
J Stat Phys (2012) 146:687–700
DOI 10.1007/s10955-011-0415-4

Deposition Processes with Hardcore Behaviour

Thomas S. Mountford · Aidan Sudbury

Received: 17 June 2011 / Accepted: 26 December 2011 / Published online: 7 January 2012
© Springer Science+Business Media, LLC 2012

Abstract Particles are deposited onto a surface with discrete sites. They are subject to an
inhibition by which they cannot pass close by a particle already fixed on the surface. This
implies that the surface builds up with vertical gaps between the particles. In this paper it is
shown that there is a limiting rate at which the surface grows, and that this is related to the
“roughness” of the surface.
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1 Introduction

In a recent paper Fleurke and Külske [1] discuss a model of particle deposition. Suppose
that we have a regular graph, G, and that at each site particles arrive as independent Poisson
processes, which will be assumed to be at rate 1. The particles can build up at a site, but due
to an interaction Fleurke and Külske call “screening”, particles cannot pass by neighbouring
particles. Thus particles build up at a site with gaps between them. More concretely we have

1. The state-space is {0,1}(G×N) where N is the set of non-negative integers. The graph
defines for each x a neighbourhood set Nx .

2. The process ηt (x, r) = 1 if there is a particle at (x, r) at time t , and = 0 otherwise for
x ∈ G,r ∈ N. η0(x, r) = 0 for all x, r .

3. The height at a site x at time t is defined to be ht (x, η) = max{r : ηt (x, r) = 1}.
4. When a particle arrives at site x at time t it deposits at height ht (x, η) = max{ht−(y, η),

y ∈ Nx} + 1, where neighbourhood set Nx includes x and the sites distance 1 from it.
We assume here and throughout that card(Nx) is the same for all x ∈ G. We denote this
quantity by N .
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In this paper we shall chiefly concerned with homogeneous isotropic graphs. In this we
differ from the recent paper of Fleurke, Formentin and Külske [8], which considers the
process on finite (not necessarily regular) graphs and derives concentration inequalities. It
will be shown that these possess a limiting average speed at which the height at a site grows,
V , and a limiting density of particles, ρ. We shall show that in these cases

Theorem 1

N <
1

ρ
= V = lim

t→∞
ht (x, η)

t
< k∗,

where k∗ is such that (Ne/k∗)k∗ = e. Further we shall show:

Theorem 2

lim
t→∞

E[h(t)]
t

= lim
t→∞

∫
E[d(t)] dt

t
= lim

t→∞

∫
E[d+(t)] dt

t
+ 1,

where h(t) is the height at a single site, d is the mean of the absolute differences in height
of a site from its N − 1 neighbours, and d+ the maximum of the positive differences.

d(t) can be considered a measure of the roughness of the surface.

2 The Dual Process

We shall drop η where this will not result in ambiguity. Define a path of length n from
(x1, s) to (x, t) to be a set of pairs (x1, t1), (x2, t2), . . . , (xn, tn), x = xn, s < t1 < t2 < · · · <

tn < t, xi ∈ Nxi+1 , i = 1, . . . , n − 1 and such that for i ≤ n a particle arrives at site xi at
time ti .

Lemma 3 ht (x) is the length of the longest path to (x, t) from (z,0) maximised over z ∈ G.
In particular if there is a path of length n from time 0 for any site z to (x, t) then ht (x) ≥ n.

Proof When a particle arrives at xi+1 at time ti+1, the height hti+1(xi+1) must be at least
hti (xi) + 1. Thus by induction ht (x) must be at least the maximal length of a path to (x, t).
Conversely suppose first that graph G is finite. Initially the relation holds for all x and it can
only be violated by the arrival of a particle so, if the claim is false, it must be violated for
the first time by the arrival of a particle at a time t at some site y. But at this time the heights
of all other sites are unchanged while ht (y) becomes equal to ht−(w) + 1 for a w ∈ Ny .
But since the relation is true before time t , there exists a path to (w, s) of length ht−(w)

for s close to t . This permits us to construct a path to (y, t) of length ht (y) and gives a
contradiction.

For a general G and a fixed site x we have that for any (x, t) there are only a finite
number of z such that there exists path from (z,0) to (x, t) and so we may without loss of
generality suppose that the graph G is finite. �

Define R(x, t) to be the set of paths from (0, z) (for some z ∈ G) to (x, t) and let it have
cardinality R(x, t).

