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Abstract

The current discussion on the safety of transgenic crops includes their effects on beneficial insects, such as
parasitoids and predators of pest insects. One important plant trait to consider in this context is the
emission of volatiles in response to herbivory. Natural enemies use the odours that result from these
emissions as cues to locate their herbivorous prey and any significant change in these plant-provided
signals may disrupt their search efficiency. There is a need for practical and reliable methods to evaluate
transgenic crops for this and other important plant traits. Moreover, it is imperative that such evaluations
are done in the context of variability for these traits among conventional genotypes of a crop. For maize
and the induction of volatile emissions by caterpillar feeding this variability is known and realistic
comparisons can therefore be made. Here we used a six-arm olfactometer that permits the simultaneous
collection of volatiles emitted by multiple plants and testing of their attractiveness to insects. With this
apparatus we measured the induced odour emissions of Bt maize (Btl1, N4640Bt) and its near-isogenic
line (N4640) and the attractiveness of these odours to Cotesia marginiventris and Microplitis rufiventris,
two important larval parasitoids of common lepidopteran pests. Both parasitoid species were strongly
attracted to induced maize odour and neither wasp distinguished between the odours of the transgenic
and the isogenic line. Also wasps that had previously experienced one of the odours during a successful
oviposition divided their choices equally between the two odours. However, chemical analyses of collected
odours revealed significant quantitative differences. The same 11 compounds dominated the blends of
both genotypes, but the isogenic line released a larger amount of most of these. These differences may be
due to altered resource allocation in the transgenic line, but it had no measurable effect on the wasps’
behaviour. All compounds identified here had been previously reported for maize and the differential
quantities in which they were released fall well within the range of variability observed for other maize
genotypes.

Introduction the consequences for non-target insects (Conner

et al., 2003). Of particular interest are beneficial
Risk assessment of the use of insect resistant insects such as pollinators (Picard-Nizou et al.,
transgenic plants in agriculture includes studies on 1995; Arpaia, 1996; Poppy, 1998; Malone

et al., 2001) and natural enemies of pests (Hilbeck
* Author for correspondence et al., 1998; Birch et al., 1999; Bell et al., 2001),
E-mail: ted.turlings@unine.ch but the effects on non-target Lepidoptera has also
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received much attention (Losey et al., 1999; Jesse
& Obrycki, 2000; Wraight et al., 2000; Zangerl
et al., 2001). The debate on how to conduct these
assessments has not yet been settled, but it is
commonly accepted that realistic tests should
compare conventional methods with the strategy
of employing transgenic plants, although this is
rarely done as yet. Another aspect that we feel
needs consideration is the comparison of any
transgenically altered genotype with a representa-
tive range of existing genotypes that are conven-
tionally used. Performance of insects on different
genotypes can vary considerably, which is true for
herbivores (Lewis, 1984; Fox, 1993; Preszler &
Price, 1995; Cronin & Abrahamson, 1999) as well
as their natural enemies (Fox et al., 1990; Kester &
Barbosa, 1991; Benrey et al., 1998; Turlings &
Benrey, 1998; Harvey et al.,, 2003). It seems
therefore important to test, for instance, how
reduced survival of natural enemies on a Bt maize
plant compares to survival on a representative
range of conventionally bred varieties.

Various studies have shown that plants respond
to herbivory with the production and emission of
volatile substances that are attractive to parasitoids
and predators (Vet & Dicke, 1992; Turlings &
Benrey, 1998; Dicke & Vet, 1999; Turlings &
Wickers, 2004). This important role of the plant
in determining the success rate of host or prey
location has been considered as one aspect that
needs to be included in the assessment of possible
changes in transgenic plants. Schuler et al. (1999,
2003) have made an important first contribution to
such assessments with a study on transgenic oilseed
rape that expresses a Bt (Bacillus thuringiensis)
toxin as a control against the diamondback moth,
Plutella xylostella. They confirmed the importance
of volatiles emitted from caterpillar-damaged
leaves for the host location behaviour of the
parasitoid Cotesia plutellae and found that the
increased feeding by Bt resistant diamondback
larvae rendered Bt oilseed rape much more attrac-
tive than if susceptible larvae were feeding on the
transgenic plants. These results imply that the
parasitoids may help slow down the development
of resistance against Bt in the diamondback moth
(Schuler et al., 1999). As yet, no information has
been obtained on the chemical composition of
odours emitted by transgenic plants. It is pertinent
that such assessments of transgenic plants are not
only done by comparing them with their isogenic

lines, but also with a broad selection of other
genotypes in order to place possible changes in the
context of existing variability among conventional
varieties.

