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Abstract The evolutionary transition from water to land
required new locomotor modes and corresponding adjust-
ments of the spinal “central pattern generators” for locomo-
tion. Salamanders resemble the first terrestrial tetrapods and
represent a key animal for the study of these changes. Based
on recent physiological data from salamanders, and previous
work on the swimming, limbless lamprey, we present a model
of the basic oscillatory network in the salamander spinal
cord, the spinal segment. Model neurons are of the Hodgkin—
Huxley type. Spinal hemisegments contain sparsely con-
nected excitatory and inhibitory neuron populations, and are
coupled to a contralateral hemisegment. The model yields a
large range of experimental findings, especially the NMDA-
induced oscillations observed in isolated axial hemisegments
and segments of the salamander Pleurodeles waltlii. The
model reproduces most of the effects of the blockade of
AMPA synapses, glycinergic synapses, calcium-activated
potassium current, persistent sodium current, and A-current.
Driving segments with a population of brainstem neurons
yields fast oscillations in the in vivo swimming frequency
range. A minimal modification to the conductances involved
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in burst-termination yields the slower stepping frequency
range. Slow oscillators can impose their frequency on fast
oscillators, as is likely the case during gait transitions from
swimming to stepping. Our study shows that a lamprey-
like network can potentially serve as a building block of
axial and limb oscillators for swimming and stepping in
salamanders.
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1 Introduction

Central pattern generators (CPGs), i.e., neural networks
transforming simple inputs into precisely timed oscilla-
tory signals, are recognized as good models of the neural
infrastructure underlying vertebrate locomotion [for review,
see Grillner (2003, 2006), Chevallier et al. (2008a); for mam-
malian studies, see McCrea and Rybak (2008), Daun et al.
(2009)]. Some studies suggest that the design of axial loco-
motor CPGs is evolutionary conservative from limbless ver-
tebrates to tetrapods [for review, see Katz and Harris-Warrick
(1999), Falgairolle et al. (2006), Ryczko et al. (2010b)]. This
concept recasts the notion that once a well-functioning sys-
tem has evolved, it is easier to modify it rather than to develop
a new system from scratch.

In the endeavor to better understand the evolution of
the vertebrate locomotor systems, the salamander plays an
intriguing role. This tetrapod resembles the first terrestrial
vertebrates and is regarded as an animal from which the evo-
lutionary changes from aquatic to terrestrial locomotion can
be inferred [Gao and Shubin (2001); for review, see Grill-
ner and Wallén (1985), Cohen et al. (1988)]. Its repertoire of
aquatic and terrestrial locomotor patterns shares similarities
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both with limbless vertebrates and mammals [for review, see
Cabelguen et al. (2010)]. The close resemblance between the
swimming modes of lampreys (Williams et al. 1989) and sala-
manders (Frolich and Biewener 1992; Delvolvé et al. 1997)
has led to the notion that the neural infrastructure underlying
salamander locomotion can—to a first approximation—be
viewed as a lamprey nervous system extended by neural cen-
ters for the limbs (Ijspeert 2001; Bem et al. 2003; Ijspeert et
al. 2005, 2007). Recent experimental data revealed that the
global architecture of the salamander axial locomotor CPG
is similar to that observed in lampreys but the detailed orga-
nization of the network is unknown (Ryczko et al. 2010a).

Even in lower vertebrates the complexity of the ner-
vous system renders it extremely difficult to identify and
characterize all neurons at the pre-motoneuron level, that
are functionally relevant to locomotion. In the well-studied
lamprey this is evidenced by the co-existence of different
models of the basic locomotor network. In the models by
Grillner and co-workers the lateral inhibitory interneuron is
no longer present [compare Wallén et al. (1992) to Kozlov
et al. 2007, 2009], while it is still featured in other lamprey
models (Mullins et al. 2011). Nevertheless, modeling of the
neural infrastructure for locomotion has been singularly suc-
cessful for the lamprey.

For the salamander, neurophysiological data on spinal
interneurons and sensory neurons is scarce. Here we present
an exploratory study on the salamander axial CPG architec-
ture based on a lamprey neuron model, extended to account
for salamander-specific findings. This minimal axial sala-
mander CPG model outlines one possibility of phylogenetic
conservatism of axial locomotor network design. Using a sin-
gle parameter set across all conditions the model can account
for electrophysiological data obtained from isolated axial
hemisegments and segments in the salamander Pleurodeles
waltlii (Ryczko et al. 2010a). A priori many different config-
urations of ionic channels could produce neural oscillators
(Prinz et al. 2004). However, we take the fact that this model
adequately reproduces a variety of pharmacological experi-
ments with a single parameter set as indirect evidence that
the underlying rhythm generating composition of ionic chan-
nels is adequately represented to a first approximation.

The spinal neurons were built by minimally modifying low
to intermediate complexity Hodgkin—Huxley models from
studies on the lamprey locomotor system (Grillner et al.
1988; Brodin et al. 1991; Ekeberg et al. 1991; Hellgren et
al. 1992; Wallén et al. 1992; Ekeberg 1993; Travén et al.
1993; Tegnér et al. 1997; Ullstrom et al. 1998; Kotaleski et
al. 1999a,b; Kozlov et al. 2007, 2009; Huss et al. 2007, 2008).
Spinal hemisegments contain 50 sparsely connected excita-
tory neurons that project to 30 inhibitory neurons. Inhibitory
neurons project to all neurons of the contralateral hemiseg-
ment. Excitatory neurons target their contralateral counter-
parts. When activated by a simulated NMDA bath, hemiseg-
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ments produced in vitro-like frequencies that were faster than
in segments. Similarly to biological data blocking recipro-
cal inhibition between hemisegments led to the emergence
of synchronous oscillations, enforced by excitatory cross-
connections. Furthermore, blocking the calcium-dependent
current (IxkcaN), hyperpolarization-activated cation current
(In), persistent sodium current (In,p) or AMPA synapses
had effects on the frequency and duty cycle of oscillations
corresponding to those observed experimentally.

Using the same parameter set, we were able to generate
in vivo-like frequencies when activating the segmental net-
work with a population of neurons mimicking the influence
from the descending reticulospinal (RS) neurons. We show
how the frequency range of a segment driven by RS neu-
rons can be shifted to lower frequencies by modifying a sin-
gle conductance and related calcium inflow and decay rates.
With this modification, the segmental circuit could there-
fore implement a simplified limb oscillator,! which is known
to be slower than axial oscillators (Ijspeert et al. 2007). In
addition we explore the modulation of these frequencies by
varying the strength of the descending NMDA synapses and
the strength of the adaptation current, since these might be
accessible to the organism through the release of neuromod-
ulators and/or a changing descending pathway configuration.
Finally, we show that spinal networks with different intrin-
sic frequencies can be coupled together and produce phase
locked activity. This regime corresponds to the simplified
limb oscillator imposing its lower frequency on the fast axial
network, as is likely the case during gait transitions from
swimming to stepping (Ijspeert et al. 2007).

2 Methods
2.1 The cell model

We base our neuron model on the lamprey models by Grill-
ner, Ekeberg, and co-workers (Ekeberg et al. 1991; Wallén
et al. 1992). The full details of the Hodgkin—Huxley cell
model (Hodgkin and Huxley 1952), including passive prop-
erties, equations and parameters are given in the Appendix
and in Tables 1 and 2. In brief: we adopt a geometry with an
initial compartment endowed exclusively with a high den-
sity of sodium and potassium channels, reminiscent of the
axon hillock, a soma compartment, and one dendritic com-
partment (cf. Fig. 1A). The initial compartment is necessary
to transform spike-like membrane potential oscillations that

' Note that this limb oscillator is a caricature. Here, we are interested
only in the frequency range of oscillations. In the salamander, as in
tetrapods in general, the limb CPG architecture might actually comprise
many individual oscillators, e.g., for flexor and extensor muscle pairs.
The architecture of the limb CPG is a separate and complex topic.
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Table 1 Neuron parameters and network parameters Table 1 continued
Neuron parameters BNxmDA-6 0.04
Default cell diameter 0.00003 (m) IRs—variance 0.5
8core—IS/S 300 (S/m?) All parameters are given in standard SI units. C refers to the capacitance,
Geore—S/D 15 (S/m?) a refers to the area of the neuron, g refers to the conductance, t refers

16.6 (S/m? to the synaptic decay constant. Ny is the arbitrarily chosen sensitive
8leak -6 (S/m”) to the chemicals within the bath. Note, this number can be set to 1 by
c 0.01 (F/m?) compensating with a higher NMDA level. The subscripts IS, S, and D
as “Default” refer to the initial neuronal segment, soma, and dendritic compartment,

0.1%as (m) respectively. The subscripts ipsi and contra indicate the ipsilateral and
as s contralateral sides of the segmental network in relation to each other.
ap 10*ag (m) The subscripts AMPA, NMDA, GLYC (glycinergic), CCIN, EIN refer to
Usest —0.070 (V) the corresponding synaptic and cellular subtypes as described in Fig. 1.
s . RS indicates simulated reticulospinal neurons, CPG or ALL indicates

ynaptic parameters . . .
all the neurons in the spinal segment. Hence a subscript of the type RS-
8EIN-EIN—AMPA/NMDA 0.0055/0.0034 (1S) ALL indicates a value for connections from RS neurons to all segmental
ZEIN—CCIN—AMPA/NMDA 0.0030/0.0080 (.S) neurons. Irg refers to current injected into reticulospinal neurons. STEP
8EINcontra— AMPA/NMDA 0.0039/0.0003 (11.S) an'd SWIM indicate any p.arameters. specific to one of the two desc'ending
drive setups. Numbers in subscripts refer to the target equations of

