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Translated Poisson Approximation for Markov Chains
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The paper is concerned with approximating the distribution of a sum W of
integer valued random variables Yi , 1� i �n, whose distributions depend on
the state of an underlying Markov chain X. The approximation is in terms
of a translated Poisson distribution, with mean and variance chosen to be
close to those of W , and the error is measured with respect to the total
variation norm. Error bounds comparable to those found for normal approx-
imation with respect to the weaker Kolmogorov distance are established, pro-
vided that the distribution of the sum of the Yi ’s between the successive visits
of X to a reference state is aperiodic. Without this assumption, approxima-
tion in total variation cannot be expected to be good.

1. INTRODUCTION

The Stein–Chen method is now well established in the study of
approximation by a Poisson or compound Poisson distribution (Arratia
et al.(1), Barbour et al.(3)). It has turned out to be very efficient for treat-
ing sums of the form W := Wn :=∑n

i=1 Yi , where the variables Y1, Y2, . . .

are non-negative, integer-valued, rarely different from 0, and have a short
range of dependence. A basic example is the following: let Y1, Y2, . . . be
independent and taking values 0 or 1 only, with pi := P(Yi = 1) generally
small, to make a Poisson approximation plausible. Then the method offers
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a proof of the celebrated Le Cam theorem, which is transparent and rel-
atively simple (cf. Ref. 3, I.(1.23)), and gives the optimal constant:

‖L(W)−Po (λ)‖�2λ−1
n∑

i=1

p2
i �2 max

1�i�n
pi, (1.1)

where λ := EW =∑n
i=1 pi . Here, L(X) denotes the distribution of a ran-

dom element X, Po (λ) the Poisson distribution with mean λ, and ‖ν‖ the
total variation norm of a signed bounded measure ν; we need this only
for differences of probability measures Q,Q′ on the integers Z, when

‖Q−Q′‖ :=
∑

i

|Q(i)−Q′(i)|=2 sup
A⊂Z

|Q(A)−Q′(A)|.

Clearly, if the pi ’s are not required to be small, there is little
content in (1.1). This is to be expected, since then EW = λ and
Var W =λ−∑n

i=1 p2
i need no longer be close to one another, whereas Pois-

son distributions have equal mean and variance. This makes it more nat-
ural to try to find a family of distributions for the approximation within
which both mean and variance can be matched, as is possible using the
normal family in the classical central limit theorem. One choice is to
approximate with a member of the family of translated Poisson distribu-
tions {TP (µ,σ 2), (µ, σ 2)∈R×R+}, where

TP (µ,σ 2){j} := Po (σ 2 + δ){j −�µ−σ 2�}
= Po (λ′){j −γ }, j ∈Z,

where

γ :=γ (µ,σ 2) :=�µ−σ 2�, δ := δ(µ,σ 2) :=µ−σ 2 −γ

and λ′ :=λ′(µ,σ 2) :=σ 2 + δ. (1.2)

The TP (µ,σ 2) distribution is just that of a Poisson with mean
λ′ :=λ′(µ,σ 2) :=σ 2 + δ, then shifted along the lattice by an amount γ :=
γ (µ,σ 2) :=�µ−σ 2�. In particular, it has mean λ′ +γ =µ and variance λ′
such that σ 2 �λ′ <σ 2 +1; note that λ′ = σ 2 only if µ−σ 2 ∈Z. For sums
of independent, integer-valued random variables Yi , this idea has been
exploited by Vaitkus and Čekanavičius,(12) (1998), and also in Refs. 2, 4,
and 7, using Stein’s method, leading to error rates of the same order as
in the classical central limit theorem, but now with respect to the much
stronger total variation norm, as long as some ‘smoothness’ of the distri-
bution of W can be established.
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As in the Poisson case, the introduction of Stein’s method raises the
possibility of making similar approximations for sums of dependent ran-
dom variables as well. However, the ‘smoothness’ needed is a bound of
order O(1/

√
n) for ‖L(W + 1) − L(W)‖, entailing much more delicate

arguments than are required for Poisson approximation. The elementary
example of 2-runs in independent Bernoulli trials was treated in Ref. 4,
but the argument used there was long and involved. More recently, Röl-
lin(10) (2005) has proposed an approach which is effective in a wider
range of circumstances, including many local and combinatorial depen-
dence structures, in which one can find an imbedded sum of independent
Bernoulli random variables. In this paper, we consider a different kind of
dependence, in which the distributions of the random variables Yi depend
on an underlying Markovian environment.

We suppose that X = (Xi)
∞
i=0 is an aperiodic, irreducible and station-

ary Markov chain with finite state space E ={0,1, . . . ,K}. Let Y0, Y1, . . .

be integer-valued variables which are independent conditional on X, and,
as in a hidden Markov model, such that the conditional distribution
L(Yi |X) depends on the value of Xi alone; we assume further that,
for each 0 � k � K, the distributions L(Yi |Xi = k) are the same for
all i. Under these assumptions, and with W = ∑n

i=1 Yi , we show that
‖L(W)TP (EW,Var W)‖ is asymptotically small, under reasonable con-
ditions on the conditional distributions L(Y1 |X1 = k), 0 � k � K. The
detailed results are given in Theorems 4.2–4.4. Roughly speaking, we show
that if these conditional distributions are stochastically dominated by a
distribution with finite third moment, and if, as smoothness condition, the
distribution Q :=L

(∑S1
i=1 Yi |X0 =0

)
is aperiodic (Q{dZ}<1 for all d �2),

where S1 is the step at which X first returns to 0, then

‖L(W)−TP (EW,Var W)‖=O
(
n−1/2

)
. (1.3)

An ingredient of our argument, reflecting Röllin’s(10) (2005) approach, is
again to find an appropriate imbedded sum of independent random vari-
ables.