Lemma 4 E[R(x, t)] = e(N−1)t .
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Proof Define R(y, t − s, x, t) to be the number of paths from (y, t − s) to (x, t) and let
R(t − s, x, t) = ∑

y R(y, t − s, x, t). Note that at each s the number of nonzero summands
is finite. If a particle arrives at y in the interval (t − s − ds, t − s) then, with conditional
probability 1 − O(ds), no further points for relevant sites arrive in this interval and the
number of paths from time t − s − ds to (x, t) is (N − 1)R(y, t − s, x, t) greater than the
number from time t − s to (x, t). This is because the extra paths are those which use this
arrival time and do not start at y. Thus the expected number of paths going backwards in
time is increasing at N − 1 times the number of paths. �

We define a process ξ in which, when a particle arrives at a site, its height increases
by 1 and all neighbouring sites are brought up to the same height unless they are already
higher. To be more precise: at time 0 there is a single particle at a position we shall call x.
We define h0(x, ξ) = 0, h0(y, ξ) = −1, y �= x. If a particle arrives at site y at time s then,
if hs−(y, ξ) ≥ 0 and u ∈ Ny , hs(u, ξ) = max{hs−(u, ξ), hs−(y, ξ) + 1}. Define the height of
the process Ht(x, ξ) = maxy∈G ht (y, ξ). Then

Theorem 5 The distribution of ht (x, η) is the same as the distribution of Ht(x, ξ).

Proof We have seen that if there is a path (x1, t1), (x2, t2), . . . , (xn, tn), x = xn, s < t1 < t2 <

· · · < tn < t then ht (x, η) ≥ n. To this path there is a corresponding path in the ξ process
from (x,0) to (x1, t) through pairs (xn, t − tn) . . . (x1, t − t1) with particles arriving at site xi

at time t − ti . The height at xi is then at least 1 more than the height at xi+1 at time t − ti−.
The height at xi is then at least n. The maximum height over all such paths starting from x

is Ht(x, ξ). �

2.1 Finite and Infinite

We consider relationships between the process η on finite and infinite graphs. We are con-
cerned principally with graphs that are subsets of Z

d and of two forms, Gr = [−r, r]d with
the usual neighbourhood set, and Gr∗ = [−r, r]d with added edges making the co-ordinates
−r and r neighbours. Gr∗ is spatially homogeneous. Define the expected heights at the point
i at time t to be h∞(t), hr

i (t), h
r∗(t) on the graphs Z

d ,Gr,Gr∗ respectively. We note that
there is no dependence on i on the first and third graphs since these graphs are spatially
homogeneous. The natural coupling between processes on two graphs is that the Poisson
processes of arrivals on sites they have in common are identical. This directly gives

Lemma 6 If the edges of graph G are contained in the edge set of graph H , then if a site i

belongs both to H and G then, under the process η, hG
i (t) ≤ hH

i (t).

Simple monotonicity considerations lead to

Corollary 1 For each i ∈ Z
d , and each t ≥ 0, the sequence hr

i (t) increases to limiting value
hi(t).

and therefore

Corollary 2 For each i ∈ Z
d , and each t ≥ 0, the sequence hr∗

i (t) (≥ hr
i (t)) satisfies

lim infr→∞ hr∗(t) ≥ hi(t).
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In fact we have

Lemma 7

hi(t) = h∞(t) = lim
r→∞hr∗(t).

Proof Fix t . Consider coupled processes on Z
d and Gr . The heights at site i will only differ

if there is a path back in time from i at t on Z
d which goes outside Gr . For a path to (i, t),

the sequence of sites {xj } must satisfy |xj −xj−1| ≤ 1. Let us (ignoring time) call a sequence
x0, x1, . . . , xm = i a potential path to i if this constraint is satisfied. Since for given i, xm is
fixed and given xj , there are 2d + 1 possibilities for xj−1, we conclude that the number of
potential paths of length m to i equals (2d + 1)m. For such a fixed path x0, x1, . . . , xm = i,
we say that it is realised (by time t ) if there do indeed exist 0 ≤ t1 < t2 < · · · < tm ≤ t so that
at tj a particle arrives at site xj−1. The first time a particular potential path (to i) is realised
is simply

m∑

j+1

τj − τj−1,

where τ0 = 0 and for j > 0, τj is the first time after τj−1 that there is an arrival at site xj−1.
The τj − τj−1 are i.i.d. exponential random variables of parameter 1 so the probability a
particular potential path of length m is realised at time t equals e−t tm/m!. If such a path and
no longer path exists, then the height will be m and the maximum difference in heights for
η on the two graphs will be less than m. Thus

h∞(t) − hr
i (t) <

∑

m>r−|i|
e−t ((2d + 1)t)m/m! → 0 as r → ∞.

A similar result holds for hr∗(t). �

3 The Limiting Speed

In this section we discuss the rate at which the height at a site increases. Most of the results
are summarised in Theorem 1.

Lemma 8 Define k∗ such that (Ne/k∗)k∗ = e then

lim sup
t→∞

ht (x, η)

t
≤ k∗.

Proof In the η-process we have seen that the height at x at time t is the maximum length
of paths proceeding backwards in time from t . We will simply give a crude bound over all
potential paths corresponding to a given length. We first note that associated to a sequence
(y1, y2, . . .) and a positive time t we have a rate 1 Poisson process where the first event
s1 = inf{s > 0 : t − s is an arrival at y1}, s2 = inf{s > s1 : t − s is an arrival at y2} and so
on. (We can assume that the relevant Poisson processes are extended over negative times.)
Similarly given a finite sequence (y1, y2, . . . , yr ) we have associated a Poisson process run
up until the r’th arrival. The probability that (for fixed choice yi ) this process has its r’th
arrival before time t is simply the probability that a Poisson random variable of parameter
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t has value r or greater. Let us choose k > k∗. In particular k > 1 and so, as is easily seen,
there exists C = C(k) < ∞ so that ∀t ,

∑∞
l=kt e

−t t l

l! ≤ C(k)e−t t [kt]
[kt]! .