8CINNcontra—GLYC 0.0045 (MS) parameters
SEIN—EIN—AMPA/NMDA—(STEP) 0.0040/0.0091 (.S)
8EIN—CCIN—AMPA/NMDA —(STEP) 0.0030/0.0080 (1.5) do not always reach the full action potential amplitude into
8EINcontra—AMPA/NMDA—(STEP) 0.0078/0.0022 (115) full action potentials, with a stereotypical amplitude of 70—
8CCINcontra—GLYC—(STEP) 0.0038 (1S) 90 mV and a duration of 2-3 ms from onset to beginning
8RS—CPG—AMPA—(SWIM) 0.0064 (1.S) repolarization. Similarly to the studies cited above the soma
8RS—CPG—NMDA—(SWIM) 0.0021 (1S) * wrsnmpA/0.26  and dendritic compartment of the model cell are endowed
8RS—CPG—AMPA—(STEP) 0.0056 (1S) with action potential generating sodium and potassium chan-

8RS—CPG—NMDA—(STEP) 0.0018 (1S) * wrsNMDA/0.22

IAMPA /NMDA /GLYC 0.02/0.1/0.02 (s)
E'rev— AMPA/NMDA /GLYC 0/0/—0.085 (V)
Bath parameters

8b—NMDA-S 0.004 *Npee (1S)
Nrec 50

Connection densities

ElINjps; to EINjps; 10 (%)

EINipsi to EINcontra 10 (%)

EINijpsi to CCINjps; 10 (%)
CCINjpsi to ALLcontra 14 (%)
CClINipsi to ALLcontra—(STEP) 15 (%)

RS to ALL 55 (%)
Standard deviation (mean 1) for

multiplication

parameter variations

AcaN—6 0.04

Bcan-6 0.04

8CaN—6 0.04

8KCaN—6 0.04

AKCaL—6 0.04

Bkcar—6 0.04

8CaL 0.04

8KCaL 0.04

NMDA level 0.04

ANMDA-6 0.04

nels, N- and L-type calcium channels as calcium sources for
two distinct-associated calcium-dependent potassium chan-
nels (Kca). The Kcar, channel driven by the fast-acting
L-type channel constitutes a fast spike-triggered hyperpolar-
izing current and extends the frequency range of tonic firing,
while the slower N-type channel feeds the Kcan channel,
which plays the role of a delayed spike-triggered hyperpo-
larising current as the main source of adaptation (cf. Fig. 1B,
¢) (Gerstner and Kistler 2002; Izhikevich 2007). The pres-
ence of N- and L-type calcium channels has been previously
demonstrated in amphibians (Bischofberger and Schild 1995;
Shen and Slaughter 1999; Perrier and Tresch 2004). In addi-
tion, similarly to the studies by Kotaleski et al. (1999a,b),
Kozlov et al. (2007, 2009), Huss et al. (2007, 2008) we
have included a potassium channel dependent on calcium
entering a synaptic or bath-activated NMDA-gated chan-
nel. A key hypothesis is that calcium-dependent potassium
channels, activated by calcium entering the NMDA synapse,
are functionally coupled (and possibly co-located) with the
NMDA synapse, as observed in various brain regions in ver-
tebrates (e.g., Faber et al. 2005; Ngo-Anh et al. 2005, see
Sect. 4). Note that this coupling between synaptic calcium
channels and related K¢, channels is a long-standing, exper-
imentally supported feature of lamprey models (Wallén et
al. 1992; Huss et al. 2007, 2008), which we inherit due to
our overall approach. In the lamprey this coupling remains
the best model for NMDA-induced TTX-resistant membrane
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Table 2 Channel parameters and calcium pool parameters

Sodium
Qac—A—8
Qac—B-8
Qac—C-8
ﬂac—A—9
ﬁac—B—Q
ﬂac—C—Q
Qin—A-9
Qin—B-9
Qin—C-9
Bin—A-10
Bin—B-10
Bin—c-10
Erevaa
8Na-I1S/S/D
Potassium
Qac—A—-8
Qac—B-8
Qac—C—-8
Bac—A—9
Bac—B—9
Bac—c—9
Ereva
8K-1S/S/D
N-type calcium
Tac
Pac—inf—B—13
Pac—inf—C—13
Tin
Pin—inf—B—13
Pin—inf—C—13
Erev—CaN
8CaN-1S/S/D
L-type calcium
Tac
Pac—inf—B—13
Pac—inf—C—13
ErefoaL
8CalL-1S/S/D
Kcan Potassium
B;—s
ErevaCaN
8KCaN-IS/S/D

8KCaN-IS/S/D—STEP

200,000 (1/Vs)
0.045 (V)

0.001 (V)

60,000 (V/s)

0.054 (V)

0.02 (V)

80,000 (V/s)
—0.045 (V)

0.001 (V)

400 (1/s)

—0.041 (V)

0.002 (V)

0.05 (V)
584.5/35/35 (S/m?)

20,000 (1/Vs)
—0.045 (V)

0.0008 (V)

5,000 (V/s)

—0.035 (V)

0.0004 (V)

—0.08 (V)

581/116.2 /116.2 (S/m2)

0.12 (s)
—0.015 (V)
—0.0055 (V)
0.3 (s)

—0.035 (V)
0.005 (V)

0.05 (V)
0/61/61 (S/m?)

0.001 (s)
—0.025 (V)
—0.005 (V)
0.05 (V)
0/30/30 (S/m?)

5 x 10e-9 (a.u.)
—0.085 (V)

0/85/85 (S/m?)
0/92/92 (S/m?)
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Table 2 continued

ACaNfbath/swim/step
BcaN—bath/swim/step
KcaL Potassium
Bz—s

Erev—KCaL
8KCal—1S/S/D
AcaL—bath /swim/step
BcaL

Calcium through the NMDA

synapse (Mg-Block)
OA-11

aB—11

oc—11

Ba-12

BB-12

Bc-12

Kcanmpa Potassium
3175

Erev—KCaNMDA
8KCaNMDA-1S/S/D—EIN
8KCaNMDA—IS/S/D—CCIN
ACaNMDA—EIN/CCIN
BcaNMDA—EIN/CCIN
ACaNMDA—EIN/CCIN—STEP
BCaNMDA—EIN/CCIN—STEP
Fast persistent sodium
Pac—inf—B—14
Pac—inf—-C—14
Pin—inf—-B—14
Pin—inf—C—14

Tac—inf

Tin—inf—A—15
Tin—inf—B—15
Tin—inf—C—15
Tin—inf—D—15

ErevaaP

8NaP-1S/S/D

h-current
Pin—inf-B—14
Pin—inf-C—14
Tin—inf—A—15
Tin—inf-B—15
Tin—inf—C—15

Tin—inf-D—15

315/315/138 (1/As)
0.024/0.024/0.0218 (1/s)

3 x 10e-7 (a.u.)
—0.085 (V)

0/40/40 (S/m?)
1900/1900/1900 (1/As)
0.026 (1/s)

700 (1/s)
0.008 (V)
0.017 (V)
10.08 (1/5)
0.008 (V)
0.017 (V)

4.8 x 10e-8 (a.u.)
—0.085 (V)
0/220/0 (S/m?)
0/80/0 (S/m?)
0.168/0.136 (1/As)
0.22/0.19 (1/s)
1.26/1.02 (1/As)
1.76/1.52 (1/s)

—0.050 (V)
0.01 (V)

—0.049 (V)
—0.010 (V)
instantaneous

2(s)

4.5 (s)

—0.066 (V)

0.035 (V2)

0.05 (V)
0/4.64/4.64 (S/m?)

—0.075 (V)
—0.0055 (V)
0.01 (s)

0.05 (s)
—0.075 (V)
0.015 (V?)
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Table 2 continued
Erev—n —0.055 (V)
gh-18/S/D 0/44.8/22.4 (S/m?)

Parameters for the gating variables of the spike-generating sodium and
potassium channels correspond to the ones given in Wallén et al. (1992).
Parameters related to the activation and inactivation of the added chan-
nels Nap and h are taken from Ref. (Izhikevich 2007). These correspond
to the values given in Ref. (Magee 1998; Magistretti and Alonso 1999).
For the remaining channels the parameters are taken from Huss et al.
(2007). Numbers in parameter subscripts indicate the target equation.
Parameter subscripts ac and in specify whether the parameters are for
activation and inactivation variables. Parameters named alpha and beta
are used to obtain the components of Eq. 3. The subscript inf indicates
parameters for the calculation of asymptotic values according to Eq. 4.
g refers to conductances, and E\., refers to reversal potentials

oscillations. Hence, the associated NMDA-calcium pool
(Canmpa) is modeled as distinct from the Cay, and Cay pools.
Long period oscillations (cf. Fig. 1E) thus emerge as a con-
sequence of the interplay between NMDA-induced plateau
potentials and K¢, channels co-located with the NMDA
synapse. Note that the period of NMDA-induced oscillations
depends on multiple parameters: the ratio of calcium inflow
and decay rates, the strength of the Kcanmpa conductance,
the strength of the NMDA bath, the strength of the NMDA
synapse and the density of recurrent connections in the
network.

Adding to the above studies we extended the model by
the addition of a hyperpolarization activated h-current (Iy,)
and a persistent sodium current (Inap) since it has been
demonstrated that blocking these channels can, respectively,
slow down or abolish oscillatory behavior (Ryczko et al.
2010a). Iy, was further demonstrated to be present in sala-
mander motoneurons (Chevallier et al. 2006, 2008b). The
default diameter of our tentative salamander locomotor CPG
interneurons was chosen as 30 wm (Jovanovic and Burke
2004). The NMDA bath activation is implemented in a sim-
ilar fashion as by Wallén et al. (1992) as trans-membrane
conductances modulated by a unitless quantity indicating
the level of NMDA in the solution, mimicking a constant
steady-state fraction of docked agonist. The NMDA conduc-
tance is further multiplied by a variable modeling the voltage-
dependent block of the NMDA-gated channel by magnesium.
Synaptic communication is implemented via spike tracking.
Upon detection of a spike in a presynaptic neuron a trans-
membrane current in the target neuron activates and decays
with a given time constant (cf. Table 1). The synaptic delay is
setto 1.5 ms, a stereotypical value for monosynaptic connec-
tions and in the lower range of values reported for amphibians
(Ovsepian and Vesselkin 2006). The frequency range of tonic
spiking when a constant current is injected extends from 2 to
roughly 90 Hz (cf. Fig. 1C). The rheobase current is 0.84 nA
for the given neuron size. Parameters for the h-current have
been tuned to allow for the depolarizing overshoot typical
for this current (cf. Fig. 1D), as documented for salaman-

der motoneurons [Fig. 6 in Chevallier et al. (2006)]. Finally,
EPSPs have been modeled to have appropriate amplitudes
and decay times (cf. Fig. 1F) (Travén et al. 1993).