In the next section, we give an introduction to proving translated
Poisson approximation by way of the Stein–Chen method. Lemma 2.2
provides a generally applicable formula for bounding the resulting error.
In Section 3, we establish bounds on the total variation distance between
L(W) and L(W + 1) using coupling arguments. The results of these
two sections are combined in Section 4 to prove the main theorems.
Theorem 4.4 gives rather general conditions for (1.3) to hold, whereas
Theorem 4.2, in a somewhat more restrictive setting, provides a rela-
tively explicit formula for the approximation error. We then discuss the
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relationship of our results to those of Čekanavičius and Vaitkus,(6) who
studied the degenerate case in which Y1 =h(k) a.s. on {X1 = k}, 0� k �K.
We conclude by showing that, if Q is in fact periodic, L(W) is usually not
well approximated by a translated Poisson distribution.

2. TRANSLATED POISSON APPROXIMATION

Since the TP (µ,σ 2) distributions are just translates of Poisson
distributions, the Stein–Chen method can be used to establish total vari-
ation approximation. In particular, W ∼TP (µ,σ 2) if and only if

E{λ′f (W +1)− (W −γ )f (W)}=0 (2.1)

for all bounded functions f: Z→R, where λ′ =λ′(µ,σ 2) and γ =γ (µ,σ 2)

are as defined in (1.2). Define f ∗
C for C ⊂Z+ by

f ∗
C(k)=0, k �0,

λ′f ∗
C(k +1)−kf ∗

C(k)=1C(k)−Po (λ′){C}, k �0,

as in the Stein–Chen method. It then follows that

‖f ∗
C‖� (λ′)−1/2 and ‖�f ∗

C‖� (λ′)−1

(see Ref. 3, Lemma I.1.1), where �f (j) := f (j + 1) − f (j) and, for
bounded functions g: Z → R, we let ‖g‖ denote the supremum norm.
Correspondingly, for B ⊂ Z such that B∗ := B − γ ⊂ Z+, the function fB

defined by

fB(j) :=f ∗
B∗(j −γ ), j ∈Z, (2.2)

satisfies

λ′fB(w +1)− (w −γ )fB(w)

=λ′f ∗
B∗(w −γ +1)− (w −γ )f ∗

B∗(w −γ )

=1B∗(w −γ )−Po (λ′){B∗}
=1B(w)−TP (µ,σ 2){B} (2.3)

if w �γ , and

λ′fB(w +1)− (w −γ )fB(w)=0 (2.4)

if w <γ , and clearly

‖fB‖� (λ′)−1/2 and ‖�fB‖� (λ′)−1. (2.5)
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This can be exploited to prove the closeness in total variation of L(W)

to TP (µ,σ 2) for an arbitrary integer-valued random variable W . The next
two results make use of this.

Lemma 2.1. Let µ1,µ2 ∈ R and σ 2
1 , σ 2

2 ∈ R+ \ {0} be such that
γ1 =�µ1 −σ 2

1 ��γ2 =�µ2 −σ 2
2 �. Then

‖TP (µ1, σ
2
1 )−TP (µ2, σ

2
2 )‖�2{σ−1

1 |µ1 −µ2|+σ−2
1 (|σ 2

1 −σ 2
2 |+1)}.

Proof. Both distributions assign probability 1 to Z ∩ [γ1,∞
)
, so it

suffices to consider B such that B −γ1 ⊂Z+. Then, if W ∼TP (µ2, σ
2
2 ), we

have

P(W ∈B)−TP (µ1, σ
2
1 ){B}

=E{1B(W)−TP (µ1, σ
2
1 ){B}}

=E{λ1fB(W +1)− (W −γ1)fB(W)}

from (2.3), where λl := λ′(µl, σ
2
l ), l = 1,2. Applying (2.1), it thus follows

that

P(W ∈B)−TP (µ1, σ
2
1 ){B}

=E{(λ1 −λ2)fB(W +1)− (γ2 −γ1)fB(W)}
=E{(λ1 −λ2)�fB(W)− (µ2 −µ1)fB(W)}

and hence, from (2.5), that

|P(W ∈B)−TP (µ1, σ
2
1 ){B}|

� (λ1)
−1(|σ 2

1 −σ 2
2 |+ |δ1 − δ2|)+ (λ1)

−1/2|µ1 −µ2|,
proving the lemma. �

The next lemma provides a very general means to establish total var-
iation bounds; it is our principal tool in Section 4. Note that we make no
assumptions about the dependence structure among the random variables
Y1, . . . , Yn.

Lemma 2.2. Let Y1, Y2, . . . , Yn be integer valued random variables
with finite means, and define W :=∑n

i=1 Yi . Let (ai)
n
i=1 and (bi)

n
i=1 be real

numbers such that, for all bounded f: Z→R,

|E[Yif (W)]−E[Yi ]Ef (W)−aiE[�f (W)]|�bi‖�f ‖, 1� i �n. (2.6)
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Then

‖L(W)−TP (EW,σ 2)‖�2(λ′)−1

(

δ +
n∑

i=1

bi

)

+2P[W <EW −σ 2],

where σ 2 :=∑n
i=1 ai , δ = δ(EW,σ 2) and λ′ =σ 2 + δ.