Since there are exactly N [kt]−1 (reversed) potential paths (y1, . . . , y[kt]) with x = y1, we
have that the probability that for at least one of them, the associated Poisson process has had
at least [kt] arrivals is bounded by N [kt]−1C(k)e−t t [kt]

[kt]! = C(k)

N
e−t (Nt)[kt]/[kt]!.

We have by Stirling’s formula that e−t (Nt)[kt]
([kt])! is asymptotically equivalent to

e−t

√
2πkt

[(
Net

[kt]
)][kt]

,

as t becomes large.
This tends to zero geometrically and so summing as t runs over integer values and ap-

plying Borel Cantelli gives the result that

lim sup
t→∞

ht (x, η)

t
≤ k.

The arbitrariness of k gives the desired result. �

It is interesting to relate this result to a similar result for branching processes. Kingman
[2] gives results for the time, Bn, to the first birth in the n’th generation of a branching
process where each individual produces offspring over a lifetime. In our model, the number
of paths, looking backwards in time, is a branching process in which each individual waits
an exponential time and then produces exactly N offspring in the next “generation”. In our
case the function φ introduced by Kingman [2] is given by

φ(θ) = N

∫ ∞

0
e−θt e−t dt = N

1 + θ
.

He defines

μ(a) = inf
θ

Neθa

1 + θ
= aNe1−a.

He then shows that

lim
n→∞Bn/n = γ,

where γ satisfies μ(γ ) = 1. The rate of increase of generation number is thus γ . Lemma 8
deals with the number of generations by time t , that is, the reciprocal of γ . Thus the above
equation for γ is equivalent to

1

k∗ Ne1−1/k∗ = 1 ⇔ (Ne/k∗)k∗ = e.

Thus, in a branching process, the expected number of members in generation n does define
the speed. However, this does not appear to be so in the deposition process considered here.
The correlation between the paths to two members of the n’th generation in a branching
process comes from the last time they were together, usually very early on in the process.
However, in the deposition process, the correlations between paths is stronger and k∗ is not
a very good bound for the speed. In 1-dimension, where N = 3, the bound is close to 7.1,
but simulations suggest the true value is around 4.
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Lemma 9 For every x ∈ G,

lim inf
t→∞

ht (x)

t
≥ N.

Proof Consider the process ξt . If the arrival of a particle is such that its position is at the
maximum height, then, when it arrives, all of its neighbours must also be at the same height.
There are thus always at least N particles at maximum height and the height process dom-
inates a Poisson process rate N . Thus by elementary large deviations and Theorem 5, we
have that for every ε > 0,

∞∑

n=1

P (hn(x) ≤ Nn(1 − ε)) =
∞∑

n=1

P (Hn(x, ξ) ≤ Nn(1 − ε)) < ∞.

The result now follows from Borel Cantelli and the monotonicity of ht (x) in time. �

Lemma 10 limt→∞ E[ht (x)]
t

exists.

Proof Lemma 3 implies that the height at (x, t) is the length of the maximum path to (x, t).
Suppose that one of the maximum paths from time s to (x, t + s) is a path R2 from (y, s).
Call its length n2. Let the length of the maximum path R1 from time 0 to (y, s) be n1. Let
the length of the maximum path R from time 0 to (x, t + s) be n. Then n ≥ n1 + n2. Taking
expectations we have E[ht+s(x)] ≥ E[hs(x)] + E[ht (x)]. This superadditivity property im-
plies that the limit exists if one restricts to integer times t . Again, the full conclusion follows
from the monotonicity of ht (x) as a function of t . �

Putting Lemmas 8, 9 and 10 together yields

Lemma 11

N < V = lim
t→∞

E[ht (x)]
t

< k∗.

In fact the limiting average speed is clearly the same as the limiting average number of
particles at maximum height in the ξ process.

The average vertical distance between particles at x ∈ G in ηt is defined as vt (x) =
ht (x, η)/

∑
r ηt (x, r). Since the arrival of particles at a site of G is a Poisson process rate 1,

we have
∑

r ηt (x, r)/t → 1 as t → ∞. This implies that as t becomes large,

vt (x) → V.

The density of particles in a column tends to 1/V .
Further, define

d+
t (x) = max

y∈Nx

ht (y, η) − ht (x, η).

Then the jump made at x when a particle arrives at t equals d+
t (x) + 1. Thus

∫ t

0 d+
s (x)ds

t
→ V − 1.
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If the initial distribution of particles is spatially homogeneous, the probability that the height
at a position is the maximum of the heights of it and its neighbours is 1/N . Thus, given that
a position is not the maximum in its neighbourhood, the expected height of its maximum
neighbour exceeds it by N(V − 1)/(N − 1).