2.2 The network

Figure 1G depicts the isolated segmental network we
modeled. As outlined in the introduction we forego the
output elements, i.e., the motoneurons, and consider the
activity of excitatory interneuron population as the raw
axial locomotor-like CPG output. The network consists of
two reciprocally coupled hemisegments—our fundamental
building blocks of the locomotor CPG. One hemisegment
consists of 50 sparsely interconnected excitatory neurons

A

_IS: Na, K
GLYC
_SOMA: Na, K,
Ca CaL, Km,
NMDA Ko N P, h,
nmda’ CaNMDA
__DEND: Na, K,
AMPA Ca CaL, KCHN,
CaL’

Fig. 1 Neuronal properties of the CPG interneurons and network lay-
out. A A geometric depiction the model neuron, the distribution of
synaptic contacts and lists of membrane currents. B Two representa-
tive spike trains (left to right, injected current 1.4 and 1.9 nA) with
(upper two panels) and without the adaptation current (lower two pan-
els). C The spiking frequency in response to injected current calculated
from the first (dashed line), second (dotted line), and last (solid line)
interspike interval. D I-mediated depolarizing overshoot after hyper-
polarization. E A typical NMDA-induced burst in an isolated neuron
and the corresponding intracellular calcium concentration for calcium
entering the NMDA synapse (in arbitrary units). F EPSPs due to AMPA
(dashed curve, elicited in the dendrite), NMDA (solid curve, elicited in
the soma) and mixed synapses (solid bold curve). See Appendix for the
electrotonic properties of the dendrites. G Organization of the segmen-
tal bursting network proposed for the salamander. Two hemisegments,
each consisting of 50 excitatory interneurons (EINs) and 30 inhibitory
interneurons (CCINs). Excitatory connections consist of AMPA and
NMDA synapses. Inhibitory synapses represent glycinergic connec-
tions (GLYC)

GLYC
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[EINs, after Wallén et al. (1992)], which also project to
their contralateral counterparts since the findings by Ryczko
and co-workers revealed the presence of excitatory cross-
connections (Ryczko et al. 2010a). The connection density
is 10 % and each synaptic contact consists of one AMPA
and one NMDA synapse to the dendritic compartment and
the soma, respectively. These EINs project to a pool of 30
inhibitory neurons [CCINs, after Wallén et al. (1992)] within
the same hemisegment with 10 % connection density. If two
hemisegments are coupled, the CCINs project with 14 %
sparseness to all neurons on the contralateral side. The EINs
project to their contralateral counterparts with a sparseness
of 10 %, implementing the excitatory cross-connections. In
an extension of this setup, we studied the network activated
under conditions more akin to in vivo activity. We added a
population 50 additional neurons that project to all segmen-
tal neurons with a connection density of 55 %, representing
a simple implementation of descending reticulospinal (RS)
pathways driving the segmental population (Chevallier et al.
2004).

All model parameters are summarized in Tables 1 and
2. Since the connection densities are unknown, they have
been chosen freely, i.e., tuned and frozen for all simulations,
to obtain the present results. Various connection densities
among and within the neuronal subpopulations were tested.
The ratio between the number of EINs and CCINs was moti-
vated by the study by Cheng et al. (2002), which gives rough
estimates for the number of contralaterally projecting neu-
rons. The topology within the network is not known for the
salamander and is inspired by published lamprey models
(Wallén et al. 1992; Kozlov et al. 2007). However, cross exci-
tatory projections have been restricted to targeting contralat-
eral EINs in order to facilitate synchronous oscillations in
the network when reciprocal inhibition is blocked (Ryczko
et al. 2010a). This is a simplifying assumption due to the
lack of motoneurons in the model, which could otherwise
also be targets for excitatory cross-connections. It has been
demonstrated that crossed excitatory connections target con-
tralateral motoneurons or inhibitory interneurons in the lam-
prey [Buchanan (1982), Buchanan and McPherson (1995),
see also Mahmood et al. (2009), for review see Ryczko et
al. (2010b)]. The commissural projection to contralateral
excitatory neuron remains to be demonstrated even in the
lamprey. However in the zebrafish, anatomical data suggests
that excitatory commissural interneurons active during slow
swimming (the so-called multipolar commissural descend-
ing interneurons, “MCoDs”) may excite each other through
axon collaterals that are in close proximity to contralateral
MCoD somata (McLean et al. 2008).

To add noise and to avoid discontinuities the NMDA level
in the network rose smoothly with varying delays during the
first second of the simulations. This was implemented by
multiplying the NMDA level with a sigmoidal function that
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reached saturation shortly after the onset of the simulation.
The slope and offset of this function were set randomly for
each neuron in the network, thus excluding a bias toward
synchronization from the outset. The values for the conduc-
tances, inflow and decay rates related to the different calcium
subsystems (Car, Can, Canvpa ) were given a normally dis-
tributed spread around appropriate mean values (cf. Table 1).

2.3 Quantification of locomotor parameters

Oscillations were smoothed with a running mean spanning
600 ms for slow NMDA-induced oscillations, and 50 ms for
oscillations evoked by descending drive. Fourier spectra were
calculated in order to reveal noteworthy frequency contribu-
tions. The duty cycle is calculated as the active interval of
this smoothed network output. The network is defined to be
active when the smoothed network output reaches 38 % of
the maximum amplitude of the oscillation. This threshold is
chosen since it yields a duty cycle close to 50 % for seg-
ments, in close agreement with visual inspection. The same
threshold is then used throughout the data analysis. The cycle
duration is identified as the average time between successive
onsets of activity. 30 independent instances/individuals of
segments (similarly for hemisegments) were used to estimate
the mean period of oscillations and their standard deviations,
the duty cycles and the stability (see below). Within one type
of numerical experiment (e.g., hemisegments under control
conditions or hemisegments with a simulated pharmacolog-
ical channel block), an independent instance constitutes a
separate simulation under identical conditions with a newly
drawn set of random numbers for all parameters that exhibit
a stochastic spread within the neuronal population. These
iterations can be thought of a separate individuals. Cycle
durations, duty cycles and the stability scores (see below)
were averaged across instances.

To measure the stability of the segmental and hemiseg-
mental rhythms we computed autocorrelograms on the aver-
age membrane potential trace of the left excitatory neuron
population (EINs). A time window of the first 40 s was cross-
correlated with progressively time-shifted versions of itself.
The absolute value of the first peak-to-through difference in
the correlogram—the peak-to-through correlation coefficient
(henceforth ptcc)—was used as an estimate the rhythmic sta-
bility [see Ryczko et al. (2010a), Madriaga et al. (2004)].
Mean values close to 2 and low standard deviations indicate
stable oscillations while values closer to zero and high stan-
dard deviations indicate less stable oscillations.

2.4 Implementation

All simulations and data analyses have been implemented
and carried out in Mathworks Matlab 64 bit version 7.13
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under Ubuntu Linux version 10.04 on a Dell Precision T3500
and a local computing cluster with 88 processing cores run-
ning Ubuntu Linux version 10.04.

3 Results

In the data set of Ryczko et al. (2010a) the cycle duration
for NMDA induced oscillations ranged from 4.53 £ 1.26 to
11.38 £ 2.04 s for segments and 3.43 £+ 0.63t0 6.78 £ 1.68 s
for hemisegments bathing in the same NMDA concentration.
The variations in cycle duration are most likely due to varia-
tions in binding of the perfused NMDA between preparations
or possibly due to the dominance of individual oscillators if
multiple oscillators with different intrinsic frequencies exist
in each hemisegment. Due to the large spread we set the refer-
ence value for the cycle duration of NMDA-induced oscilla-
tions as the mean experimentally observed period and aimed
to reproduce the relative changes as compared to experimen-
tal data (Ryczko et al. 2010a). Numerical results are given
as mean values =+ standard deviation across 30 independent
instances of the same simulation setup.

3.1 Isolated hemisegments generated rhythmic motor
activity

Throughout the simulations the NMDA stimulation was set
to 900 in arbitrary units with normally distributed variations
among neurons for each simulation (cf. Table 1). In isolated
hemisegments this produced oscillations with a period of
2.81 £ 1.12 s, with a duty cycle of 69.40 £ 30.03 % (burst
duration 1.95 + 0.85 s). Figure 2A shows a representative
plot of the mean activity of the EIN subpopulation and the
corresponding raster plot. The oscillation was generated by
the temporal overlap of individually bursting neurons (cf.
Fig. 2B). Figure 2C shows the autocorrelogram of the repre-
sentative sample. The averaged measure of rhythmic stabil-
ity (the ptcc) was estimated at 1.26 & 0.47. Figure 2D shows
the ptcc across all 30 instances of the hemisegment under
control conditions. Three large drops in stability are notice-
able. These drops correspond to three out of 30 instances that
exhibited a very noisy signal. These “outlying regimes” seem
to correspond to some cases observed in vitro (Ryczko et al.
2010a). Interestingly, these cases allow for an additional test
of the present model (cf. Fig. 7). For isolated hemisegments
under control condition these cases led to grossly underes-
timated cycle durations and duty cycles. Without those the
oscillation period would be estimated at 3.32 £ 0.66 s, with
a duty cycle of 69.88 + 15.36 % (2.32 £ 0.51 s), and the
ptcc would increase to 1.39 = 0.22. The experimentally mea-
sured mean cycle duration for hemisegments in the study by
Ryczko et al. (2010a) was 4.89 + 0.95 s. The mean duty
cycle was 77.12 £ 10.10 % (3.72 £ 0.74 s).
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Fig. 2 NMDA-activated isolated hemisegment. A A representative
average membrane potential trace of the hemisegmental EIN pop-
ulation (NMDA level 900 in arbitrary units) from one of the 30
instances/individuals calculated for the statistical analysis and a raster
plot of the same hemisegmental EIN population. B Model output for
single EINs in different bursting regimes. C The autocorrelogram con-
structed from the representative average membrane potential trace in
(A) in order to estimate rhythmic stability. D The pptc stability mea-
sure across 30-independent instances of hemisegments under control
conditions