Proof. Adding (2.6) over i, and then adding and subtracting
cEf (W) for c∈R to be chosen at will, we get

|E[(W − c)f (W)]−(EW−c−σ 2)Ef (W)−σ 2
E[f (W +1)]|�

(
n∑

i=1

bi

)

‖�f ‖,

where σ 2 =∑n
i=1 ai as above. Taking c=γ =�EW −σ 2�, so that the middle

term (almost) disappears, the expression can be rewritten as

|E[(W −γ )f (W)]−λ′
E[f (W +1)]|�

(

δ +
n∑

i=1

bi

)

‖�f ‖, (2.7)

where δ and λ′ are as above.
Fixing any set B ⊂ Z+ + γ , take f = fB as in (2.2). It then follows

from (2.3) that

|P(W ∈B)−TP (EW,σ 2){B}|
= |E{(1B(W)−TP (EW,σ 2){B})(I [W �γ ]+ I [W <γ ])}|
� |E{(λ′fB(W +1)− (W −γ )fB(W)) I [W �γ ]}|+P(W <γ )

=|E{λ′fB(W +1)− (W −γ )fB(W)}|+P(W <γ ), (2.8)

this last from (2.4). Hence (2.7) and (2.8) show that, for any B ⊂Z+ +γ ,

|P(W ∈B)−TP (EW,σ 2){B}|

�
(

δ +
n∑

i=1

bi

)

‖�fB‖+P(W <γ )

� (λ′)−1

(

δ +
n∑

i=1

bi

)

+P(W <γ ). (2.9)

Now the largest value D of the differences {TP (EW,σ 2){C}−P(W ∈C)},
C ⊂ Z, is attained at a set C0 ⊂ Z+ + γ , and is thus bounded as in (2.9);
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the minimum is attained at Z\C0 with the value −D. Hence

|P(W ∈C)−TP (EW,σ 2){C}|� (λ′)−1

(

δ +
n∑

i=1

bi

)

+P(W <γ )

for all C ⊂Z, and the lemma follows. �

If the random variables Yi have finite variances, both λ′ and Var W

are typically of order O(n), so that letting b̄ :=n−1∑n
i=1 bi and apply-

ing Chebyshev’s inequality to bound the final probability, we find that
then ‖L(W)−TP (EW,σ 2)‖ is of order O(n−1 + b̄). Hence we are inter-
ested in choosing a1, a2, . . . so that b1, b2, . . . are small. For independent
Y1, Y2, . . . , it is easy to convince oneself that the choice

ai =E[Yi W ]−E[Yi ]E[W ] (2.10)

is a good one, and this also emerges in our Markovian context. Notice
that (2.10) implies that σ 2 =Var W .

Establishing (2.6) in the Markovian setting, for ai chosen as in (2.10),
is the core of the paper; it is accomplished in Section 4. For the estimates
made in that analysis, it is useful to introduce a coupling of X with an
independent copy X′ = (X′

i )
∞
i=0. The relevant properties of the coupling are

given in the next section. From now on, we assume that the conditional
distributions L(Y1 |X1 =k), 0�k �K, each have finite variance.

3. THE MARKOV CHAIN COUPLING

Let X = (Xi)
∞
i=0 and X′ = (X′

i )
∞
i=0 be independent copies of an

aperiodic, irreducible and stationary Markov chain with state space
E = {0,1, . . . ,K}. To understand their crucial role, recall (2.6), and note
that

E[Yif (W)]−E[Yi ]E[f (W)] = E[Yif (W)]−E[Yif (W ′)]
= E[Yi(f (W)−f (W ′))]. (3.1)

Here W ′ =∑n
i=1 Y ′

i , and Y ′
1, . . . , Y ′

n are chosen from the conditional dis-
tributions (L(Yi |X′

i ), 1 � i � n), independently of each other and of X

and Y := (Y1, . . . , Yn). Also, recall (2.10), and note that then

ai =E[Yi(W −W ′)]. (3.2)

Of course (3.1) and (3.2) follow from the independence of (X,Y ) and
(X′, Y ′).
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We refer to Lindvall(8) (Part II.1) for proofs of the statements to be
made now; we shall be brief.

Let 0 be our reference state, and let S = (Sm)∞
m=0 and S′ = (S′

m)∞
m=0 be

the points in increasing order of the sets

{k ∈Z+ ; Xk =0} and {k ∈Z+ ; X′
k =0},

respectively. Then S and S′ are stationary renewal processes. Define
Z0,Z1, . . . , Z′

0,Z
′
1, . . . by

Sm =
m∑

j=0

Zj , S′
m =

m∑

j=0

Z′
j .

Then all the Z variables are independent, and the recurrence times
Z1,Z

′
1,Z2,Z

′
2, . . . are identically distributed, while the delays Z0,Z

′
0 have

the well-known distribution that renders S and S′ stationary.
Now define S̃ = (S̃m)∞

m=0 to be the time points at which both S and S′
have a renewal, i.e.,

{k ∈Z+ ; Xk =X′
k =0}.

Then S̃ is again a stationary renewal process, and we set S̃m =∑m
j=0 Z̃j .

