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Abstract In conventional force fields, the electrostatic
potential is represented by atom-centred point charges. This
choice is in principle arbitrary, but technically convenient.
Point charges can be understood as the first term of
multipole expansions, which converge with an increasing
number of terms towards the accurate representation of the
molecular potential given by the electron density distribu-
tion. The use of multipole expansions can therefore
improve the force field accuracy. Technically, the imple-
mentation of atomic multipoles is more involved than the
use of point charges. Important points to consider are the
orientation of the multipole moments during the trajectory,
conformational dependence of the atomic moments and
stability of the simulations which are discussed here.

Keywords Multipole moments . Molecular dynamics .

Point charges . Electron density distribution .

Distributed multipole analysis .

Cumulative atomic multipole moments .

Theory of atoms in molecules

Introduction

In atomistic force fields such as CHARMM or AMBER
[12, 26], the electrostatic potential is usually represented by
point charges. Charges centred on an atom are not an
intrinsic physical property but rather a convenient concept,
and are typically obtained from a population analysis of the
Hartree-Fock wave function from electronic structure

calculations [13], or by fitting atomic charges that optimally
reproduce the electrostatic potential or interaction energies
[2, 20]. The physical property from which charges are
derived is the molecular electron density ρ(r), where r is a
point in three-dimensional (3D) space. It has been demon-
strated in the past that point charges can be understood as a
first term in a multipole expansion [21, 22]. The potential
that corresponds to the multipole expansion converges
towards the potential derived from ρ(r) on which the
analysis is based. Several algorithms have been developed
for obtaining atom centred multipole expansions. The most
widely used are distributed multipole analysis (DMA) [25],
cumulative atomic multipole moments (CAMM) [21] and
the theory of atoms in molecules (AIM) [1]. All these
methods include a partitioning of the electron density and
an integration of ρ(r) over a suitably defined space
occupied by a particular atom for all desired multipole
ranks. The partitioning of ρ(r), the allocation of atomic
moments to particular atoms, and therefore the resulting
multipole expansion, its convergence, basis set dependence,
conformational dependence and transferability differ be-
tween the three methods. A direct comparison of DMA (in
its previous form [22]) and AIM has been published [7].

Atomic multipole moments have been found to be
important for modelling molecular interactions in com-
plexes, solids and proteins [17]. In particular, they have
been applied successfully to organic crystal structure
prediction [3], and they have also been shown to improve
results of molecular dynamics (MD) simulations for several
systems [14–16].

In the following, practical issues in using atomic
multipole moments in MD simulations are considered.
The properties of electrostatic multipoles are compared to
different point charge models and specific problems
concerning the implementation of atomic multipoles in the
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context of MD simulations are then analysed and the effects
demonstrated for model systems.

Choice of atomic multipole parameters for MD
simulations

The electrostatic energy of a multipole expansion up to
quadrupole on two atoms a and b in spherical tensor
notation can be written as
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where qa is the charge of atom a, mk

b is the direction k of
the dipole moment vector on atom b, Θn

a is the element n of
the quadrupole tensor on atom a [23]. As an example, the
interaction between a charge qa and the Θ20
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where rbz and is the z-element of a unit vector pointing from
b to a and R is the interatomic distance.

The practical use of atomic multipole moments for MD
simulations should take a number of considerations into
account. First, to justify the additional computational cost,
the electrostatic potential derived from the multipole
expansion has to be significantly more accurate than a
corresponding point charge potential. Second, the compu-

tational expense depends sensitively on the multipole rank
at which the expansion can be truncated with only small
remaining differences between the exact electrostatic
potential and the potential from the multipole expansion.
Third, the accuracy of the electrostatics inside the van der
Waals radii is of less importance since at very short range
the interaction is dominated by the repulsive part of the
Lennard-Jones (LJ) potential. Fourth, for the parametrisa-
tion of larger molecules, the atomic multipole moments
should be transferable between smaller fragments without
large errors (e.g. transferability between amino acids in
different peptides). Finally, the change of the multipole
moments with molecular conformation should either be
small or should be described by an analytical function. In
the following, the properties of atomic moments obtained
from DMA [24] are analysed, using alanine and glycine as
examples, covering the points mentioned above.

Convergence and accuracy of distributed multipole
potentials

For all the molecules and ab initio methods studied, the
distributed multipole expansion converges to within 10% at
rank two (i.e. quadrupole). To illustrate this, Fig. 1 shows
the difference between potential fr (derived from the
multipole expansion) and the ab initio potential φ for water
for different levels of accuracy. At rank two, fr typically
differs by a few percent on average from φ, and is
significantly more accurate than potentials from point
charges for the same molecule, using Mulliken charges or
charges fitted according to the Merz-Kollman scheme [2].
Quantitative evaluations for water and alanine are shown in
Table 1. The evaluation is carried out with a probe charge
of 1, based on a cubic grid of 10×10×10 Å for water and
15×15×15 Å for alanine, with 101 points in each direction
outside the van der Waals radii1.