3.2 Isolated axial segments generated left-right alternating
motor patterns

Connecting two hemisegments with excitatory cross-
connections and reciprocal inhibition yielded an oscillat-
ing segment that generated alternating bursts of activity.
Figure 3A shows a representative plot of the mean activity of
the left and right EIN subpopulations and the corresponding
raster plot. The mean cycle period was 8.84 + 0.85 s, with
a duty cycle of 49.66 & 5.77 % (4.39 £ 0.51 s). Due to the
inherent symmetry the duty cycle fluctuated around 50 %.
Ryczko et al. (2010a) measured 8.08 + 1.92 s for segments
with a mean duty cycle of 73.93 £ 7.29 % (5.76 & 1.60 s).
Figure 3B shows representative spike traces from the left and
right EIN subpopulations. The autocorrelogram of the repre-
sentative sample is shown in Fig. 3C. The average ptcc was
1.83 £ 0.14 for the segmental oscillations. These were gen-
erally more pronounced and stable (yielding a higher score
and less variability) than hemisegmental oscillations as is
also apparent from a comparison between the representa-
tive waveforms (Figs. 2A, 3A) and stability across iterations
(Figs. 2D, 3D).
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Fig. 3 NMDA-activated isolated segment. A A representative aver-
age membrane potential trace of the left and right hemisegmen-
tal EIN populations (NMDA level 900 in arbitrary units) from
one of the 30 instances/individuals calculated for the statistical
analysis and a raster plot of the same populations. B Represen-
tative model output for single EINs in different bursting regimes.
C The autocorrelogram constructed from the representative average
membrane potential trace in (A) in order to estimate rhythmic stabil-
ity. D The ptcc stability measure across 30-independent instances of
segments under control conditions

For both the model and the experiments isolated hemiseg-
ments oscillated faster than complete segments. The hemiseg-
mental period amounted to 31.78 £ 12.67 % (37.56 &+ 7.47 %
without the outlying regimes) of the average segmental
period, compared to the experimental findings of 60.52 +
11.76 %.

3.3 Suppressing synaptic transmission

Figure 4 shows representative average membrane poten-
tial traces of the left and right segmental EIN subpopula-
tions where the inhibitory cross-connections were turned
off 80 s into the simulations (and reestablished at 120 s).
Synchronous left and right oscillations emerged rapidly,
which strongly resemble the waveforms observed for
hemisegments. Turning the reciprocal inhibition back on
reestablished the standard segmental regime. Segmental
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oscillations were unaffected by the excitatory cross-
connections due to the overwhelming influence of the
inhibitory synapses. Blocking glycinergic synapses in the
present model had no effect on isolated hemisegments since
there was no connection from CCINs to EINs in the same
hemisegment. Without inhibition a segment acted like two
synchronized hemisegments.

Figure 5A—E shows from left to right representative wave-
forms, raster plots and Fourier spectra for the hemisegmental
network with decreasing strength of the AMPA synapses. The
hemisegmental thythm disappeared completely in 53.33 % of
the 30 iterations under full AMPA blockade (synaptic weight
set to zero, Fig. 5SE) and was markedly distorted in the remain-
ing iterations (ptcc 0.75 &£ 0.65). Similarly to the experimen-
tal data the stability of the rhythm decreased with decreasing
AMPA synapse strength. The segmental rhythm (not shown)
continued to exhibit anti-phase oscillations imposed by the
strong reciprocal inhibition. In the absence of reciprocal
inhibition NMDA-evoked EPSPs alone were not sufficient
to elicit bursting activity in the network. At least in hemiseg-
ments the fast AMPA synapses were necessary as an addi-
tional depolarizing component and as a means to facilitate
synchronization.

3.4 The effect of channel blocks

Figure 6A shows a representative plot of the mean activ-
ity of the hemisegmental EIN subpopulation and the corre-
sponding raster plot where Ixcan has been blocked. Block-
ing this current has an effect similar to the experimentally
observed effect of apamine (Ryczko et al. 2010a). Impor-
tantly the average ptcc increased and showed less variability
(1.37 £ 0.04, cf. Fig. 6C), showing that the rhythmic sta-
bility increased with respect to isolated hemisegments under
control conditions. The cycle duration and duty cycle for
hemisegments were 5.01 + 0.86 s, and 74.85 = 13.77 %
(3.75 £ 0.96 s), respectively. Comparing to hemisegments
under control conditions with removed outlying regimes,
the variability of the ptcc still decreased. Furthermore, the
simulated application of apamine to these outlying regimes
allowed for the test of the model under an additional con-
dition. Ryczko et al. (2010a) reported that hemisegments
activated by NMDA could sometimes fail to exhibit oscil-
lations, but that application of apamine led to the emergence
of oscillations in these cases. Figure 7 shows that the model
reproduces this effect. The simulated addition of the apamine
to the NMDA-bath halfway through the simulations trans-
formed noisy, non-rhythmic hemisegment activity into clean
oscillations.

In the segmental case, the simulated application of
apamine (Fig. 8) lead to an increase in cycle duration
(10.66 £ 1.20 s). The duty cycle remained largely unchanged
at 50.00 & 6.47 % (5.33 £ 0.69 s). The stability measure
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sentative average membrane potential trace of segmental left and right lower panel shows the corresponding raster plot
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Fig. 5 The effect of suppressing the excitatory AMPA synapse in potential for 100 % (ptcc 1.51), 75 % (ptcc 1.56), 50 % (ptcc 1.51),
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Fig. 6 NMDA-activated isolated hemisegment with Ixc,n blocked.
A A representative average membrane potential trace of the hemiseg-
mental EIN population (NMDA level 900 in arbitrary units) from
one of the 30 instances/individuals calculated for the statistical analy-
sis and a raster plot of the same hemisegmental EIN population.
B The autocorrelogram constructed from the representative average
membrane potential trace in (A) in order to estimate rhythmic stabil-
ity. C The pptc stability measure across 30-independent instances of
hemisegments with Ixcan blocked
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Fig. 7 Noisy isolated hemisegments with delayed simulated addition
of apamine to the NMDA-bath. A—C Oscillations emerge in noisy
instances (individuals 14, 17, 22) of isolated hemisegments under con-
trol conditions after the delayed simulated addition of apamine (dashed
line) to the NMDA-bath (NMDA level 900 in arbitrary units)

yielded a ptcc value of 1.85 = 0.08. The increase in rhyth-
mic stability in the segmental case was not pronounced since
segmental oscillations were already very stable under con-
trol conditions (see Sect. 4). Ryczko et al. (2010a) mea-
sured 9.42 £ 2.28 s for segments with a mean duty cycle
of 64.3 £7.09 % (5.95 = 0.94 s).

Blocking I in addition to Ixcan (corresponding to the
application of apamine and ZD 7288) yielded results in
line with the expected effect of the I, (not shown). Except
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Fig. 8 NMDA-activated isolated segment with /xcan blocked. A A
representative average membrane potential trace of the left and right
hemisegmental EIN populations (NMDA level 900 in arbitrary units)
from one of the 30 instances/individuals calculated for the statistical
analysis and a raster plot of the same populations. B The autocorrelo-
gram constructed from the representative average membrane potential
trace in (A) for the estimation of rhythmic stability. C The pptc stabil-
ity measure across 30-independent iterations of segments with /xcaN
blocked

for a longer cycle duration the results closely resembled
the corresponding apamine results (cf. Figs. 6, 8). Com-
pared to the apamine case the hemisegmental cycle duration
increased to 5.65 &= 0.81 s. The duty cycle decreased slightly
to 69.20 £ 10.62 % (3.91 £ 0.6 s) and the stability score
increased to 1.55 £ 0.67. Segments with blocked h and Kcan
currents remained largely unchanged, with an average cycle
duration of 10.83 &£ 1.06 s, a duty cycle of 48.48 £ 5.00 %
(5.25 + 0.54 s) and a stability score of 1.80 £ 0.10.

Finally, in accordance with the observation that Nap can
control the excitability at sub-threshold potential (Llinds
1980; Stafstrom et al. 1982; Llinds 1988)—and the results
reported by Ryczko et al. (2010a)—the simulated blockade
of the Nap current with riluzole abolished bursting in both
segments and hemisegments in our simulations. The NMDA-
induced depolarization was insufficient to induce oscillations
if the background elevation of the membrane potential and the
increased excitability due Nap were removed (not shown). As
such, INgp can control cellular rhythmic properties by trig-
gering burst initiation.
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3.5 In vivo-like rhythms

The above results reflect in vitro activity of the basic sala-
mander spinal networks. In vivo the salamander (Pleurodeles
waltlii) exhibits two primary locomotor modes [for review,
see Chevallier et al. (2008a)]. Stepping frequencies have been
observed between 0.39 and 1.66 Hz, while swimming fre-
quencies range from 1.33 to 4.37 Hz (Chevallier et al. 2004).
For individual animals these frequency ranges usually do not
overlap and also depend on body size. Both these frequency
ranges lie notably above frequencies typically observed in
vitro in fictive locomotion experiments (Ryczko et al. 2010a).