To prove the next lemma we work on Z but it will be easy to see that the approach extends
to all dimensions. We adopt the method of [7].

Lemma 12 On Z the quantity Ht(0, ξ) satisfies

lim
t→∞

Ht(0, ξ)

t
= c ∈ (0,∞).

Proof Given monotonicity it is sufficient to restrict attention to integer times n. Define Xn to
be any y ∈ Z so that (with initial point x chosen to be the origin) hn(y, ξ) = maxu∈Z hn(u, ξ)

with ties broken by some arbitrary but fixed ordering of the integers. If we define Xn,m to
be the variable Xm derived from the Poisson system shifted spatially and temporally to have
(Xn,n) moved to (0,0), then clearly we have the superadditive relation

Xn+m ≤ Xn + Xn,m.

The conditions of Liggett’s subadditive Theorem (Liggett [3]) being satisfied we clearly
have that a.s. the non-random limit Xn/n exists. It is easy to see that this limit must be
finite. �

We must transfer this law of large numbers to hn(0, η). The problem for us is that while,
as noted in Theorem 5, we have for fixed n, hn(0, η) is equal in distribution to Hn(0, ξ),
unfortunately for us the processes {hn(0, η)}n≥0 and {Hn(0, ξ)}n≥0 are not. In particular the
subadditivity which gave a simple proof of Lemma 12 appears not to be present. While we
know that for any fixed ε > 0, P (Hn(0, ξ) < (c − ε)n) and P (Hn(0, ξ) > (c + ε)n) tend to
zero, we must seek a sufficiently quick rate in order to apply the Borel Cantelli lemma.

We begin with P (Hn(0, ξ) < (c − ε)n) = P (hn(0, η) < (c − ε)n). This is easier than the
other bound in that we merely have to show that with high probability there is an appropriate
path from (0,0). We will show that for the c of Lemma 12, lim infn→∞ hn(0,η)

n
≥ c. We note

that Lemma 12 and Theorem 5 together with the FKG inequality imply that

Lemma 13 For each ε > 0, there exists an M0 < ∞ so that for all M ≥ M0 outside of
probability ε8/1000, there exist paths of length at least (c − ε4)M from (0,0) to (x1,M)

and to (x−1,M) with x−1 ≤ 0 ≤ x1 and both of absolute value less than 2cM .

Proof Consider the events A+(M), A−(M) which are respectively that there exists a path
from (0,0) to a point in Z+ × {M}, respectively to a point in Z− × {M} of length at least
(c − ε4)M . By Lemma 12 limM→∞ P (A+(M) ∪ A−(M)) = 1. In particular for some M0

and all M ≥ M0,P (A+(M) ∪ A−(M)) ≥ 1 − (ε8/2000)2. Now, both events A±(M) are
increasing events with respect to the Poisson (point) processes and so their complements are
decreasing events with respect to these processes. Thus by the FKG inequality

P (Ac
+(M))P (Ac

−(M)) ≤ P (Ac
+(M) ∩ Ac

−(M)) ≤ (ε8/2000)2.

Therefore, by appeal to symmetry P (Ac+(M)) and P (Ac−(M)) are both less than ε8/2000,
which gives the result. �
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This begets via simple concatenation

Proposition 14 There exists M0 so that for M ≥ M0 outside of probability ε2, for each
x ∈ (−4M,4M), there exits a path from (0,0) to (x,M/ε2) of length at least M/ε2(c − 2ε)

so that the path does not leave (−6cM,6cM).

Proof Provisionally let M0 be as in Lemma 13. We start with x ∈ [0,4M), the other case is
entirely analogous. Choose y1, y2, . . . , y1/ε2−k for k an integer greater than 5c by applying
Lemma 13 in succession as follows: we put y0 = 0. If yi−1 ≤ 2cM , then we search for a path
from (yi−1, (i − 1)M) to (yi, iM) satisfying the conditions of Lemma 13 with yi ≥ yi−1, if
yi−1 > 2cM , then we look for such a path to yi ≤ yi−1. By this lemma we have outside of
probability ε6/1000 that in all cases we search successfully. By concatenating the paths we
obtain a path to (y1/ε2−k,M/ε2 − kM) of length at least (M/ε2 − kM)(c − ε2) which does
not leave (−6cM,6cM) and with y1/ε2−k ∈ (0,4cM). By the law of large numbers (here we
may need to increase N0) there is such a path from (y1/ε2−k,M/ε2 − kM) to (0,M/ε2) and
to (4M,M/ε2) outside of probability ε2/4. Thus outside of probability ε6/1000 + ε2/4 we
have a suitable path to any x ∈ [0,4M). Furthermore this path has length at least (M/ε2 −
Mk)(c − ε2) ≥ M/ε2(c − ε) if ε is sufficiently small. �

We now adapt this to give a lower bound on hnM/ε2(0, η). We construct a 4 dependent
site percolation scheme �(m,n) : (m,n) ∈ Z × Z+ on the basis of Proposition 14 from our
Poisson system by specifying that �(m,n) = 1 if there are paths from (2cmM,nM/ε2) to
both (2c(m ± 1)M, (n + 1)M/ε2), both having length at least M/ε2(c − ε) and not exiting
(2c(m − 3)M,2c(m + 3)M). We say that (m,n) is good if there is a nearest neighbour path
of sites (xi, i) with (xn, n) = (m,n) and ∀i �(xi, i) = 1. This scheme has open site probabil-
ity at least 1−ε2 by Proposition 14. We now use this to get a bound on hnMε2(0, η). Consider
the event A(δ,n) ≡ {there is no m : |m| < δn with (x,n(1− δ)) good}. By standard percola-
tion theory (see e.g. [4], [5]) we have that (provided ε was fixed small) P (A(δ,n)) ≤ 2e−c1n

for some strictly positive c1 and all n. If A(δ,n) does not occur, then there must exist some
|z| ≤ 2cMnδ with hM/ε2n(1−δ)(z, η) ≥ M/ε2n(1 − δ)(c − ε). For such a z, the conditional
probability that there exists a path from (z,M/ε2n(1 − δ)) to (0, nMε2) is greater than
1 − 2e−c′n for some strictly positive c′ if δ is small compared to ε. Thus we have shown that

P (hnM/ε2(0, η) < M/ε2n(1 − δ)(c − ε)) ≤ 2(e−c′n + e−c1n).

Therefore by the Borel Cantelli Lemma we have that for every ε > 0 (recall δ is small
compared to ε),

lim inf
n→∞

hnM/ε2(0, η)

M/ε2n
≥ (1 − ε)(c − ε).

The result that lim inft→∞ ht (0,η)

t
≥ (1 − ε)(c − ε) is a consequence of monotonicity of

ht (0, η) in t . The desired result is now a consequence of the arbitrariness of ε.
We now establish the superior bound. We define for our Poisson process l(x, a, b), x ∈ Z,

0 ≤ a < b to equal the length of the longest path starting at (x, a) and finishing at (y, b) for
some y ∈ Z. If a = 0, then it is simply suppressed from the notation. Thus l(x, t) is simply
Ht(x, ξ). For a A ⊂ Z (typically an interval), l(A,a, b) = maxx∈A l(x, a, b).

The following is a consequence of similar considerations to those that lead to Lemma 8.

Lemma 15 There exists finite ko so that for k ≥ ko, P (l(x, t) ≥ kt) ≤ e−k log(k)t/2.
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Corollary 3 There exists finite k1 so that P (ht (0, η) ≥ kt) ≤ e−kt for all large t . In partic-
ular lim supt→∞

ht (0,η)

t
≤ k1.

This result means we need only consider paths which have of order t jumps over an
interval (0, t).

The following is the crucial building block for our upper bound. It extends the fact that
there is a weak law of large numbers for l(x, n) (for x fixed) to there being a weak law (with
the same limiting constant) for l([−kn, kn], n). The idea is simply that since paths can be
concatenated, then if l([−kn, kn], n) is too large, then this entrains that l(x, n) be too large
for some x fixed for a time shift of the system.

Proposition 16 Fix arbitrary ε, δ > 0. For M sufficiently large and k1 as above

P (l([−2k1M,2k1M],M) ≥ (c + ε)M) < δ.

Proof Given M let {xi}0≤i≤20k1/ε be points in [−2k1M,2k1M] which are such that no point
in [−2k1M,2k1M] is more than εM/5 away from a xi . By Lemma 12 we have, for M large
that

P
(

max
xi

l(xi,M(1 + 2ε/5)) > Mc(1 + 3ε/5)
)

< δ/100.

Now suppose that l([−2k1M,2k1M], εM, (1 + ε)M) ≥ (c + ε)M . Then on (independent)
event AM,ε ≡ {∀i ∃ paths from (xi,0) to [xi − εM/5, xi + εM/5]}, we have

max
xi

l(xi,M(1 + 2ε/5) ≥ Mc(1 + ε)).

Thus we have P (l([−2k1M,2k1M],M) ≥ (c + ε)M) = P (l([−2k1M,2k1M], εM, (1 +
ε)M) ≥ (c + ε)M) ≤ (δ/100)/P (AM,ε) ≤ δ for M large by the law of large numbers for
rate one Poisson processes. �

We wish to show that for a given ε > 0, ht (0, η) < (c+ε)t for t large. By monotonicity it
is sufficient to show that for every ε and M , hvM(0, η) < (c+ε)vM for integer v large. Thus
it will be sufficient to show that P (hvM(0, η) ≥ (c + ε)vM) converges to zero sufficiently
fast. We know already from Corollary 3 that it is sufficient to bound P (hvM(0, η) ∈ [(c +
ε)vM,k1vM]). For the event in question to occur, there must be a path of length L ∈ [(c +
ε)vM,k1vM], (x0,0), (x1, t1), . . . , (xL, tL) for xL = 0 and tL ≤ vM . We now discretise this
path in two ways; first we define for j = 0,1, . . . , v, yj = xij where ij = max{k : tk ≤ jM}.
Secondly we take zj to equal the integer such that yj ∈ [2k1Mzj − k1M,2k1Mzj + k1M).
z0, z1, . . . , zv is the skeleton of the original path. Note that necessarily zv = 0 since xL and
therefore yv equal 0 and that there are less than v possibilities for z0. The following is a
simple combinatorial exercise (see e.g. [6], [7]).

