p ∈ h(x)+ F(x) also in other situations, e.g. (Tykhonov regularization), if

h(x) = εx and F(x) = ∂ f (x)

and ∂ f (x) is a subdifferential of a convex function f on a Hilbert space X .
In this context, it is worth to mention that, when applying the iterations (4.6) or

Theorem 5, the mapping T = Tπ = S(π − h(.)) can be changed by modifying h as
long as α and β in (5.1) do not increase. So one may determine the sequence {xk} for
functions hk with vanishing constants αk, βk (5.1); hence also for hk = εk h1.
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Then, hk + F can play the role of (or can be interpreted as) regularizations of F
during the solution process.

However, adding h or hk may also induce that the “equation” 0 ∈ F(x) will be
solved by quite different methods. So, for a particular function h, after adding h or
−h, the perturbations describe the application of a penalty and a barrier method,
respectively, for determining critical points of optimization problems, cf. [21].

Estimates of the perturbed solutions to (1.2) (which do not depend on the sign of h
in stability theory) then can be used in a unified way for both methods. For applications
in the context of classical barrier methods under MFCQ, we refer to [16].

Acknowledgements The authors are indebted to two anonymous referees for their very detailed and
constructive comments.
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