To investigate how in vivo-like rthythms might be gener-
ated, while preserving the in vitro results reported above, we
added a separate neuronal population of 50 RS neurons with
excitatory glutamatergic projections to all CPG interneurons
(density 55 %) (Buchanan and Grillner 1987; Brodin et al.
1988; Ohta and Grillner 1989; Brocard and Dubuc 2003;
Chevallier et al. 2004). The default segmental network used
throughout the reproduction of experimental findings was
not modified for this. No parameters were changed. RS neu-
rons were driven with a constant input current with normally
distributed variations in strength. Numerous parameter com-
binations were tested in order to determine the broadest range
of fast frequencies obtainable with a simple scaling law.
These parameters included the descending connection densi-
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Fig. 9 Segments activated by descending drive generated high
frequency oscillations in the in vivo swimming range. A Three repre-
sentative average membrane potential traces of the left segmental EIN
populations (reticulospinal population activated by 1.7 nA-injected cur-
rent). Segmental frequencies and /xcan modulation in spinal neurons
top to bottom are 3.69 Hz at 100 % Ixcan, 3.19 Hz at 75 % Ikcan, and
2.5 Hz at 50 % Ixcan- B Raster plots of spinal (inhibitory neurons not
shown) and reticulospinal populations, top to bottom corresponding

ties, variations in synaptic strength and target compartment
for descending AMPA and NMDA synapses, drive current
strength and variance to the RS population, and varying the
strength of the Kcan current in the spinal neurons (mimicking
the release of neuromodulators).

Figures 9 and 10 summarize the results. The broadest and
most stable in vivo range of high frequencies (2.33 + 0.52 Hz
to 3.90 &+ 0.23 Hz) was obtained by scaling the strength of
Kcan current. Scaling down this current reduced its capa-
bility to contribute to burst termination and thus prolonged
the oscillation. However, a similar frequency range could be
achieved by scaling the strength of the descending NMDA
synapse (2.39 £ 0.55 Hz to 3.90 £ 0.23 Hz). Weaker NMDA
synapses produce weaker NMDA EPSP plateaus (Wallén et
al. 1992; Travén et al. 1993) and thus less calcium needed to
accumulate to terminate the burst. Note that the NMDA—
calcium-dependent burst termination only constitutes one
contributing factor to burst termination under these in vivo-
like conditions. Although it dominates when the neurons are
activated by the NMDA bath, the adaptation current Ixcan
becomes more important when neurons are activated by
descending drive. Segmental oscillations then rely on escape
from contralateral inhibition and oscillations cease when the
inhibition is blocked.

Figure 9A shows three representative average membrane
potential traces of the left EIN subpopulation, corresponding
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to the membrane potential traces in A. Cells 1-100 depict the spinal
population, cells 101-150 depict the driving reticulospinal popula-
tion. C (left) Frequency of the segmental network oscillations as a
function of the /xcan modulation; (right) Frequency of the segmen-
tal network oscillations as a function of the strength of the descend-
ing NMDA synapse. Wrsnmda indicates the multiplicative factor to the
default NMDA weight. Error bars indicate the standard deviation across
30 instances/individuals
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Fig. 10 Segments activated by descending drive generated low fre-
quency oscillations in the in vivo stepping range. A Three representative
average membrane potential traces of the left segmental EIN popula-
tions (reticulospinal population activated by 1.6 nA-injected current).
Segmental frequencies and /xcan modulation in spinal neurons top to
bottom are 2.19 Hz at 100 % Ikcan, 1.04 Hz at 70 % Ixcan, and 0.60 Hz
at 40 % Ixcan. B Raster plots of spinal (inhibitory neurons not shown)
and reticulospinal populations, fop to bottom corresponding to the mem-

to three examples from the range of high frequencies (3.69 Hz
at 100 % Igcan, 3.16 Hz at 75 % Ixcan, and 2.50 Hz at
50 % Ixcan)- Figure 9b shows the corresponding raster plots,
including the RS population. Figure 9c shows the relation-
ship between the frequency of segmental oscillations and the
strength of the Kcan current or the strength of the descend-
ing NMDA synapse, respectively. The K¢y, current remained
unchanged in all cases. Most neurons fired bursts of variable
length and both Kcan and Kcanmpa channels contributed to
burst termination. This was in line with the fact that both
the descending NMDA synapse and the strength of the Kcan
current could be used to scale the oscillation frequency.

To generate oscillations in the lower in vivo stepping fre-
quency range a minor modification to the segmental neurons
was added. The Cay calcium inflow was reduced, thus reduc-
ing its contribution to burst termination and the Canmpa
calcium inflow and decay rates were slightly increased (cf.
Table 1). These minimal modifications allowed for the emer-
gence of the lower frequency range akin to the range observed
in vivo for stepping (0.74 & 0.24 Hz to 2.37 4 0.43 Hz, with
Ikcan scaling, 0.63 &= 0.19 Hz to 2.37 4 0.43 Hz, with scal-
ing of the descending NMDA synapse). Figure 10A shows
three representative average membrane potential traces of
the left EIN subpopulation, corresponding to three example
frequencies from the range of lower frequencies (2.19 Hz at
100 % Ikcan, 1.04 Hz at 70 % Ikcan, and 0.60 Hz at 40 %
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brane potential traces in (A). Cells 1-100 depict the spinal population,
cells 101 through 150 depict the reticulospinal population. C (left) Fre-
quency of the segmental network oscillations as a function of the /xcan
modulation; (right) Frequency of the segmental network oscillations as
a function of the strength of the descending NMDA synapse. WRSnmda
indicates the multiplicative factor to the default NMDA weight. Error
bars indicate the standard deviation across 30 instances/individuals

Ikcan). Figure 10B shows the corresponding raster plots,
including the RS population. Figure 10C shows the relation-
ship between the frequency of segmental oscillations and the
strength of the Kcan current or the strength of the descending
NMDA synapse respectively.

While a priori a possibility, the scaling of the NMDA
synapse would imply that more NMDA EPSPs lead to slower
oscillations. Thus to reconcile the present NMDA-dynamics
(after Wallén et al. (1992)) with the experimental datum
that the spiking frequency of RS neurons correlates posi-
tively with the locomotor frequency in lampreys (Brocard et
al. 2010) and likely also in salamanders (Cabelguen et al.
2003) we conducted further simulations where the NMDA—
calcium inflow rate scaled heuristically with RS frequency.
This resulted in a non-linear increase of calcium inflow at
the NMDA synapse with increasing NMDA stimulation (see
Huss et al. (2008) for arelated mechanism). Other hypotheses
are outlined in Sect. 4. Figure 11A shows three representative
raster plots for stepping-like frequencies. The RS population
was activated by 1.7,2.0, and 2.3 nA injected current, respec-
tively. In response to these injected currents, RS neurons dis-
charged at a mean frequency of 49.0, 62.5, and 75.8 Hz.
The corresponding segmental frequencies were 0.63, 0.90,
and 1.20 Hz. Figure 11B shows the resulting positive corre-
lation between the current injected into the RS neurons, the
mean RS spiking frequency, and the segmental frequency for
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Fig. 11 Increasing the reticulospinal (RS) drive increased the oscil-
lation frequency in segments with scaled NMDA—calcium inflow A
three representative raster plots of the segmental EIN populations (retic-
ulospinal population activated by 1.7, 2.0, and 2.3 nA injected cur-
rent, respectively, corresponding to mean RS spiking frequencies of
49.0, 62.5, and 75.8 Hz). Segmental frequencies top to bottom are
0.63, 0.90, and 1.20 Hz (in vivo stepping range, Canmpa decay scales
linearly). Cells 1-100 depict the spinal population, cells 101 through
150 depict the reticulospinal (RS) population. B Frequency of the seg-
mental network oscillations as a function of the current injected into
reticulospinal neurons. Non-linear Canmpa-inflow scaling of spinal
neurons without (bold line), and with added linear Canypa-decay
scaling (regular). Error bars indicate the standard deviation across 30
instances/individuals

a non-linearly scaling calcium inflow (cf. Appendix) with
and without additional linear scaling of the NMDA-calcium
decay. All parameters were the same as for Fig. 10 (including
RS neurons). The AHP strength stayed constant at 50 % of
its default value, Wrsnmda Was set to 0.24.

Finally, as a proof of concept we coupled two segments,
one was initialized with parameters corresponding to low fre-
quencies (simplified limb oscillator—cf. footnote 1) and one
with the default/fast frequency configuration (axial oscilla-
tor). This setup was based on the fact that during stepping
the frequency of the whole locomotor network (the limb net-
works and the axial network) is low. In other words, the
slow stepping frequencies are imposed on the axial network.
A simple excitatory connection (density 14 %) from the limb
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Fig. 12 Two segments with unidirectional coupling from a limb
segment to an axial segment. The raster plot shows the activity of
two segments activated by their respective driving populations. Cells
1 through 160 represent a segment with parameters set to reproduce
slow stepping-like frequencies (here 1.62 Hz). Cells 161 through 320
represent a segment with parameters set to reproduce fast swimming-
like frequencies (here 3.54 Hz). Cells 321 through 420 represent the
driving populations. At the 6 s mark, unidirectional connections from
the putative limb segment to the axial segment are turned on and the slow
limb frequency is imposed on the fast axial segment. Left limb EINs
project to the entire left axial hemisegment. Right limb EINs project to
the entire right axial hemisegment

EIN populations to their axial counterparts was sufficient to
impose the slow stepping frequencies on the axial segment.
Figure 12 shows how the axial segment switched immedi-
ately to the slower frequency when coupling was enabled.
The obvious interpretation is that this might represent a cou-
pling from limb neuron pools to axial neuron pools since
during stepping the low frequencies need to be imposed on
the axial networks, which exhibit faster intrinsic frequencies.
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4 Discussion

This study shows that a lamprey spinal motor network can
be transformed into a corresponding salamander network at
the cellular level. This supports the notion that was already
expressed by our previous experimental (Ryczko et al. 2010a)
and modeling studies [(Ijspeert 2001; Bem et al. 2003;
Ijspeert et al. 2005, 2007; Harischandra et al. 2011), for
review, see [jspeert (2008)], namely that the mid-trunk net-
work of the salamander resembles a lamprey-like swimming
network and can be modeled accordingly. Comparing data
across many species, the high-level similarities in the organi-
zation of the axial locomotor CPG across species such as the
lamprey [for review, see Grillner (2003)], the zebrafish [for
review, see Fetcho and McLean (2010)], the Xenopus embryo
[(Kahn and Roberts 1982; Roberts and Tunstall 1990); for
review, see Roberts et al. (2010)], reveal that common prin-
ciples can be traced among vertebrates [for review, see Katz
and Harris-Warrick (1999), Orlovsky et al. (1999), Ryczko
et al. (2010b)]. However, many different configurations of
ionic channels can produce neural oscillators (Prinz et al.
2004). Thus, the present model only represents one possibil-
ity for the salamander until it is validated by pre-motoneuron
recordings. Nevertheless, we take the fact that the model
adequately reproduces a large number of pharmacological
experiments (Ryczko et al. 2010a) with a single parameter
set (i.e., the model is not retuned from one set of results to
the other) as indirect evidence that the underlying rhythm
generating composition of ionic channels adequately cap-
tures the mechanisms underlying the locomotor CPG oscil-
lations in the salamander to a first approximation. Notably
the choice of a NMDA-plateau-based oscillator, that was key
to the reproduction of in vitro physiological data, did not
impede the emergence of fast, in vivo-like oscillations (see
Sect. 4.5).