Lemma 17 There are at most 4v skeletons compatible with a path of length less than k1vM

whose skeleton has zv = 0.

Let us denote by A(v,M) these skeletons. We note that if a path engenders a skeleton
(z0, z1, . . .), then the length of the path is bounded by

v−1∑

k=0

l([2k1Mzj − k1M,2k1Mzj + k1M], jM, (j + 1)M).
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Thus the event hvM(0, η) ≥ (c + ε)vM is contained in the event

max
(z0,z1,...)∈A(v,M)

v−1∑

k=0

l([2k1Mzj − k1M,2k1Mzj + k1M), jM, (j + 1)M) ≥ (c + ε)vM.

We will show that for M fixed (in advance) sufficiently large, this is exponentially small
in v. By Lemma 17, it is sufficient to show that for a fixed skeleton the above proba-
bility is small compared to 4−v . The argument comes down to showing that with very
high probability a very high proportion of the (zj , j) will be good in the sense that
l([2k1Mzj − k1M,2k1Mzj + k1M), jM, (j + 1)M) < (c + ε/4)M (see Lemma 18 below),
given this one can tolerate a small number of (zj , j) so that l([2k1Mzj − k1M,2k1Mzj +
k1M), jM, (j +1)M) ≥ (c+ε/4)M but reasonable (say bounded by 2k1M). It only remains
to control the really large deviations. This is done by Lemma 19 below.

Lemma 18 For any ε, γ > 0, there exists M sufficiently large so that for all v large and any
skeleton (z0, z1, . . .)

P

(
v−1∑

k=0

I(zk,k)good ≤ v(1 − γ )

)

< 5−v.

Proof For any skeleton the probability in question is the probability that a Binomial random
variable (with parameters v and the probability of (0,0) being good) is less than v(1 − γ ).
But by standard large deviations for Binomial random variables and Proposition 16 (applied
with ε replaced by ε/4) we can find M large enough to give the bound. �

Next we define random variables

Lj = (
l([2k1Mzj − k1M,2k1Mzj + k1M), jM, (j + 1)M) − 2k1M

)
+.

The following is true if k1 was fixed sufficiently large:

Lemma 19 For any skeleton P (
∑v−1

k=0 Lk ≥ vMε/4) ≤ 5−v.

Proof By bounds on Lemma 15 we have E[eLj ] ≤ 2 (provided k1 was fixed large). Thus by
usual Chebychev bounds P (

∑v−1
k=0 Lk ≥ vMε/4) ≤ 2v

eεvM/4 ≤ 5−v, provided M was chosen
large. �

Thus we can finally demonstrate our bounds on the probability that
∑v−1

j=0 l([2k1Mzj −
k1M,2k1Mzj +k1M), jM, (j +1)M) ≥ (c+ε)vM . The sum is bounded by vM(c+ε/4)+
2k1MR(z0, . . . , zv) + ∑v−1

k=0 Lk, where R(z0, . . . , zv) is the number of nongood (zj , j). By
Lemma 19 outside of probability 5−v this is less than vM(c + ε/2) + 2k1MR(z0, . . . , zv).
But, provided we chose γ < ε/8k1, by Lemma 18, we have that outside a further probability
5−v this is bounded by vM(c + 3ε/4). However by Lemma 17, the number of skeletons
is bounded by 4v and so the probability that among these 4v objects there exists one that
violates any of the above inequalities is bounded by 4vK5−v for some universal K and we
are done.
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4 The Relationship Between the Speed and the Roughness

Let G be a finite graph for which site i has ni neighbours. At each site i ∈ G there is a height
hi and the process evolves according to η. Define the differences in height between i and
its neighbours to be di(1) ≥ di(2) ≥ · · · ≥ di(mi) ≥ 0 ≥ −di(mi + 1) ≥ · · · ≥ −di(ni),0 ≤
mi ≤ ni . The h’s and d’s are functions of time. Define

H =
∑

i

nihi, Di =
∑

m

di(m), D =
∑

i

Di.

Consider the changes to h and D produced by a particle arriving at i. First,

hi → hi + 1 + di(1)

and secondly, for m ≤ mi the difference switches from di(m) to 1 + di(1) − di(m) and for
m > mi the difference switches from di(m) to 1 + di(1) + di(m), so that

Di → Di + ni(1 + di(1)) − [di(1) + · · · + di(mi)] + di(mi + 1) + · · · + di(ni)

− [di(1) + · · · + di(ni)].
Thus,

nihi − Di → nihi − Di + 2[di(1) + · · · + di(mi)].
Summing over all sites, and noting that each di(j) > 0 appears exactly once, we obtain that
the infinitesimal rate of change of H − D equals D. From this follows:

Lemma 20

H − D −
∫

Ddt is a martingale.