We have been studying the caterpillar-induced
odour emissions in maize and their role as host-
finding signals for parasitoids (Turlings et al.,
1990, 1995; Turlings & Wickers, 2004). The odour
emissions are systemic and are triggered by elicitors
in the oral secretions of the caterpillars. There is
considerable variability among maize varieties in
the quantities and relative composition of these sig-
nals (Gouinguené et al., 2001; Fritzsche-Hoballah
et al., 2002). We recently tested the volatile emis-
sions of 31 maize inbred lines that are commonly
used by U.S. and European breeders to select new
maize varieties for commercial use (Degen et al.,
2004). These lines represent the full spectrum of
genetic variability for cultivated maize from the
Western hemisphere, which is reflected in the
tremendous variability in odour emissions, both
in terms of quantity and quality (composition of
the volatile blends). Some examples are shown in
Figure 1. This information on the existing vari-
ability of induced volatile emissions in maize
provides a good basis with which to evaluate
transgenic maize plants.

The purpose of the current study was to design
a method with which to compare the odour
emissions of transgenic and non-transgenic plants
and to test their attractiveness to parasitoids. With
the use of a six-arm olfactometer we simulta-
neously collected the induced volatiles emitted by
Bt maize (Btll, N4640Bt) and its isogenic line
(N4640) and measured the attractiveness of the
odours to the two larval endoparasitoids Cotesia
marginiventris and Microplitis rufiventris. Both
wasps are braconids and attack early larval stages
of various lepidopteran pests, which they kill
before much harm is done to a plant (Fritzsche-
Hoballah & Turlings, 2001; Hoballah et al., 2004).
These parasitoids can readily distinguish among
odours of different intensity or quality, and
particularly C. marginiventris prefers odours that
it has experienced during an oviposition (Hoballah
& Turlings, 2005; Tamo, 2005). If transgenic and
isogenic lines differ in the odours they emit, this
should be reflected in the responses of the wasps.
To enhance their responsiveness and their ability
to distinguish among odours we also tested
females of both species that had previously
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Figure 1. Typical chromatographic profiles of herbivore-induced volatiles emitted by six maize inbred lines (F7, F752, A188,
F1852, 103 and Dul0l), representative for the variability that can be observed in these emissions. The volatiles were collected 8 h
after the plants had been injected with the regurgitant of Spodoptera littoralis caterpillars (for details on the inbred lines and
treatment see Degen et al., 2004). The represented compounds are: a. B-myrcene; b. (E)-B-ocimene; c. linalool; d. (Z)-3-hexen-1-yl
acetate; e. benzyl acetate; f. phenethyl acetate; g. geranyl acetate; h. (3E)-4,8-dimethyl-1,3,7-nonatriene; i. (3E,7E)-4,8,12- trimethyl-
1,3,7,11-tridecatetraene; j. 1-H-indole; k. methyl anthranilate; 1. cyclosisosativene; m. a-ylangene; n. unknown; o. (E)-p-caryophyl-
lene; p. (E)-o-bergamotene; q. (E)-B-farnesene; r. germacrene-D; s. unknown; t. (E,E)-a-farnesene; u. B-bisabolene; v. unknown; w.
(E)-nerolidol. IS1 and IS2 are the internal standards n-octane and nonyl-acetate, respectively.
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experienced the odour of either plant during an
oviposition in a larva of Spodoptera littoralis, a
suitable host.