Fig. 1 Differences (absolute values) between fr (potential from
multipole expansion) and φ (potential from ab initio calculations) for
water, based on a Hartree-Fock calculation with a 6-31G* basis set.

From left to right: distributed multipoles up to rank 0, rank 1, rank 2 and
rank 3. Colour coding: black >10 kJ/mol, red 5–10 kJ/mol, green 2.5–
5 kJ/mol, blue 1–2.5 kJ/mol, yellow 0.5–1 kJ/mol, white <0.5 kJ/mol

1 Multipole parameters identical to those from Table 2 for all
molecules considered can be obtained from the authors on request.
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Conformational dependence of distributed multipole
potentials

To illustrate the conformational dependence of multipole-
derived potentials, two conformations (c1 and c2) of
alanine and glycine, are considered (see Figs. 2, 3). Table 2
provides coordinates and multipole moments for glycine
from which the potentials in Fig. 4 were calculated. This
example shows that the differences between � and fr are
considerably larger if the multipoles are transferred to
another conformation. A quantitative analysis of the differ-
ences between fr and φ is provided in Table 3, where
differences between the electrostatic potentials from ab
initio calculations and different charge models are reported.
In order to calculate the data for another conformation, the
multipoles are rotated according to the geometry of the
atoms in the new conformation. The tables also show data
for the conformational dependence for point charges, which
are calculated according to the Merz-Kollmann scheme [2].
Also for point charges, the deviations in another conforma-
tion are considerably larger. The data show that the
conformational dependence of fr has to be taken into
account. Otherwise the accuracy gained by using multipole
expansions instead of point charges is likely to be

compromised. The conformational dependence of fr has
already been investigated in earlier studies for the DMA
and for the CAMM algorithm [9, 18]. There are different
possible solutions to this problem, not all of which are
applicable in general.

For some molecules, the change of the atomic multipole
moments with conformation can be described explicitly by
an analytical function. This has been done successfully for
CO [16]. Unlike this particularly simple case, more
elaborate methods need to be used for molecules such as
glycine and alanine. For the conformational dependence
around torsion angles, the use of short Fourier series has
been shown to significantly improve the electrostatic
potential [10]. A combined solution for atomic multipoles
together with inter- and intramolecular polarisation has
been suggested [19], but no explicit dynamics has been
carried out with this procedure for larger molecules such as
amino acids. Furthermore, it is unclear how well this
approach is able to reproduce atomic multipole moments of
another conformation, since only the combined electrostatic
plus polarisation energies have been evaluated and the
individual contribution of each term to different conforma-
tions is not available.

Another possible solution is to use conformationally
averaged multipole moments to better reproduce � on
average. This has been done here for glycine and alanine by
shifting multipole moments with ranks higher than zero to
fewer sites. Furthermore, the relative atomic radii for
Lebedev integration in the distributed multipole analysis
based on the self-consistent field (SCF) density from the
corresponding calculation can be varied to minimise
conformational dependence. The data are shown in Table 3.
This is not a general solution, but the data presented here
shows that, at least for the cases considered here, such a
procedure reduces the error due to conformational changes.

Finally, it may also be possible to use an iterative
scheme in which the multipole moments are recalculated
periodically. Such an approach has already been proposed
and tested for energy minimisations of crystal structures [8].

Implementation in MD simulations

For the implementation of atomic multipole moments into
atomistic simulations, additional interaction terms and their

Fig. 2 Alanine conformations
c1 and c2

Fig. 3 Glycine conformations c1 and c2

Table 1 Comparison for water and alanine. HF Hartree-Fock, DMA
distributed multipole analysis