We now prove that, in the limit, if the ni are all the same, the rate of increase of the
height at a site is proportional to the Cesaro mean of the difference in heights. This may
seem obvious, but some thought will show that it is not.

Lemma 21 If f (t) ≥ 0 is continuous and g(t) = f (t)/t + F(t)/t → l where F(t) =∫ t

0 f (s)ds then f (t)/t → 0.

Proof If it does not converge to 0, then f (t)/t exceeds a value p > 0 for arbitrarily large
values of t . Define a set of values t1 < t2 < · · · which have the property that f (ti−)/ti− <

p,f (ti)/ti = p and ∃xi+1 such that ti < xi+1 < ti+1, f (xi+1)/xi+1 = p/2 where xi+1 is the
largest such value. If such an infinite sequence does not exist then there exists a t∗ such that
f (t)/t > p/2, t > t∗ in which case F(t)/t → ∞.

We make some estimates of g(tr ) − g(xr). The contribution from f (t)/t is p/2. For the
contribution from F(t) to make g(tr ) − g(xr) < p/4 requires

F(tr )/tr − F(xr)/xr < −p/4 ⇒ F(xr)/xr >
ptr

4(tr − xr)
. (1)

Suppose xr = (1 − q)tr , then f (t)/t ≥ p/2, (1 − q)tr < t < tr so that

F(tr )/tr > max{ptr [1 − (1 − q)2]/4,p/4q},
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where the second inequality comes from (1). The minimum of the above expression occurs
when q[2q − q2] = 1/tr in which case 1/q >

√
tr .

We thus have that either F(t)/t > p
√

t/4 for arbitrarily large t , or we can find arbitrarily
large values tr > xr for which g(tr ) − g(xr) > p/4. In either case g(t) does not converge.

�

Theorem 22 If the graph G is finite and spatially homogeneous or G = Z
k we have

E[hG(t)]
t

→ lG,

∫
E[dG(t)] dt

t
→ lG,

where hG(t) is the height at a single site, dG(t) is the mean difference in height from its
neighbours and lG exists by Theorem 1.

Proof It follows from Lemma 20 that E[H − D − ∫
D dt] = 0. In the finite case we divide

this equation by n|G| where |G| is the number of sites in G. It follows from Theorem 1
that E[hG(t)/t] tends to a limit which we shall call lG. E[hG(t)/t] is continuous, and the
theorem follows from Lemma 21.

In the case of Z
k we consider how the process affects [−r, r]k . Define the sum of heights

on this set to be Hr and the sum of differences to be Dr . Unlike the sum over all sites above,
the negative differences from sites on the boundary will not be counted, so that Lemma 20
becomes

Hr − Dr −
∫

Dr − Dr−
B dt is a martingale,

where Dr−
B is the sum of negative differences from sites on the boundary. Because Z

k is
spatially homogeneous there is an m < 2 such that E[Dr−

B (t)] = 2k(2r + 1)k−1mE[d(t)]/2.
Thus we have Hr − Dr − (1 − 2km/(n(2r + 1)))

∫
Dr dt is a martingale, and dividing by

n(2r + 1)k and letting r → ∞ the result follows as before. �

5 The Roughness of the Surface

In this section we deal with the process in 1-d so that G = Z. We shall deal with the distri-
butions as t → ∞. In other words we shall assume that certain finite sets of events in the
past have occurred with probability 1. We say there is a U at x + 1/2 if h(x + 1) > h(x) and
a D there if h(x + 1) < h(x). The mechanism by which a particle arrives ensures that the
height at neighbouring sites cannot be equal.

On G the probability that a site is a peak, that is, higher than its neighbours, simply equals
1/(n + 1) where n is the degree of the graph. In 1-d this is 1/3. We look at the lengths of
down sequences from a peak and the distance to the next peak. We shall designate the last
arrival time at x, measured backwards in time as tx . Suppose there is a peak at 0 and that the
next trough (lower than all its neighbours) is at r . Then we require t0 < t1 < · · · < tr, t0 <

t−1, tr+1 < tr . The numbers of ways in which this can happen are as follows: (a) tr+1 < t0, in
which case there are r + 1 possible positions for t−1, (b) tr+1 is in one the r possible slots
greater than t0 but less than tr . In this case there are r + 2 possible places for t−1. Together
these total r + 1 + r(r + 2) = r2 + 3r + 1 possibilities. The number of orderings of the
arrival times is (r + 3)!. Define L to be the length of a D sequence from a peak, then

P (L = r|0 is a peak) = P (L = r and 0 is a peak)

P (0 is a peak)
= 3

r2 + 3r + 1

(r + 3)! , r ≥ 1.