4.1 Reproducing physiological data

The present model reproduces key physiological findings
and provides explanations at the cellular level. The effects
of blocking glycinergic and AMPA receptors, specific ionic
currents (I, Ikcan, INap) and the relationships between seg-
mental and hemisegmental rhythms are largely reproduced.
The main discrepancies are found for segments with blocked
AMPA synapses, where oscillations persist, and the rela-
tion between segmental and hemisegmental duty cycles (see
also Sect. 4.2). The imperfect match of the duty cycle in
hemisegments on the other hand—though a priori a tunable
parameter—is the result of a trade-off with the reproduction
of the pharmacological findings. Increasing the duty cycle
is equivalent to weakening the hyperpolarizing components
(through modifying inflow and decay rates and the strength
of the Kcanmpa channel). However after blocking the Kcan
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channel in order to reproduce the apamine results Ryczko
et al. (2010a) the weakened remaining hyperpolarizing com-
ponents can be too weak to stop bursting and tonic activity
emerges.

We implemented salamander spinal hemisegments as a
sparsely connected population of excitatory neurons. Such
a recurrently interconnected network may also account for
rhythmogenesis in the lamprey spinal cord (Buchanan and
Grillner 1987; Buchanan et al. 1989; Parker and Grillner
2000) and hemicord (Cangiano and Grillner 2003, 2005),
as well as in the locomotor network of the Xenopus embryo
[Dale and Roberts (1985), Soffe (1989), Li et al. (2006),
for review see Roberts and Perrins (1995)]. The model
neurons are not intrinsically bursting neurons when cur-
rent is injected. Rather the minimal pacemaker unit is a
set of two neurons coupled with NMDA synapses or an
isolated neuron under NMDA bath activation. The neu-
rons possess two fast calcium pools, which extend the fre-
quency range of tonic firing and provide adaptation as well
as a slow calcium pool, which drives the Kc,-channels
associated with NMDA synapses. We hypothesize that the
synaptic Kc,-channels are co-localized, or at least function-
ally coupled, with the NMDA synapse (Faber et al. 2005)
and that there is no interference from other calcium pools
(Brodin et al. 1991). To the best of our knowledge, this
negative feedback between synaptic calcium channels and
related K¢, channels remains the best model for NMDA-
induced TTX-resistant membrane oscillations in the lam-
prey. It constitutes a long-standing, experimentally supported
feature of various lamprey models (Wallén et al. 1992;
Huss et al. 2007, 2008). Long period oscillations emerge
as a consequence of the interplay between NMDA-induced
plateau potentials and K¢, channels co-located with the
NMDA synapse (see also Sect. 4.4). Among other conse-
quences, this allows for oscillations in isolated hemiseg-
ments without reciprocal inhibition. A similar functional
coupling has been shown for Ky, channels that are co-
located with AMPA receptors in lamprey spinal neurons;
i.e., Na™ influx via AMPA receptors activates a slow Kya
channel that in turn decreases the AMPA-mediated excitation
(Nanou and Kyriakatos 2008).

More data at the cellular level are needed to confirm
that this negative feedback loop exists in the spinal cord
of the salamander. However, several elegant studies showed
that the dendritic co-localization of NMDA receptors and
Kcachannels is responsible for a Ca>*-mediated feedback
loop in various brain regions in rodents [(Faber et al. 2005;
Ngo-Anh et al. 2005; Bloodgood and Sabatini 2007; Lin et
al. 2008; Faber 2010); for review, see Mulholland (2012)].
Note however that the involvement of a NMDA-—calcium
Kca feedback loop may depend on the type of cell and the
type of synaptic connection. For instance in the lamprey,
the monosynaptic connection between reticulospinal neurons
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and motoneurons appears not to exhibit a synaptic K¢, chan-
nel feedback loop (Cangiano et al. 2002).

4.2 Segmental versus hemisegmental oscillators

Simulated hemisegments were able to oscillate “autonom-
ously”, i.e., without inputs from the contralateral side. This
conforms to the reported rhythmogenic capability in vitro
of spinal hemicords and hemisegments in the salamander
(Ryczko et al. 2009, 2010a) and in the lamprey (Cangiano
and Grillner 2003, 2005; Cangiano et al. 2012). Importantly
the lamprey hemicord oscillates when electrically stimulated
as soon as 2 min after cutting the midline of the spinal cord
(Cangiano et al. 2012). Rhythmogenesis thus appears as an
intrinsic capability of the hemisegmental networks, rather
than an acquired ability due to plasticity of the system after
the lesion as suspected by some authors (Hoffman and Parker
2010).

In agreement with Ryczko et al. (2010a) we find that recip-
rocal inhibitory connections slow down the oscillations in
segments compared to hemisegments. A strong reciprocal
inhibition will suppress the activity on the contralateral side
long enough for the relevant calcium concentration to decay
further than in isolated hemisegments, leading to longer
bursts after release from inhibition. Ryczko et al. (2010a)
reported a segmental duty cycle around 70 %. We find such
a large duty cycle to be at odds with symmetric reciprocal
inhibition, which has to be reasonably strong to slow-down
oscillations in segments. In the simulations the inherent sym-
metry lead to a duty cycle that fluctuated around 50 %. The
current implementation of inhibitory coupling is probably
too rigid, possibly due to the low number of neurons per
hemisegment. Another consequence of this is that segmental
stability scores are not changing very much. A future itera-
tion of the present model should allow for the possibility of
overlap between the decaying phase and the rising phase of
oscillations in order to achieve duty cycles above 50 %.

Furthermore, we performed our data analysis on the direct
output of the EIN subpopulation. The data by Ryczko et
al. (2010a) showed recordings of a signal that has been
processed by motoneuron pools, whose intrinsic properties
may shape the motor output further. Moreover the nature
of extracellular recordings introduces a partial decay of the
signal (Bédard et al. 2004), and changes in the measured
waveform. Our model also lacks propriospinal connections
and the co-activation of spinal neurons that are not part of the
locomotor-networks by the NMDA bath, which might have
distorted the in vitro recordings.

4.3 Suppressing synaptic transmission

Glycinergic inhibitory interneurons have been evidenced in
the salamander (Jovanovic et al. 1999) and lamprey (McPher-

son et al. 1994) spinal cord. Eliminating the inhibition
effectively reduced the model to two excitation-coupled
hemisegments. In-phase synchronization was facilitated by
the excitatory cross-connections. These pathways have been
proposed as a simple explanation to this synchronous activity
on the basis of the effects of strychnine on spinal networks in
the salamander (Ryczko et al. 2010a) and in the lamprey [see,
e.g., Cangiano and Grillner (2003)]. These connections did
not pose any problem for the remaining results, as in segments
the inhibitory, anti-phase coupling is stronger than the exci-
tatory, in-phase coupling. In the lamprey crossed excitatory
connections target contralateral motoneurons or inhibitory
interneurons, but the commissural projection to contralateral
excitatory neurons remains to be demonstrated [(Buchanan
1982; Buchanan and McPherson 1995), see also Mahmood
et al. (2009), for review, see Ryczko et al. (2010b)]. Inter-
estingly, the presence of cross-excitatory pathways in the
zebrafish (McLean et al. 2007, 2008) and in the limb net-
works of the rat (Butt and Kiehn 2003) supports the idea that
these connections may be a common characteristic of verte-
brate locomotor systems. However their role in vivo is poorly
understood. In the zebrafish cross-excitatory interneurons are
active during slow swimming but not during fast swimming
(McLean et al. 2007, 2008). In the salamander two bursts
per cycle can be recorded in the tail muscles during stepping
(Delvolvé et al. 1997). The second burst occurs synchro-
nously with that of the contralateral muscles. This left-right
synchronous muscular pattern could involve cross-excitatory
connections (see Bicanski et al. (2012) in the same issue).
These might also be used during rhythmic “non locomotor”
behaviors (e.g., mating, spawning, etc.) or to increase the
flexibility of the left-right coordination pattern (Berg et al.
2007). It cannot be excluded that in the salamander the exci-
tatory cross-connections target contralateral motoneurons,
which were not modelled in this study.

In experiments (Ryczko et al. 2010a) the application
of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) abolished
bursting by blocking AMPA synapses. In our simulations this
was achieved for hemisegments only. In the segmental case
the reciprocal inhibition enforced a rhythm, albeit slightly
accelerated, even in the absence of the AMPA synapse.
Hemisegments also lack the post inhibitory rebound pro-
vided by the h-current after inhibition from the contralateral
hemisegment terminates. This discrepancy might be reme-
died if we assume that CNQX also blocks the transmission
from the spinal interneurons to the target motoneuron pools.