Let X∗ = (X∗
i )

∞
i=0 be an irreducible, finite state space Markov chain

with reference state 0, and let the associated (S∗
m)∞

m=0, (Z
∗
j )∞

j=0 have the
obvious meanings. For j �0, write

Dj =min{S∗
m − j ; S∗

m � j}.
Due to the finiteness of the state space, it is easily proved that there exists
a ρ >1 such that, as m→∞,

max
k

P(Dj �m |X∗
j =k)=O(ρ−m), (3.3)

P(Z∗
0 �m)=O(ρ−m), P(Z∗

1 �m)=O(ρ−m), (3.4)

(cf. Ref. 8, II.4, p. 30 ff.). Of course, the maximum in (3.3) does not
depend on j . When applied to ((Xi,X

′
i ))

∞
i=0, the state space is E ×

E; notice that the aperiodicity of X is needed to make ((Xi,X
′
i ))

∞
i=0

irreducible.
For the rest of this section, drop the assumption that X and X′ are

stationary, but rather let X0 =X′
0 = 0, denoting the associated probability

by P
0. We shall have much use for an estimate of

β(n) :=
∥
∥
∥
∥
∥
P

0

[(

Xn,1+
n∑

i=1

Yi

)

∈ ·
]

−P
0

[(

Xn,

n∑

i=1

Yi

)

∈ ·
]∥
∥
∥
∥
∥

. (3.5)
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It is natural to conjecture that β(n)=O(1/
√

n), since that would be true
if the sums

∑n
i=1 Yi formed a random walk independent of X, under an

aperiodicity assumption (cf. Ref. 8, II.12 and II.14).
Let us say that the distribution of an integer-valued variable V is

strongly aperiodic if

g.c.d.{k + i; P(V = i)>0}=1 for all k. (3.6)

It is crucial to our argument to assume as smoothness condition that

the distribution of
S1∑

i=1

Yi is strongly aperiodic (3.7)

a condition that we are actually able to weaken later (see Theorem 4.4). It
then follows from (3.7) that also

S̃1∑

i=1

(Yi −Y ′
i ) is strongly aperiodic. (3.8)

For the estimate of (3.5), notice that
∥
∥
∥
∥
∥
P

0

[(

Xn,1+
n∑

i=1

Yi

)

∈ ·
]

−P
0

[(

Xn,

n∑

i=1

Yi

)

∈ ·
]∥
∥
∥
∥
∥

=
∥
∥
∥
∥
∥
P

0

[(

Xn,1+
n∑

i=1

Yi

)

∈ ·
]

−P
0

[(

X′
n,

n∑

i=1

Y ′
i

)

∈ ·
]∥
∥
∥
∥
∥

. (3.9)

Now let

τ =min





k; 1+

S̃k∑

i=1

Yi =
S̃k∑

i=1

Y ′
i





.

We note that
∑S̃k

i=1(Yi −Y ′
i ), k �0, is a random walk, with step size distri-

bution given by (3.8): it has expectation 0, finite second moment, and is
strongly aperiodic. For such a random walk, Karamata’s Tauberian theo-
rem may be used to prove that the probability that at least m steps are
needed to hit the state −1 is of magnitude O(1/

√
m)(4) (Ref 5, Theo-

rem 10.25), and hence

P
0(τ �m)=O(1/

√
m). (3.10)
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Now make a coupling as follows:

X′′
i =

{
X′

i for i < S̃τ ,

Xi for i � S̃τ

and define Y ′′
i , i�0, accordingly. Recall (3.9). Standard coupling arguments

yield
∥
∥
∥
∥
∥
P

0

[(

Xn,1+
n∑

i=1

Yi

)

∈ ·
]

−P
0

[(

Xn,

n∑

i=1

Yi

)

∈ ·
]∥
∥
∥
∥
∥

=
∥
∥
∥
∥
∥
P

0

[(

Xn,1+
n∑

i=1

Yi

)

∈ ·
]

−P
0

[(

X′′
n,

n∑

i=1

Y ′′
i

)

∈ ·
]∥
∥
∥
∥
∥

�2P
0(S̃τ >n). (3.11)

Let µ̃=E[S̃1] and α =1/(2µ̃). We get

P
0(S̃τ >n) = P

0(S̃τ >n, τ �αn)+P
0(S̃τ >n, τ <αn)

� P
0(τ �αn)+P

0(S̃�αn�+1 >n).

But the latter probability is of order O(1/n), due to Chebyshev’s inequal-
ity, and the former of order O(1/

√
n), by (3.10). Hence (3.5), (3.9),

and (3.11) imply that

β(n)=O(1/
√

n) as n→∞. (3.12)

4. MAIN THEOREM

We now turn to the approximation of L(W), with W as defined in the
Markovian setting introduced in Section 1; the notation is as in the previ-
ous section, and the assumption that X and X′ are stationary is back in
force.