HF 6-31G* B3LYP Aug-cc-pVTZ

Water Alanine Water Alanine

DMA, rank 0

ΔE (kJ/mol) 3.27 2.87 2.70 2.52

ΔE (%) 64 2383 68 1653

DMA, rank 1

ΔE (kJ/mol) 0.63 0.333 0.71 0.36

ΔE (%) 41 178 61 73

DMA, rank 2

ΔE (kJ/mol) 0.05 0.05 0.17 0.06

ΔE (%) 1 6 4 8

Mulliken charges

ΔE (kJ/mol) 0.52 0.84 2.18 6.05

ΔE (%) 23 687 60 2993

Merz-Kollman

ΔE (kJ/mol) 0.28 0.08 0.44 0.08

ΔE (%) 18 35 37 18

J Mol Model (2009) 15:687–694 689
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Fig. 4 Differences (absolute
values) between multipole
expansion and ab initio potential
for glycine in two different
conformations based on HF
6-31G* calculations. Upper row
Multipole moments calculated
from conformation 1 of glycine,
lower row multipole moments
calculated from conformation 2
of glycine. Left column Com-
parison with ab initio potential
of conformation 1, right column
comparison with ab initio
potential of conformation 2. The
x-axis of the second conforma-
tion is inverted in this represen-
tation in order to allow better
comparison of the two confor-
mations. Colour coding: Black
>10 kJ/mol, red 5–10 kJ/mol,
green 2.5–5 kJ/mol, blue
1–2.5 kJ/mol, yellow
0.5–1 kJ/mol, white <0.5 kJ/mol

Glycine Alanine Glycine Alanine

c1 c2 c1 c2 c1 c2 c1 c2
HF 6-31G** HF 6-31G** B3LYP cc-pVQZ B3LYP cc-pVTZ

Charges of c1

ΔE (kJ/mol) 0.09 0.53 0.07 1.03 0.11 0.44 0.08 1.05

ΔE (%) 21 60 18 330 29 39 35 1317

Charges of c2

ΔE (kJ/mol) 0.17 0.15 0.75 0.08 0.17 0.15 0.47 0.10

ΔE (%) 55 34 418 13 47 30 613 73

DMA of c1

ΔE (kJ/mol) 0.07 0.26 0.10 1.27 0.07 0.19 0.11 1.11

ΔE (%) 4 30 11 295 5 25 15 829

DMA of c2

ΔE (kJ/mol) 0.16 0.07 0.63 0.10 0.14 0.11 0.54 0.11

ΔE (%) 40 4 250 5 36 9 423 7

Setup with three multipole sites for glycine, four sites for alanine

DMA of c1

ΔE (kJ/mol) 0.10 0.12 0.10 0.32 0.10 0.13 0.10 0.46

ΔE (%) 6 9 7 77 8 8 11 206

Table 3 Conformational depen-
dence of glycine and alanine;
charges are calculated according
to the Merz-Kollman scheme

J Mol Model (2009) 15:687–694 691



first derivatives have to be provided. This can be done
based on published interaction terms [23]. For the actual
implementation it is important to take into account that
higher order multipoles (κ≥1, i.e. dipole) depend on the
coordinate system in which they were calculated. This can
be handled through molecular reference axes systems and is
considered in some more detail here. For distributed
multipoles, moments obtained from GDMA [24] are
defined with respect to the standard orientation of the
molecule, obtained from the underlying GAUSSIAN [4]
calculation. In a MD simulation the definitions of the
multipole moments have to agree with the overall orienta-
tion of the corresponding molecule. Therefore, molecular
reference axis systems have to be defined. In the simplest
case (linear molecule) one reference axis, defined by the
two atoms, is sufficient. For water, all three axes have to be
defined. This can be done by aligning the z-axis along the
axis pointing from the oxygen to the centre of the two
hydrogens, the y-axis from one hydrogen to the other
hydrogen, and the x-axis being then defined by orthogo-
nality (see Fig. 5). For larger molecules, such as glycine
and alanine, several reference axis systems have to be
defined, since the different parts of the molecule can rotate
with respect to each other. Finally, the multipole moments
or the multipole interaction between molecules have to be
rotated at each step of the simulation to the corresponding
molecular reference axis system. This procedure ensures
that the orientation of the atomic multipole moments,
defined with respect to the equilibrium structure, agrees
with the orientation of the molecule in space.

For molecular moments, the torques on the molecule can
be calculated from the multipole interactions. This is not

possible for atom-centred moments, as torques on point
particles are not meaningful. For rigid molecules, the torque
on the atoms can be transformed to torques on the
molecules, which is not possible for flexible molecules.
Therefore, molecular reference axis systems have to be
used. Assigning a reference axis system is in principle a
technical issue, since it corresponds to a limited number of
symmetry groups from which all molecular geometries can
be assembled. Nevertheless, an additional issue arises as the
rotation of the atomic multipole moments slightly changes
the interaction energy at each timestep because the
reference axis system, in which the atomic multipoles are
defined, rotates by a small amount between two consecu-
tive time steps. The description of this rotation in terms of
atom centred forces is difficult as, for each interacting pair
of atoms, the forces depend not only on the relative position
of these two atoms (as for all other force field terms), but
also on the position of the other atoms belonging to the
reference axis systems of that atom pair. Thus, in a rigorous
analytical approach, additional forces will appear for all
atoms that define the reference axis system. To the best of
our knowledge no complete treatment is as yet available. If
the overall orientational change at each step is small, these
additional forces are small and can be neglected.