4.4 The role of ionic channels
Contrary to findings for the lamprey (El Manira et al. 1994),
blocking Ixc, with apamine did not disrupt the ongoing

NMDA-induced rhythmic activity in the salamander but
rather improved the signal-to-noise ratio in both segments
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and hemisegments (Ryczko et al. 2010a). Ryczko et al.
(2010a) hypothesized that similarly to the findings of Faber
et al. (2005), blockade of SK channels with apamine can
potentiate fast glutamatergic synaptic potentials by remov-
ing shunting mediated by SK channels co-localized close
to the NMDA synapse. This would in turn increase the
signal-to-noise ratio. However, note that apamine most prob-
ably affects at least two K¢, subtypes. Intracellular record-
ings of lamprey spinal neurons revealed that apamine slows
down NMDA-induced TTX-resistant membrane oscillations
(EI Manira et al. 1994), suggesting an effect on Kcanmpa
channels responsible for the termination of depolarized
plateaus. In spinal neurons stimulated by current injection,
apamine decreases the spike frequency adaptation, which is
mediated by Kc, channels responsible for the slow after-
hyperpolarization (El Manira et al. 1994). The radically
different timescales of adaptation (on the order of 100 ms)
versus NMDA-induced oscillations (several seconds) sug-
gest that these K¢, channels are distinct subtypes. Simi-
larly, fast and slow Kn, channels are present in the lamprey
(Nanou and El Manira 2007; Nanou and Kyriakatos 2008;
Wallén and Grillner 1997; Wallén et al. 2007; Huss et al.
2007). Reducing the Kcanmpa conductance in the present
model would trivially slow down oscillations, but blocking
it completely would lead to tonic activity. This would not
be in line with the effect of apamine reported in the exper-
iments of Ryczko et al. (2010a). Hence, in the model we
have restricted the effect of apamine to the adaptation con-
ductance Kcgn. It is a priori conceivable that the Kcanmpa
channels in the salamander could be apamine-insensitive
(Stocker 2004). However if we assume that apamine also
blocks the Kcanmpa conductance (in addition to the effect on
the adaptation channel), then the persistence of oscillations in
the experiments by Ryczko and co-workers (2010a) predicts
the presence of other inhibitory feedback mechanisms—e.g.,
slow Kn,—similarly to the lamprey [see, e.g., Huss et al.
(2007)].

Thus, in this model the increase in signal-to-noise ratio
after in simulated application of apamine is achieved through
the block of Ixcan channels. This blockade brings previ-
ously spiking neurons, or neurons that fired short irregular
bursts into the long period bursting regime. The simulation
results correspond to the experimentally observed effect of
apamine concerning the stability of the rhythm in hemiseg-
ments. For segments the stability did not change markedly
since the strong reciprocal inhibition enforced stable segmen-
tal oscillations already under control conditions. The effect
of apamine in the model can also account for cases where
apamine led to the emergence of oscillations from NMDA-
induced tonic discharges observed in vitro (Ryczko et al.
2010a). However, the duty cycle did not decrease when com-
pared to hemisegments under control conditions, contrary to
what was observed by Ryczko et al. (2010a). Possibly Ixcan
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channels susceptible to endogenous release of neuromodula-
tors determine the number of neurons in the bursting regime
and the intrinsic frequency (Grashow et al. 2009). Chevallier
et al. (2006) demonstrated that a concentration of apamine
in the same range as the one used by Ryczko et al. (2010a)
blocks the medium afterhyperpolarization (mnAHP) in sala-
mander hindlimb motoneurons.

Though there is some controversy over the selectivity of
the blocker ZD 7288 toward I, channels (Wang et al. 2011),
our results are in agreement with the interpretation that block-
ing I, slowed down the oscillations by prolonging the recov-
ery period, albeit only mildly, especially for segments. This is
consistent with I, being a hyperpolarization activated, depo-
larizing current. This result and the fact that Iy, is sensitive to
muscarinic (Chevallier et al. 2006) and serotonergic modula-
tion (Pape 1996; Kiehn et al. 2000) suggest a role in adjusting
the cycle duration and duty cycle.

In further agreement with the experimental data (Ryczko
et al. 2010a), blocking the Nap current abolishes activity. In
our model the NMDA-induced depolarization is insufficient
to induce bursting if the background elevation of the mem-
brane potential and the increased excitability due to Ingp is
removed. This is in accordance with the initial observation
that Inap controls of the excitability at subthreshold potential
[Llinds 1980; Stafstrom et al. 1982; for review see Llinas
(1988)]. As such, Ingp can control cellular rhythmic prop-
erties by triggering burst initiation. Such a role for Inap has
been modeled accordingly for the respiratory system (Butera
and Rinzel 1999; Butera et al. 1999) and for the locomotor
system (Rybak et al. 2006; Daun et al. 2009). Its involvement
in rthythmogenesis has been observed experimentally in the
limb locomotor networks of the neonatal rat (Tazerart et al.
2007) and mouse (Zhong et al. 2007) and in the axial locomo-
tor network of the salamander (Ryczko et al. 2010a). Future
experiments must determine whether salamander CPG neu-
rons exhibit more than one type of sodium channel as in our
model, or just one sodium channel that is riluzole-sensitive.

4.5 Fast rhythms

In general, the frequency range of segments and hemiseg-
ments under NMDA-stimulation is extremely limited for an
isolated sample when compared to the variability among
samples (Delvolvé et al. 1999; Ryczko et al. 2010a). The
present model offers a tentative explanation of how long-
period fictive locomotion rhythms and in vivo activity might
be related in the salamander. Long-period rhythms are domi-
nated by the Canmpa subsystem, whereas it constitutes only
one contribution to burst termination in vivo. In the lamprey,
a similar distinction between the mechanisms underlying fast
and slow rhythms has been discussed by Cangiano and Grill-
ner (2003).
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In this study we focused on a basic, biologically plau-
sible descending drive simulating reticulospinal (RS) neu-
rons. In lampreys the background excitation of the spinal
network is controlled by descending projections from the RS
neurons (Buchanan and Grillner 1987; Brodin et al. 1988;
Ohta and Grillner 1989), that are driven by supraspinal
locomotor centers, that include the mesencephalic locomo-
tor region (henceforth MLR) (Sirota et al. 2000; Brocard
et al. 2010) and diencephalic locomotor region (El Manira
et al. 1997). In salamanders, the MLR controls the activ-
ity of the locomotor network (Cabelguen et al. 2003), most
probably via a direct connection onto glutamatergic reticu-
lospinal neurons (Chevallier et al. 2004). This is consistent
with the observations in the salamander that neurons in the
reticular region are activated when the MLR is stimulated
(Bar-Gad et al. 1999) or during in vivo locomotion (Hub-
bard et al. 2010). To investigate the ability of descending
drives to extend the frequency range of segmental networks
we added a separate group of RS neurons as a driving popula-
tion. Importantly all previous results (reproducing the phys-
iological data) were conserved since the segmental model
neurons remained unchanged. With this addition the model
is capable of covering a large fraction of the in vivo fre-
quency range corresponding to swimming frequencies and—
with minor adjustments—also the lower stepping frequency
range. These adjustments were limited to the reduction of
the Ixcan conductance by roughly half, and a minor change
in calcium inflow and decay rates. Thus a few modifica-
tions at the cellular level allow for networks with different
intrinsic frequency ranges. The most stable range of frequen-
cies corresponding to both in vivo swimming and stepping
were obtained by scaling the strength of the Kc,n current. A
weaker Kcyn current yielded lower frequencies.

Several mechanisms based on the scaling of the Kcan
conductance could control locomotor frequency. Neuromod-
ulation of the Ixc, conductance of the same neuron pool con-
stitutes one possibility. In the salamander descending and
intraspinal serotoninergic neurons are present, and serotonin
decreases the locomotor frequency when bath-applied on
a brainstem-spinal cord preparation (Jovanovic et al. 1996;
Branchereau et al. 2000). Our model would predict that sero-
tonin would decrease in the Kcan conductance, as observed
in the lamprey (Matsushima and Grillner 1992). More neu-
rons with a broader spectrum of Cay inflow and decay val-
ues and Kc,n conductance strengths might reduce the need
for active neuromodulation. The interburst interval would
then be mainly dictated by the slow afterhyperpolarization of
neurons, synchronized through their mutual excitation (Can-
giano and Grillner 2003).

Alternatively a differential recruitment of pools of
interneurons with different sets of Kcan conductances could
cover the in vivo frequency range. The recruitment thresh-
old could rely on the input resistance of the different pools

as demonstrated for motoneurons in the larval zebrafish
(McLean et al. 2007). Alternatively it could be determined by
the interplay between the intrinsic properties and the strength
of the descending synaptic inputs as reported in the juve-
nile/adult zebrafish (Gabriel et al. 2010). Intracellular record-
ings of spinal interneurons are needed to test whether the
active set of spinal interneurons progressively shifts as the
locomotor frequency increases, as observed in the zebrafish
(McLean et al. 2008). The observation that the spinal cord of
salamanders also shares organizational principles with these
animals (Nieuwenhuys et al. 1998; Harper and Roberts 1993;
reviewed in Ryczko et al. 2010b) suggests that these might
serve similarly to the lamprey in guiding further investiga-
tions into the salamander locomotor system.

Scaling the strength of the descending NMDA synapse
allowed for frequency ranges comparable to those obtained
by scaling the Kcan conductance. However in the stepping
frequency range the variability of the measured cycle dura-
tion increased in this case, because the recurrent connectiv-
ity in the EIN network coupled with an unfavorable random
seed could occasionally enforce NMDA dominated oscilla-
tions (however, see Sect. 4.7). This is most likely due to
the limited number of neurons and the neurons being all
endowed with similar properties. The absence of sensory
feedback is another major factor that increases the variabil-
ity in all conditions (and possibly limits the range) of our
simulated in vivo like oscillations. In the lamprey, intraspinal
mechanosensitive neurons (“edge cells”) provide movement-
related feedback input to the swimming CPG and contribute
to burst termination (Grillner et al. 1982, 1984). In salaman-
ders, intraspinal marginal neurons distributed all along the
ventrolateral edge of the spinal cord (Schroeder and Egar
1990) show strong similarities with the edge cells of lam-
preys, but their functional role remains to be demonstrated.