In order to state the main lemma, we need some further terminology.
For each 1� i �n, we define

T +
i :=min

{
n,min{S̃k; S̃k � i}}

and

T −
i :=

{
max{S̃k; S̃k � i}, if S̃0 � i,

1, if S̃0 >i.
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We then set

Ai =
T +

i∑

j=T −
i

Yj , W−
i =

T −
i −1∑

j=1

Yi, and W+
i =

n∑

j=T +
i +1

Yj (4.1)

with the understanding that W−
i = 0 if T −

i = 1 and W+
i = 0 if T +

i = n.
We also define A′

i , W ′
i
− and W ′

i
+ by replacing Yj by Y ′

j . For use in the
argument to come, we introduce independent copies X(l) of the X-chain,
0 � l � K, with L(X(l)) = L(X |X0 = l). By sampling the corresponding
Y -variables conditional on the realizations X(l), we then construct the
associated partial sum processes U(l) by setting U

(l)
m :=∑m

s=1 Y
(l)
s . Similarly,

we define pairs of processes (X̄(l), Ū (l)) in the same way, but based on the
time-reversed chain X̄ starting with X̄0 = l (Ref. 9, Theorem 1.9.1). For any
m�1 and 0� l �K, we then write

hr(l,m) :=P(U(l)
m � r +1), r �0, hr(l,m) :=−P(U(l)

m � r), r <0,

and specify h̄r (l,m) analogously, using the time-reversed processes Ū (l); we
then set H(m) :=max

{∑
r∈Z

‖hr(·,m)‖,∑r∈Z
‖h̄r (·,m)‖}.

Lemma 4.1. With the ai chosen as in (2.10), the inequality (2.6) is
satisfied with

bi := ϕ(n)
{

1
2 E[|Yi(Ai −A′

i )|(|Ai |+ |A′
i |)]

+E{|Yi(Ai −A′
i )|(H(T +

i − i)+H(i −T −
i ))}

+E{|Yi(Ai −A′
i )|}{E|Ai |+E(H(T +

i − i)+H(i −T −
i ))}} ,

where ϕ(n)=O(n−1/2) under assumption (3.7).

Proof. The analysis of (2.6) in our Markovian setting is rather tech-
nical, and we divide it into three steps. For the first step, we recall (3.1),
giving

E[Yif (W)]−E[Yi ]E[f (W)]

=E[Yi(f (W)−f (W ′))]
=E[Yi(f (W−

i +Ai +W+
i )−f (W ′−

i +A′
i +W ′+

i ))]

=E[Yi(f (W−
i +Ai +W+

i )−f (W−
i +A′

i +W+
i ))], (4.2)

a careful proof of the last equality making use of a conditioning on

σ {T −
i , T +

i , and Xj ,X
′
j , Yj , Y

′
j for T −

i � j �T +
i }
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and of the symmetry of X and X′. Let

Fi =σ {T −
i , T +

i , and Xj ,X
′
j , Yj , Y

′
j for 0� j �T +

i }.
Then the last expectation in (4.2) is equal to

E{E[Yi(f (W−
i +Ai +W+

i )−f (W−
i +A′

i +W+
i ))|Fi ]}. (4.3)

Now, for r,m∈Z, define

V (r,m) := I [0� r �m−1]− I [−1� r �m]

and observe that

f (W−
i +Ai +W+

i )−f (W−
i +A′

i +W+
i )

=
∑

r∈Z

�f (W−
i +A′

i +W+
i + r)V (r,Ai −A′

i )

= (Ai −A′
i )�f (W−

i +W+
i )

+
∑

r∈Z

[�f (W−
i +A′

i +W+
i + r)−�f (W−

i +W+
i )]V (r,Ai −A′

i )

= (Ai −A′
i )�f (W−

i +W+
i )

+
∑

r∈Z

V (r,Ai −A′
i )
∑

s∈Z

�2f (W−
i +W+

i + s)V (s,A′
i + r). (4.4)

So, from (4.2) to (4.4), in estimating E[Yif (W)] − E[Yi ]E[f (W)], we have
isolated the term

E[Yi(Ai −A′
i )�f (W−

i +W+
i )], (4.5)

together with an error involving the second differences in (4.4). The
remainder of the first step consists of bounding the magnitude of this
error.

To do so, assume first that 1 � i � n/2. Then the second differences
in (4.4) are all of the form �2f (· + W+

i ), where the “·”-part is measurable
with respect to Fi , and W+

i is the contribution from the Markov chain
starting from 0 at time T +

i . Write

�2f (·+W+
i )=�2f (·+W+

i )I (T +
i − i >n/4)

+�2f (·+W+
i )I (T +

i − i �n/4).
(4.6)

Due to (3.3) and (3.12), and observing also that ‖�2f ‖ � 2‖�f ‖, we
obtain

|E[�2f (·+W+
i ) |Fi ]| � 2‖�f ‖(Cρ−n/4 +β(n/4)) =: ϕ(n)‖�f ‖ (4.7)
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for some constant C > 0, and thus ϕ(n) is of magnitude O
(
1/

√
n
)

under
assumption (3.7), in view of (3.12).

Now observe that all the variables in (4.4) except W+
i are Fi-measur-

able. What remains in order to use (4.3) is a careful count of the second
difference terms in (4.4), of which there are at most 1

2 |Ai −A′
i |(|Ai |+|A′

i |).
Using (4.2)–(4.5) and (4.7), we have found that

|E[Yi(f (W)−f (W ′))]−E[Yi(Ai −A′
i )�f (W−

i +W+
i )]|

� 1
2ϕ(n)‖�f ‖E[|Yi(Ai −A′

i )|(|Ai |+ |A′
i |)], (4.8)

where ϕ(n)=O(1/
√

n). This is responsible for the first term in the expres-
sion for bi in the statement of the lemma, and completes the proof of the
first step.