However, for cases where the energy contribution arising
from the atomic multipoles is larger, the effect may become
significant. The problem is different when the molecules
are treated as rigid units, as done in the DL MULTI force
field [5] where the forces are separated into a translational
part (applied to the multipole sites) and a rotational part
(applied to the molecular centre of mass) [11]. However, in
this case the level of energy conservation depends on the
choice of the electrostatic cutoffs. Furthermore, it has to be
noted that this approach can be applied rigorously only to
rigid molecules or rigid molecular fragments. It remains to
be seen whether a generalisation of separating the rotational
and translational part, or a more heuristic correction is
preferable. In any case, for an approach that conserves
energy, a combination of atomistic and molecular terms in
the forces is required. One other way to circumvent this
problem is to “absorb” the effect by using an NVT ensemble
for which, however, careful testing of the simulation results
is necessary to establish that no artifacts occur. It is
particularly important that total energy is correctly parti-
tioned between translational and rotational degrees of
freedom according to the equipartition theorem.

Practical applications in atomistic simulations

As a test system to highlight the use of higher multipole
moments in a realistic simulation, a mixed CO/water
system is considered. The water molecules are described

Fig. 5 Local reference axis systems for two water molecules in a
global Cartesian coordinate system
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by the TIP3P [6] potential, the CO molecules by different
distributed multipole expansions that have already been
used for CO in myoglobin and have been described in
detail [16]. In the following, they will be referred to as
Models B (multipoles up to rank 1 on carbon and up to rank
2 on oxygen), C (multipoles up to rank 2 on carbon and up
to rank 3 on oxygen) and D (up to rank 3 on both atoms).
Differences in the degree of energy conservation are found
between rigid and flexible molecules, and between different
parametrisations.

The first test system is a cluster of four water molecules
and two CO molecules (see Fig. 6). The energy conservation
is evaluated during 100 ps at 5 K, first for one CO in the
static field of the other molecules, second for one CO and
one water free to move, and third for one CO and two waters

free to move (Fig. 7). For models B and D, these changes
leave the energy conservation nearly unaffected. For model
C, the changes destabilise the trajectory. These examples
show that seemingly small changes in the simulation
conditions can affect the stability of the trajectories. The
energy change between two conformations of the system and
for each atom may be small. Nevertheless, it can become

Fig. 8 CO clathrate system to illustrate energy conservation in a
2×2×2 unit cell of a CO clathrate hydrate

Fig. 6 Water/CO cluster structure. Molecules that are fixed during the
trajectory are shown with smaller atom spheres, molecules that are
free to move are shown with large atom spheres
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very important due to self-amplification. This is explained
through the fact that energy changes affect only the rotational
energy, which increases due to the rotation of the atomic
multipole moments. If the rotational energy increases, the
orientational change of the multipole moments also
increases. Thus, once the error in energy exceeds a certain
threshold, it increases exponentially.

To demonstrate this effect, trajectories are shown for a
CO clathrate system (Fig. 8), which consists of water
molecules arranged in an ice-like structure around CO
molecules [14]. For the technical evaluation here, water is
described by the TIP3P water model and for CO model C is
used. If the CO atoms are fixed and the waters move in the
field of the atomic multipole expansions, the total energy is
conserved because no reorientation of the atomic multipoles
takes place. If the CO molecules are free to move, the
energy starts to drift and the self-amplifying effect
mentioned above appears (see Fig. 9).

Conclusions

In conclusion, the present work has shown that atom centred
multipole moments are a useful way forward to generalise
and improve the description of electrostatic interactions for
MD simulations. Technically, the implementation is more
involved than for point charges, since the orientation of the
multipole moments has to be taken into account. The
orientation of the multipole moments can be described
through reference axis systems. For rigid molecules, a
satisfactory solution that conserves the total energy has been
recently presented in the literature [11]. However, for fully
flexible molecules, no general solution is as yet available. A
generalised implementation for fully flexible molecules
requires particular care in order to ensure that total energy
is conserved in the simulations. For cases in which the
performance of conformationally dependent multipoles with
flexible molecules has been carefully examined, clear
advantages over point charges in the calculated observables
have been found [15, 16]. Overall, the accuracy of the force
field is improved by including higher multipole moments.
For larger molecules, the conformational dependence of
multipole moments has to be considered and becomes
potentially important to maintain the accuracy higher
multipole moments can provide.
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