Materials and methods
Maize plants

For this study we evaluated the maize hybrids
Novartis N4640Bt (Yield-Gard, CrylAb, event
Btl1) and its non-Bt isogenic equivalent N4640.
Plants were grown from seeds, which were individ-
ually planted in plastic pots (6-cm high,
8-cm diameter) with fertilised commercial soil
(Coop, Switzerland). The pots were placed in a
climate chamber (23°C, 60% r.h., and LD 16:8 h,
50,000 Im/m?). Eight days after planting, the plants
that would serve as odour sources in the olfactom-
eter were transplanted into a glass pot (11-cm high
S5-cm internal diameter) with a 50-55-mm ground
glass male connector that could be inserted into an
odour source vessel of the olfactometer. The plants
were induced to produce odours (see below) on that
same day and used in bio-assays the following
morning. Plants that were to be used to pre-
condition the wasps were left in their original pots,
but received the same treatment.

Induction of plants

Between 17.00 h and 18.00 h the day before each
assay, plants were induced to emit volatiles by
scratching two leaves (2-cm?) with a scalpel and
applying 10 ul S. littoralis regurgitant to the dam-
aged sites. Regurgitant was collected and applied
as described in Turlings et al. (1993). After treat-
ment the plants were placed in the odour sources
vessels of the olfactometer (see below) and
remained there until and throughout the assays.
This artificial, but effective method of induction
was chosen because of repeatability and to ensure
equal treatment of both hybrid lines. The alterna-
tive of having Spodoptera larvae feed on the plants
would have resulted in considerable less feeding
damage on the Bt line than on the non-Bt line,
which would certainly reflect in differential volatile
emissions. The purpose of this study was to
evaluate if transgenesis has caused changes in the

plant’s capacity to produce inducible odour emis-
sions.

The insects

For all bio-assays, we used 2-3 day-old females of
the solitary endoparasitoids Cotesia marginiven-
tris and Microplitis rufiventris. The rearing colony
of C. marginiventris originated from the USDA-
ARS, Biological Control and Mass Rearing
Research Unit (Mississippi, U.S.A.). The colony
of M. rufiventris was started and replenished with
individuals reared from Spodoptera littoralis lar-
vae that had been collected in crop fields near
Alexandria, Egypt. S. littoralis larvae used for
rearing were provided by Syngenta (Stein, Swit-
zerland). See Fritzsche-Hoballah & Turlings
(2001) for details on the rearing procedures.

Pre-conditioning of the wasps

Before releasing them in the olfactometer, female
wasps received one of three possible experiences;
(1) they were left naive, meaning that they never
contacted hosts or plant material as adults
(NAIVE); (2) they were trained with the odour
of Bt maize by having them oviposit twice in
second instar S. littoralis larvae that had been
placed on induced Bt seedlings (BT experience); or
(3) they were trained with the odour of isogenic
maize by having them oviposit twice in second
instar S. /ittoralis larvae that had been placed on
induced isogenic seedlings (ISO experience).

Experiencing an odour during an oviposition is
known to increase the responsiveness of parasi-
toids to the experienced odour as a result of
associative learning (Turlings et al., 1993; Vet
et al., 1995). The olfactometer was used in a
previous study to test the learning ability of the
two parasitoid species and it was found that
C. marginiventris exhibits a preference for an
experienced odour, whereas M. rufiventris shows
an overall increase in responsiveness, but no
change in preference (Tamo, 2005). It can be
expected that if the wasps perceive differences
between the odours of the two genotypes that at
least C. marginiventris females will show an
increased attraction to the odour with which they
had a positive encounter.



The olfactometer

The olfactometer has been described in detail by
Turlings et al. (2004). It is a device in which wasps
are exposed to six different airflows that enter a
central glass exposure chamber through six arms.
Each flow can potentially carry a different odour. In
this study only two of the flows (from opposite
arms) carried an odour (one of Bt maize and one of
isogenic maize), while the other flows served as
controls and carried only humidified pure air. The
olfactometer has been shown to be highly effective
in measuring the relative attractiveness of induced
plant odours for both parasitoids (Turlings et al.,
2004; Tamo, 2005). During the assays, 50% of the
airflow was pulled through trapping filters (Heath &
Manukian, 1992) for 3 h to collect volatiles as
described by Turlings et al. (2004) for later analyses
(see below).