The next step is to work on E[Yi(Ai −A′
i )�f (W−

i +W+
i )]. Although

the random variables Yi(Ai − A′
i ), W−

i , and W+
i are dependent, they are

conditionally independent given T −
i and T +

i , and then L(W+
i |T +

i = s) =
L(U

(0)
n−s) for i � s � n, and L(W−

i |T −
i = s) = L(Ū

(0)

s−1) for 1 � s � i. This
suggests writing

E[Yi(Ai −A′
i )�f (W−

i +W+
i )]

=E[Yi(Ai −A′
i )�f (Ū

(0)

i−1 +U
(0)
n−i )]+ηi

=E[Yi(Ai −A′
i )]E{�f (Ū

(0)

i−1 +U
(0)
n−i )}+ηi (4.9)

with ηi to be bounded.
We start by writing

E[Yi(Ai −A′
i )�f (W−

i +W+
i )]=E{E[Yi(Ai −A′

i )�f (W−
i +W+

i ) |Gi ]}

with Gi :=σ(W−
i , Yi(Ai −A′

i ), T
+
i ). Now Yi(Ai −A′

i ) is Gi-measurable, and

E{�f (W−
i +U

(0)
n−i )−�f (W−

i +W+
i ) |Gi}

=E

{
∑

r∈Z

�2f (W−
i +U

(0)

n−T +
i

+ r)V (r,U
(0)
n−i −U

(0)

n−T +
i

)

∣
∣
∣Gi

}

=
∑

r∈Z

E

{

�2f (W−
i +U

(0)

n−T +
i

+ r) hr(X
(0)

n−T +
i

, T +
i − i)

∣
∣
∣Gi

}

,
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where the last line follows because, conditional on X
(0)

n−T +
i

, U
(0)
n−i −U

(0)

n−T +
i

is independent of W−
i and U

(0)

n−T +
i

. This in turn implies that

|E{�f (W+
i +U

(0)
n−i )−�f (W−

i +W+
i ) |Gi}|

�‖�f ‖
∑

r∈Z
‖hr(·, T +

i − i)‖

× E

{

‖L((X
(0)

n−T +
i

,U
(0)

n−T +
i

+1))−L((X
(0)

n−T +
i

,U
(0)

n−T +
i

))‖ |Gi

}

�‖�f ‖H(T +
i − i)ϕ(n),

where the last line follows exactly as for (4.7). Thus it follows that

|E{Yi(Ai −A′
i )�f (W−

i +W+
i )}−E{Yi(Ai −A′

i )�f (W−
i +U

(0)
n−i )}|

�‖�f ‖ϕ(n)E{Yi |Ai −A′
i |H(T +

i − i)}=:ηi1. (4.10)

An analogous argument, replacing W−
i by Ū

(0)

i−1, uses the expression

E{�f (Ū
(0)

i−1 +U
(0)
n−i )−�f (W−

i +U
(0)
n−i ) |G′

i}
=
∑

r∈Z

E

{

�2f (Ū
(0)

T −
i −1

+U
(0)
n−i + r) h̄r (X̄

(0)

T −
i −1

, i −T −
i )

∣
∣
∣G′

i

}

,

where G′
i :=σ(Yi(Ai −A′

i ), T
−
i ), which we bound using ϕ(n) as a bound for

‖L(U
(0)
n−i +1)−L(U

(0)
n−i )‖. This yields

|E{Yi(Ai −A′
i )�f (W−

i +U
(0)
n−i )}−E{Yi(Ai −A′

i )�f (Ū
(0)

i−1 +U
(0)
n−i )}|

�‖�f ‖ϕ(n)E{Yi |Ai −A′
i |H(i −T −

i )}=:ηi2, (4.11)

so that (4.9) holds with ηi =ηi1 +ηi2, accounting for the second term in bi ,
and completing the second step.

It now remains only to bound the difference between E{�f (Ū
(0)

i−1 +U
(0)
n−i )}

and E{�f (W)}. This is accomplished much as before, by writing W =
W−

i +Ai +W+
i . This gives

|E�f (W)−E�f (W−
i +W+

i )|

=
∣
∣
∣
∣
∣
E

{
∑

r∈Z

E[�2f (W−
i +W+

i + r)V (r,Ai) |T −
i , T +

i ,Ai ]

}∣
∣
∣
∣
∣

�‖�f ‖ϕ(n)E|Ai |, (4.12)

where the last line again follows as for (4.7), and then

|E�f (W−
i +W+

i )−E�f (Ū
(0)

i−1 +U
(0)
n−i )|

�‖�f ‖ϕ(n)E{H(i −T −
i )+H(T +

i − i)}. (4.13)
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Multiplying the bounds in (4.12) and (4.13) by E{Yi |Ai − A′
i |} gives the

remaining elements of bi , and the lemma is proved for 1� i �n/2 by com-
bining (4.8)–(4.13).

For n/2 <i �n, recall that X and X′ are stationary. It is well known
that then (Xn−j )

n
j=0 and (X′

n−j )
n
j=0 are also stationary; these reversed pro-

cesses inherit all the relevant properties of X and X′. In carrying out the
analysis above for the reversed processes, we meet no obstacle, and hence
the formula for the bi holds also for i > n/2, with ϕ(n) defined in (4.7)
now replaced by its reversed process counterpart. This proves the lemma.