Deposition Processes with Hardcore Behaviour 699

The p.g.f. of L is

3es

(
1

s
− 2

s2
+ 1

s3

)

− 1

2
+ 3

2s
+ 3

s2
− 3

s3
,

giving

E[L] = 1.5, Var(L) = 6e − 15.75 ≈ 0.56.

We now calculate the probability of a down-slope of length r followed by an up-slope of
length s. Put the first peak at 0, the first trough at r and the second peak at r + s. There are
4 possibilities:

The first is that t−1 is in one of the r positions between t0 and tr and tr+s+1 is in one of
the s positions between tr+s and tr . We then have the r + 1 times t0, t−1, t1, . . . , tr−1 ordered
and less than tr . Similarly we have the s + 1 times tr+1, . . . , tr+s+1 ordered and less than tr .
These r + s + 2 times can therefore be ordered in

(
r+s+2
r+1

)
ways. The other 3 possibilities

depend on the possibilities of t−1 being greater than tr or tr+s+1 being less than tr or both.
If L,M respectively are the lengths of a down-slope of length L followed by an up-slope of
length M then

P (L = r,M = s) = rs
(
r+s+2
r+1

) + s
(
r+s+1

r

) + r
(
r+s+1

s

) + 2
(
r+s

s

)

(r + s + 3)! .

As would be expected, E[L + M] = 3. Further, Corr(L,M) = 0.04, but this is driven by
the low values of L,R and is somewhat misleading as, for example, P (R = 8|L = 8) =
1.9P (R = 8). However, these values are O(10−6).

When a particle arrives at x, the values at x − 1/2 and x + 1/2 become UD whatever
they were before. x + 1/2 is thus occupied by a D if the most recent arrival of UD at
x − 1/2, x + 1/2 occurred after the most recent arrival of UD at x + 1/2, x + 3/2. Thus the
limiting probability of a D equals 1/2. A UD occupies x−1/2, x+1/2 if looking backwards
in time x − 1/2, x + 1/2 is the most recent of the 3 events x − 1/2, x + 1/2; x − 3/2, x −
1/2; x + 1/2, x + 3/2. If instead the order had been x + 1/2, x + 3/2; x − 1/2, x + 1/2;
x − 3/2, x − 1/2 it would have been DU.

In what follows we look back in time so that “precedes” means “is more recent than”.
We have the following rules:

• A U is at x + 1/2 if the last particle to arrive at x + 1 preceded the last at x.
• A D is at x + 1/2 if the last particle to arrive at x preceded the one at x + 1.

Numbering a set of sites 1,2,3, . . . . We have UDD in the first 3 positions if 2 precedes 1, 3
follows 2 and 4 follows 3. The possible orderings of 1,2,3,4 are thus 2134,2341,2314. So
the probability of UDD is 3/24.

To calculate UDDU or UDDD we note that the extra letter only concerns the relationship
of 5 to 4. We calculate the probability by considering the number of times 4 is in position
1,2,3,4 in the orderings that give UDD.

UDD UDDU UDDD

Position of 4 1 2 3 4 Position of 5 1 2 3 4 5 Position of 5 1 2 3 4 5

Frequency of 4 0 0 1 2 Frequency of 5 3 3 3 2 0 Frequency of 5 0 0 0 1 3
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Since, in UDDU 5 precedes 4, it can take positions 1, 2 or 3 for any position of 4, it can
only take position 4 when 4 is in position 4 in UDD and 5 cannot take position 5. In UDDD
5 must follow 4.

Theorem 23 Consider a sequence x1x2 . . . xm−1 where each xi is U or D. Let nm,r be num-
ber of times m appears in position r in the possible orderings of 1,2, . . . ,m. Then for the
sequences x1x2 . . . xm−1D and x1x2 . . . xm−1U , the respective frequencies of m + 1 are

nD
m+1,r =

r−1∑

j=1

nm,j , nU
m+1,r =

m∑

j=r

nm,j , r = 1, . . . ,m + 1,

where the values are 0 when the summation is not possible. In the above notation

P (x1x2 . . . xm−1) =
m∑

j=1

nm,j /m!.

The particular cases P (UU . . .U) = P (DD . . .D) = 1/(n + 1)! where the number of iden-
tical symbols is n,

P (x1 . . . xm.y1 . . . yr ) = P (x1 . . . xm)P (y1 . . . yr ).

Proof When the sequence ends in a D, the m must precede the m + 1, so m + 1 may appear
in position r for all positionings of m up to but not including r . When the sequence ends in
a U, the m + 1 must precede the m, so m + 1 may appear in position r for all positionings
of m from r onwards. It cannot appear in position m + 1.

To have n U’s in a row requires that the n+1 arrivals surrounding them came in the order
last to first. The last part of the theorem is clear, since the appearance of a U or D at any site
is only affected by its immediate neighbours. �

The above formulae provide an algorithm for calculating the probability of any sequence
of U’s and D’s. It can be shown that

P (x1x2 . . . xm−1.U) = P (x1x2 . . . xm−1UU) + P (x1x2 . . . xm−1DU) = 1

2
P (x1x2 . . . xm−1),

a special case of the last proposition in Theorem 23.
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