Bio-assays

On a given day, 3 groups of 6 wasps were released
in the olfactometer: one group of naive wasps, one
group trained on Bt maize and one groups trained
on isogenic maize. Treatment groups were alter-
nated and ordered differently on different days.
For each parasitoid species this experiment was
replicated on 12 different days, which ensured that
all possible position for the opposing odour
sources were tested.

The experienced wasps received their experi-
ence just before they were placed in the olfactom-
eter. Each group of six was given 30 min to make a
choice, after which all choices were recorded and
wasps were removed with an aspirator. The wasps
that had stayed in the central exposure chamber
were counted as ‘“‘no choice”.

Analyses of volatiles

Immediately after each experiment, the volatiles
collected on the trapping filters were extracted with
150 ul of methylene chloride and two internal
standards (n-octane and nonyl acetate, each
200 ng in 10 pl methylene chloride) were added to
these samples. For the analysis, an aliquot of 3 pl
was injected on-column with the use of an auto-
mated injection system onto an apolar HP-1 cap-
illary column (30 m, 0.25-mm I[.D., 0.25 pm film
thickness), which was preceded by a deactivated
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retention gap (10-m, 0.25-mm I.D., Connex,
U.S.A.) and a deactivated precolumn (30-cm,
0.53-mm I.D., Connex, U.S.A.). The columns were
housed in a Hewlett Packard model HP 6890 gas
chromatograph equipped with a flame ionisation
detector. The oven was held at 50°C for 3 min and
then programmed at §°C/min to 230°C, where it
was maintained for 9.5 min. Helium (24-cm/s) was
used as carrier gas. HP GC Chemstation software
was used to quantify all major components based
on the known quantity of internal standards. Initial
identification of most compounds was based on
comparisons of retention times with those from
previous studies (Bernasconi et al., 1998; Turlings
& Benrey, 1998) and was confirmed with the mass
spectrometry analysis of some samples. For this
purpose 3 pl aliquot were injected in pulsed splitless
mode into a GC, using the same column and
temperature programme (Agilent 5973, transfer line
230°C, source 230°C, quadrupole 150°C, ionisation
potential 70 eV, scan range 30-240 amu). Two
sesquitepenes did not separate well from each other
and could only be tentatively identified as (+)-
cycloisosativene and ylangene. For practical
purposes they were quantified together. Total
quantities of volatiles were calculated based on
their peak areas as compared to those of the internal
standards.

Statistical evaluation of the data

Analyses of the wasp choice data were based on
log-linear models (Davison et al., 2003; Section
10.7) fitted for the expected distribution of the
wasps within the olfactometer (Turlings et al.,
2004). The results for each test day were used as a
replication (12 replicates). Only those insects that
made a choice were included in the analyses of the
results (over 80% of the wasps). Wasp choices
consisted of counts (N1-N6), where N; denotes the
number of wasps observed to choose arm i and the
assumption is that these counts follow a multi-
nomial distribution with probabilities (pl—p6).
Here we used a log linear form log{ E(N;)} = y;+ x;
whereby the frequencies of choice N; of the
treatment i for the jth replication is taken to
depend linearly on a covariate exp(x;), which
measures the relative attractiveness for that treat-
ment. The model was fitted by maximum quasi-
likelihood estimation in the software package
R (http://stat.ethz.ch/CRAN/), and its relative
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adequacy was assessed through likelihood ratio
statistics and examination of residuals.

We tested for quantitative differences in the total
odour emissions as well as for the emissions for
individual compounds. For this a paired #-test was
used, comparing the plants tested on a particular
day as pairs (n=23). In case of non-normal distri-
bution, a Wilcoxon signed rank test was performed.

Results
Odour emissions

Eleven compounds were found to consistently
dominate the blends collected from the transgenic
as well as the isogenic line (Figure 2; Table 1).
These same compounds are commonly released by
many other maize varieties in response to cater-
pillar feeding (Figure 1; Gouinguené et al., 2001;
Fritzsche-Hoballah et al., 2002; Degen et al.,
2004). The ratios among the compounds are also
common and did not differ between the isogenic
and transgenic line. On average the isogenic plants
released significantly more in terms of total
amounts (Figure 2(b); paired t-test, P=0.003).
Of the individual compounds, linalool, (3E)-4,8-
dimethyl-1,3,7-nonatriene,  phenethyl acetate,
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(E)-a-bergamotene, (E)-B-farnesene, (£)-nerolidol,
and (3E,7E)-4,8,12-trimethyl-1,3,7,11-tridecatetr-
aene, were released in significantly smaller
amounts by the transgenic line than by the isogenic
line (Table 1). For average quantities of the
remaining compounds (Z)-3-hexenyl acetate,
“(+)-cycloisosativene + ylangene”, B-caryophyl-
lene, and B-sesquiphellandrene no differences were
found between the two maize lines.