�
The bound in Lemma 4.1 can be combined with Lemma 2.2 to prove

the total variation approximation that we are aiming for, under appropri-
ate conditions. The expression for bi simplifies substantially, if we assume
that

max{P(Y1 � r |X1 = l),P(Y1 �−r |X1 = l)} ≤ P(Z � r) (4.14)

for all r � 0 and 0 � l � K, for a nonnegative random variable Z with
EZ3 <∞. If this is the case, then

H(m)�2mEZ, E(|Ai | |X,X′)�2(T +
i −T −

i +1)EZ,

E(A2
i |X,X′) � 2(T +

i −T −
i +1)2

EZ2,

E(|YiAi | |X,X′) � 2(T +
i −T −

i +1)EZ2

and

E(|Yi |A2
i |X,X′) � 2(T +

i −T −
i +1)2

EZ3.

From these bounds, together with the fact that Ai and A′
i are independent

conditional on X,X′, it follows that

bi � ϕ(n){4EZ3
Eτ 2

i +8EZEZ2
Eτ 2

i +4EZ2
Eτi(2EZEτi +2EZEτi)}

� 28ϕ(n)EZ3
Eτ 2

i , (4.15)

where τi := T +
i − T −

i + 1. Note that, since X and X′ are in equilibrium,
both chains can be taken to run for all positive and negative times, so
that then Eτ 2

i �Eτ 2, where τ is the length of that interval between succes-
sive times at which both X and X′ are in the state 0 which contains the
time point 0. Eτ 2

i is in general smaller than Eτ 2, because T −
i and T +

i are
restricted to lie between 1 and n. Then the bound (4.15), combined with
Lemma 2.2, leads to the following theorem.
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Theorem 4.2. Under assumptions (3.7) and (4.14), and with station-
ary X, it follows that

‖L(W)−TP (EW,Var W)‖�4(1+14nϕ(n)Eτ 2
EZ3)/Var W.

Note that

Var W =
n∑

i=1

E[Var (Yi |Xi)]+Var

(
n∑

i=1

E(Yi |Xi)

)

,

so that the bound in Theorem 4.2 is of order O
(
n−1 +ϕ(n)

)= O(n−1/2)

under these assumptions, unless L(Y1) is degenerate, in which case W is
a.s. constant. Note also that replacing each Yi by Yi − c, for any c ∈ Z,
results only in a translation, and does not change ‖L(W)

−TP (EW,Var W)‖, and this can be exploited if necessary when choosing
the random variable Z in (4.14).

The assumption that X be stationary is not critical.

Theorem 4.3. Suppose that the assumptions of Theorem 4.2 hold,
except that the initial distribution L(X0) is not the stationary distribution.
Then it is still the case that ‖L(W)−TP (EW,Var W)‖=O(n−1/2).

Proof. Let X′ be in equilibrium and independent of X, and use it
as in Section 3 to construct an equilibrium process X′′ which is identical
with X after the time T +

1 at which X and X′ first coincide in the state 0.
Then Theorem 4.2 can be applied to W ′′, constructed from X′′, and also

W =A1 +W+
1 and W ′′ =A′′

1 +W+
1

with A1 and A′′
1 defined as before. Let g: Z→R be any bounded function,

and observe that

|Eg(W)−Eg(W ′′)|=|E{g(A1 +W+
1 )−g(A′′

1 +W+
1 )}|

�

∣
∣
∣
∣
∣
∣
E





E



I [A1 >A′′
1]

A1−A′′
1∑

j=1

�g(W+
1 +A′′

1 +j −1)|T +
1 ,A1,A

′′
1





−E



I [A1<A′′
1]

A′′
1−A1∑

j=1

�g(W+
1 +A1+j−1)|T +

1 ,A1,A
′′
1










∣
∣
∣
∣
∣
∣
. (4.16)
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Now, arguing as for (4.7) in the second inequality, we have

|E{�g(W+
1 +A′′

1 + j) |T +
1 ,A1,A

′′
1}|�‖g‖‖L(W+

1 +1)−L(W+
1 )‖�‖g‖ϕ(n)

with ϕ(n)=O(1/
√

n), implying from (4.16) that

|Eg(W)−Eg(W ′′)|�E|A1 −A′′
1|ϕ(n)‖g‖�2ET +

1 EZϕ(n)‖g‖. (4.17)

Although the distribution of T +
1 is not the same as if both X and X′ were

at equilibrium, it has moments which are uniformly bounded for all ini-
tial distributions ν, in view of (3.3) and (3.4), and hence, from (4.17) and
because ϕ(n)=O(1/

√
n), it follows that ‖L(W)−L(W ′′)‖=O(n−1/2).

On the other hand,

|EW −EW ′′| ≤ E|A1 −A′′
1| ≤ 2ET +

1 EZ

and also

|Var W −Var W ′′| ≤ Var (W −W ′′)+2
√

Var W Var (W −W ′′)

with

Var (W −W ′′) ≤ E{|A1 −A′′
1|2} ≤ 4E{(T +

1 )2}E{Z2} =: 4D2,

giving

|Var W −Var W ′′| ≤ 8D max{
√

Var W,D}.

Hence, from Lemma 2.1, it follows that

‖TP (EW,Var W)−TP (EW ′′,Var W ′′)‖=O(n−1/2)

also, completing the proof. �
Assumption (3.7), that the distribution Q := L

(∑S1
i=1 Yi

∣
∣
∣X0 =0

)
be

strongly aperiodic, can actually be relaxed; it is enough to assume that Q

is aperiodic.