4.6 A dynamically adjusting CPG network

The modulatory effects of the Ixcan conductance and NDMA
synapse also suggest that differential recruitment of differ-
ent RS populations could determine, through the distribution
of their descending synaptic properties, the frequency of the
locomotor CPG. Interestingly in the larval zebrafish RS neu-
rons are recruited dorso-ventrally as the swimming frequency
increases (Kinkhabwala et al. 2011). In the larval lamprey RS
neurons from the middle and the posterior rhombencephalic
reticular nuclei are differentially recruited according to the
swimming frequency controlled by stimulation of the MLR
(Brocard and Dubuc 2003). These observations are compat-
ible with the picture of a locomotor CPG in which active
sets interneurons and motoneurons dynamically change with
speed and with the locomotor mode, as observed both in
the zebrafish (Ritter et al. 2001; Kimura et al. 2006; Bhatt
et al. 2007; McLean et al. 2007, 2008; Satou et al. 2009;
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Gabriel et al. 2010; Liao and Fetcho 2009; for review, see
Fetcho and McLean 2010) and in the Xenopus tadpole (Li
et al. 2007; for review, see Roberts et al. (2010)). Differ-
ent sets of descending projections, due to the recruitment of
different RS neurons with increasing drive from the MLR,
might be part of this dynamic reorganization of the locomotor
CPG.

During locomotion, RS neurons further exhibit some
rhythmicity, which is most likely due to ascending feed-
back (Dubuc and Grillner 1989; Vinay and Grillner 1993;
Einum 2004; Einum and Buchanan 2006a,b; Antri et al. 2009;
Buchanan 2011). Ascending feedback might play a crucial
role in shaping segmental rhythms in the salamander as well.
However, the exact interplay of ascending and descending
pathways found within the salamander spinal cord (Davis et
al. 1989; Munoz et al. 1997) remains to be determined and
was not within the scope of this study.

4.7 NMDA dynamics

One potential discrepancy with experimental data is that
in the present model all frequencies can emerge at simi-
lar RS drives, when the Igcan conductance or the NMDA
synapse are scaled. Cabelguen et al. (2003) have shown that
decerebrated, semi-intact salamanders exhibit a gait transi-
tion from stepping to swimming as the stimulation of the
MLR is increased. In the lamprey the locomotor frequency
positively correlates with the spiking frequency of RS neu-
rons, which relay the MLR command to the locomotor net-
works (Brocard et al. 2010). Whether or not this holds true for
the salamander as well must be determined by future exper-
iments. One possible solution could involve a differential
recruitment of RS neurons. At higher locomotor frequen-
cies, previously active RS neurons might deactivate while
another population of RS neurons activate, implementing
a progressive shift in the currently active RS descending
drive. Alternatively differential recruitment may occur in the
rhythm-generating network of pre-motoneurons as men-
tioned above for the zebrafish (McLean et al. 2008). Another
possibility to restore the positive correlation between injected
current into the MLR, RS frequency and the locomotor
frequency could involve a different mixture of descending
synapses (NMDA versus AMPA) and a more sophisticated
synapse model, including a saturation mechanism (Hellgren
et al. 1992; Travén et al. 1993).

The NMDA dynamics, which are crucial for the repro-
duction of experimental data presented herein, remain the
best model for TTX-resistant membrane oscillations in
spinal interneurons of the lamprey (Wallén et al. 1992;
Huss et al. 2007, 2008). We show that if the calcium
inflow rate scales non-linearly with the NMDA stimula-
tion, this can also restore a positive correlation between
the spiking activity of the RS neurons and locomotor fre-
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quency. This increasing calcium inflow is reminiscent of
the recruitment of added (non-synaptic) calcium channels
to feed the Kcanmpa. Huss et al. (2008) show that such
an addition of a generic calcium current to their min-
imal model of NMDA-induced TTX-resistant membrane
oscillations restored a positive correlation between increas-
ing stimulation and the frequency of the oscillations pro-
duced by their model. These generic calcium channels
could represent regular dendritic membrane channels in the
vicinity of the NMDA synapse (Bloodgood and Sabatini
2007).

4.8 Coupling slow and fast oscillators

Using the present implementation of descending drive the
model further allows for the study of coupling relations
between networks that have different intrinsic frequencies as
has been observed for the salamander (Ijspeert et al. 2007).
We presented an example where slow stepping like frequen-
cies were imposed on a network with faster intrinsic fre-
quencies, corresponding to in vivo swimming activity. Such
a mechanism might be necessary in the gait transition from
swimming to stepping in salamanders (Cabelguen et al. 2003;
Ijspeert et al. 2007). During stepping the axial segments
oscillate with slow frequencies. If the imposed frequency
can be passed down the axial network, then an axial seg-
ment with a fast intrinsic frequency range can readily par-
ticipate in stepping movement. During swimming (at higher
RS drives) the limb networks would generate tonic activ-
ity, which would manifest itself as added excitation to the
axial network. Interestingly experiments on isolated spinal
cords have shown that the axial CPG can produce travel-
ing waves even when the limb CPGs are rhythmically active
(Ryczko et al. 2009). This is consistent with a coupling of
limb oscillators mainly to the nearest axial oscillators (i.e.,
local coupling, as opposed to global coupling to large parts
of the axis, see Ijspeert et al. 2005). In this study we used a
simple coupling mechanism, which relies only on a sparse,
uni-directional coupling from excitatory limb CPG neurons
to axial hemisegments. Paired cellular recordings might be
used to investigate the nature of the coupling between limb
and axial networks.

Note that the RS neuron population that we used to drive
the segmental network may also account for other descending
or sensory neurons that could be activated during the vari-
ous aquatic and terrestrial locomotor behaviors exhibited by
salamanders in vivo (for review see Cabelguen et al. 2010,
Bicanski et al. 2012). Similar setups might be used to study
in more detail how sensory feedback and descending drive
and ascending feedback shape the couplings between spinal
oscillators.



Biol Cybern (2013) 107:565-587

583

4.9 Conclusion

This study shows that a lamprey-like segmental network
(using a modified lamprey neuron model) can be transformed
into a salamander network, which conforms to experimental
data. It gives further credence to the notion of phylogenetic
conservatism for the vertebrate nervous system (Stephenson-
Jones et al. 2011). Naturally, we do not suggest that the
present model reflects all salamander locomotor CPG proper-
ties and many details await further investigation. In particular
the model must now be tested by pre-motoneuron recordings.
Indirect validation in form of pharmacological experiments
can only take us so far. From a modeling point of view an
important extension of the present work would be to intro-
duce more neurons with variable properties (e.g., size, input
resistance, conductances, etc.) and possibly a more sophisti-
cated synapse model.
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Appendix: Equations and parameters

Neurons are modeled as standard Hodgkin—Huxley neurons
(Hodgkin and Huxley 1952) with three electrically coupled
compartments, one for the soma, one for the dendrites and
an initial compartment reminiscent of the axon hillock in
order to transform spike-like membrane oscillations into full
amplitude action potentials. The following equation governs
the membrane potential U of individual compartments

dUu
Cor =22, Wi = Ulgeore + 27 1 + heak e

where the first sum is taken over the adjacent compartments.
The sum over j indicates summation over compartmental
currents. Jje, 18 the leak current. C represents the capacitance
and geore the electrical coupling to the adjacent compart-
ments. The currents are modeled with the standard Hodgkin—
Huxley equations of the type

I; = g;p"q" (Ui — Exey) 2)

Here g; is the conductance of the ionic channel, p* and q°
its activation and inactivation variables with their respective
exponents and E..y the reversal potential of the charge carri-

ers in question. The activation and inactivation variables are
described either in terms of opening and closing rates « and

B.E.g.,

dp

3 = W =p)=BW)p, 3

or in terms time constants 1, and asymptotic values pjn¢

d . —

d_p — Pinf p (4)
t T

The equations for calculating « and g are given below. Chan-
nels parameters are summarized in Table 2. For calcium
concentration-dependent currents the activation is modeled
with a concentration-dependent variable z for each calcium
pool (Cay, Car,, Canmpa Synapse)
[Ca]
B,

where B, is a pool-specific parameter (modified from Huss et
al. 2007). The concentrations are modeled with an equation
of the type

d[Ca]
dr

where the parameters A and B determine the calcium inflow
and decay, respectively. When the calcium inflow scaled with
strength of the descending drive the following heuristic scal-
ing factor was used

2.4
s

2.4
fRS—base

, (&)

= Al — B[Ca], (6)

A(frs) = )
where frs is the average spiking frequency of the RS popu-
lation and frs—base the reference value.

Synaptic communication is implemented as follows. Upon
detection of a spike the synaptic conductance is raised instan-
taneously to the value given in Table 1 and then decays expo-
nentially (cf. Table 1). The electrotonic properties of the den-
drites attenuate an AMPA EPSP elicited in the dendrite by
roughly 40 % in the soma. (EPSP amplitude 0.74 mV in
dendrite vs. 0.45 mV in soma).

Channel kinetics were computed with the following equa-
tions. Channel parameters (cf. Table 2) are linked to their
respective equations by the numbers in their subscripts,
which indicate the equation number. Here, a(U) is a place-
holder for the calculated quantity.

. AU — B) .
‘O = B 0)/0) ®
o AB=U) .
‘U = (@ = BY/O) ®
alU) = A (10)

1 +exp((B—-U)/C)
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a(U) = Aexp((U — B)/C) (11)
a(U) =Aexp(—=(U — B)/C) (12)
) = ! (13)
A I T exp(U — B)/C)
1
aU) = (14)

1 +exp((B—-U)/C)

a(U) = A + B xexp(—(C — U)*/D?) (15)

The coupled membrane potential equation was solved
using the reverse Euler method [Dayan and Abbott (2001)
and references therein] while the simpler equations are solved
with a Runge—Kutta 4 implementation.
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