Parasitoid responses

Neither C. marginiventris nor M. rufiventris dis-
tinguished among the odours of the two maize
lines tested. Both parasitoid species were strongly
attracted to the odours of Spodoptera-damaged
maize plants (Figure 3), with about 80% of
C. marginiventris and about 70% of M. rufiventris
females choosing an arm with a plant odour.
However, in none of the cases was there a
significant difference in the choices between the
two lines. This was true for naive and experienced
wasps and no shift in preference was observed if
they experienced an oviposition on a transgenic or
an isogenic plant. Table 2 shows the statistical
analyses of the data, demonstrating that there is
no effect of maize line or experience on the choices

3 4 5 6 7 8 9 10 1

identified compounds

Figure 2. (a). Typical chromatographic profiles of herbivore-induced volatiles emitted by non-Bt (BT—-) and Bt (BT +) maize plants.
The labelled peaks are: 1. (Z)-3-hexenyl acetate; 2. linalool; 3. (3E)-4,8-dimethyl-1,3,7-nonatriene; 4. phenethyl acetate; 5. ““(+)-cy-
cloisosativene + a-ylangene”; 6. B-caryophyllene; 7. (E)-B-farnesene; 8. (E)-a-bergamotene; 9. B-sesquiphellandrene; 10. (E)-nerolidol;
11. (3E,7E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene. IS1 and IS2 are the internal standards n-octane and nonyl-acetate, respectively.
(b) Relative amounts were estimated by comparing peak areas with those of the internal standards (n=23). Compound numbers
correspond with the labels in Figure 2(a). The asterisks indicate significant differences between non-Bt and Bt plants.
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Table 1. Test statistics for the comparisons of volatile concentrations of Bt+ vs. Bt— plants

Compound Statistic df t-value P

(Z)-3-hexenyl acetate Paired r-test 22 1.964 0.062
Linalool Paired r-test 22 2.891 0.008
(3F)-4,8-dimethyl-1,3,7-nonatriene Paired r-test 22 3.114 0.005
Phenethyl acetate Wilcoxon-signed-rank 0.016
«(+)-cycloisosativene + a-ylangene» Paired z-test 22 —-1.585 0.127
b-caryophyllene Paired z-test 22 -1.19 0.247
(E)-b-farnesene Paired -test 22 3.732 0.001
(E)-a-bergamotene Paired 7-test 22 3.31 0.003
b-sesquiphellandrene Paired r-test 22 1.978 0.061
(E)-nerolidol Wilcoxon-signed-rank 0.018
(3E,7E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene Paired ¢-test 22 3.046 0.006
All compounds Paired 7-test 22 3.393 0.003

Bold P-values indicate a significant difference. The numbers correspond to the labels used in Figure 2.

made by the wasps. From several other studies
(Turlings et al., 1993), including some with these
two species in the six-arm olfactometer (Tamo,
2005), we know that shifts in preference do occur if
the wasps distinguish between the odours that they
are offered. This is apparently not the case here.

Discussion

The odour collections showed an almost two-fold
overall reduction in the volatile emissions in the
transgenic maize line. For the individual com-
pounds the reduction was significant for seven of
the eleven principal compounds. However, the
differences in the emissions were not reflected in
the responses by the C. marginiventris and
M. rufiventris. The two parasitoids were strongly
attracted to induced plants, but in none of the tests
did they distinguish between the odour of the
transgenic and the isogenic line, even if they had
an oviposition experience on one of the lines. Such
experiences are known to lead to associative
learning, which increases the responsiveness of
parasitoids to the odours they perceive during
oviposition (Turlings et al., 1993; Vet et al., 1995).
In previous studies (Turlings et al., 2004; Tamo,
2005) we found that the wasps are capable of
distinguishing between different odours in the
same olfactometer and they make a clear choice,
which can be reinforced by experience. Here the
oviposition experiences slightly increased the over-
all attraction to the plant odours, but had no effect

on the wasps’ choices between the two lines. The
wasps divided their choices between the two
odours equally, suggesting that they did not
perceive any differences.

The consequences of introducing a foreign gene
into a crop plant for the attraction of parasitoids
has been previously studied for a system compris-
ing Bt oilseed rape, the diamondback moth and
the parasitoid Cotesia plutellae (Schuler et al.,
1999). On Bt oilseed rape the larvae feed far less,
which results in a strong reduction in volatile
emissions. This is not the case for resistant larvae,
which fed just as readily on Bt rape as on non-
transgenic rape (Schuler et al., 1999). Because of
the direct effect of the Bt also on the feeding rate of
S. littoralis (personal observations) we opted for a
standardized artificial induction of the plants by
scratching leaves and applying regurgitant. This
latter treatment causes comparable emissions in
maize and in attraction of parasitoids (Turlings
et al.,, 1990). Obviously, the presented results do
not reflect what would happen in terms of para-
sitoid attraction in the field if the Bt maize were to
be introduced. On Bt maize the -caterpillars’
feeding rate would be strongly reduced, which
should have consequences for parasitoid attrac-
tion. As in the Schuler et al. (1999) study, it can be
expected that resistant herbivores will feed con-
siderably more than non-resistant ones, resulting
in comparably more volatiles and increased para-
sitoid attraction.

Key to the current study is that we have ample
information on the range of variability in odour
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Figure 3. Responses of females of the parasitoids Cotesia marginiventris and Microplitis rufiventris to the odours of induced Bt
and non-Bt plants in a 6-arm olfactometer. The wasps were either naive or experienced with the odour of one of the two induced
genotypes. The bars represent the percentage of the responding females that chose for one of the two plant odours, whereas the
pie-graphs show the proportions of females that stayed in the centre of the olfactometer (no choice), walked into an empty arm or
walked into an arm with a plant odour. For each of the six experiments 12 x 6 wasps were tested.

Table 2. Test statistics for wasp choice behaviour based on a
log-linear model as explained in the text

Statistics Cotesia marginiventris Microplitis rufiventris

Bt treatment

df 70 70

F 0.9008 0.3434

Pr (>F) 0.3459 (n.s.) 0.5598 (n.s.)
Experience

df 68 68

F 0.1293 0.2197

Pr (>F) 0.8789 (ns.) 0.8033 (n.s.)

emissions among different maize lines (Gouingu-
ené et al., 2001; Fritzsche-Hoballah et al., 2002;
Degen et al., 2004). Variability among maize lines
is tremendous and it can be concluded that both
maize lines tested here produce a volatile blend
that falls well within the common range. This is
true for the total amount produced (quantity), as
well as for the composition of the blend (quality)
(compare Figures 1 and 2).

Although the emissions by the transgenic line
can be considered normal when compared to the
overall emissions by conventional lines, it is
significantly different from its isogenic line. This



may be due to a differential resource allocation in
the transgenic line. The production of the Bt toxin
might cost plant resources that could otherwise be
invested in secondary compounds such as the
volatiles sampled here. In the current study this
did not result in reduced attraction of beneficial
parasitoids, but other effects, such as reduced
production of common maize defence compounds
could have consequences for the vulnerability of
the plant to pests.

To our knowledge this is the first study
showing that the introduction of a Bacillus thur-
ingiensis gene in maize has resulted in a reduction
of caterpillar-induced odour emissions. Yet, the
quantities of the individual compounds produced
by the transgenic line are within the range of
variability that can be found among conventional
maize lines and the attraction of two common
parasitoids of lepidopteran maize pests was found
not to differ between the transgenic and its
isogenic line. It is recommended that further
studies into the consequences of genetic transfor-
mation of crop plants also employ approaches
that compare the studied traits of transgenic
plants with a representative range of conventional
varieties.
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