Theorem 4.4. Suppose that the assumptions of Theorem 4.2 hold,
except that assumption (3.7) is weakened to assuming that Q is aperiodic.
Then it is still the case that ‖L(W)−TP (EW,Var W)‖=O(n−1/2).
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Proof. Define a new Markov chain X̂ by splitting the state 0 in X

into two states, 0 and −1. For each j , set

X̂j =
{

Xj , if Xj �1.

−Rj , if Xj =0,

where (Rj , j � 0) are independent Bernoulli Be (1/2) random variables;
then set Ŷj = Yj , j � 0, and define Ŵ =∑n

j=1 Ŷj . Clearly, W = Ŵ a.s.,
so that we can use the construction based on the chain X̂ to investi-
gate L(W). However, choosing 0 as reference state also for X̂, we have

Q̂ :=L



Ŝ1∑

j=1

Ŷj

∣
∣
∣ X̂0 =0



=L
(

M∑

m=1

Vm

)

,

where V1, V2, . . . are independent and identically distributed with
distribution Q, and M is independent of the Vj ’s, and has the geometric
distribution Ge (1/2). Since Q is aperiodic, it follows that Q̂ assigns posi-
tive probability to all large enough integer values, and is thus strongly ape-
riodic. Hence Theorems 4.2 and 4.3 can be applied to W , because of its
construction as Ŵ by way of X̂ and Ŷ . �

Čekanavičius and Mikalauskas(6) have also studied total variation
approximation in this context, in the degenerate case in which Y1 = h(k)

a.s. on {X1 = k}, 0 � k � K. They use characteristic function arguments,
based on earlier work of Ref. 11, and their approximations are in terms of
signed measures, rather than translated Poisson distributions. In their The-
orem 2.2, they give one approximation with error of order O(n−1/2), and
another, more complicated approximation with error of order o(n−1/2).
However, their formulation is probabilistically opaque, and their proofs
give no indication as to the magnitude of the implied constants in the
error bounds, or as to their dependence on the parameters of the prob-
lem. In fact, their ‘smoothness’ condition (2.8) requires that the Markov
chain X has a certain structure, irrespective of the values of h, which
is unnatural. For example, the X-chain with K = 2 which has transition
matrix






9
10

1
10 0

0 0 1

1 0 0




 (4.18)

fails to satisfy their condition, although, for many score functions h, (1.3)
is still true; for instance, our Theorem 4.4 applies to prove (1.3) if h(0)=3
and h(1) = h(2) = 1. However, Q is not aperiodic when h(0) = 3, h(1)=1
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and h(2) = 2, and, without this smoothness condition being satisfied,
Theorem 4.4 cannot be applied. This is in fact just as well, since the
equilibrium distribution of W then assigns probability much greater than
2/3 to the set 3Z∪{3Z+1}, whereas the probability assigned to this set by
the translated Poisson distribution with the corresponding mean and var-
iance approaches 2/3 as n→∞.

In fact, if Q is periodic, it is rather the exception than the rule that
L(W) and TP (EW,Var W) should be close in total variation. To see this,
let Q have period d. Fix any k∈E, and take any i ∈Z+ and any realization
of the process such that X0(ω)=0 and Xi(ω)=k; let Rki(ω) :=∑i

l=1 Yl(ω)

modulo d. Then it is immediate that Rki(ω) = rk is a constant depend-
ing only on k, since, continuing two such realizations along the same
X-path and with the same Y values until the process next hits 0, the two
Y -sums then have to have the same remainder 0 modulo d. The same con-
siderations show that L(Yi |Xi = k) is concentrated on a set dZ + ρk for
some ρk ∈{0,1, . . . , d −1}, and that the transition matrix P = (pkj ) of the
X-chain satisfies the condition

rk +ρj ≡ rj mod d, whenever pkj >0. (4.19)

Moreover, for the same r- and ρ-values, any choice of P consistent
with (4.19) yields a distribution Q with period d.

Now the distribution TP (µ,σ ) assigns probability approaching 1/d

as σ →∞ to any set of the form dZ+ r, r ∈{0,1, . . . , d −1}. On the other
hand, using P

λ to denote probabilities computed with λ as the distribution
of X0, we have

P
λ[W ≡ r mod d] =

∑

i∈E

λiP[W ≡ r mod d |X0 = i]

=
∑

i∈E

λiP[Xn ∈Er−ri |X0 = i],

where Er :={k∈E :rk =r} and differences in the indices are evaluated mod-
ulo d. This, as n→∞, approaches the value

∑

i∈E

λiπ(Er−ri )=
d−1∑

s=0

λ(Es)π(Er−s),

where π is the stationary distribution of the X-chain. Hence Lλ(W)

becomes far from any translated Poisson distribution as n→∞ unless

d−1∑

s=0

λ(Es)π(Er−s)=1/d for all 0� r �d −1. (4.20)



628 Barbour and Lindvall

It is immediate that (4.20) cannot hold for all choices of λ unless

π(Er)=1/d for each r ∈{0,1, . . . , d −1}. (4.21)

What is more, it cannot hold in the stationary case, when λ = π ,
unless (4.21) holds. This follows from multiplying both sides of (4.20)
(with λ = π ) by t rj and adding over r, where tj , 0 � j � d − 1, are the

complex dth roots of unity, with t0 := 1. Writing π(t) :=∑d−1
s=0 π(Es)t

s ,
this implies that {π(tj )}2 = 0 for 1 � j �d − 1, and hence that the polyno-
mial π(t) is proportional to the polynomial

∑d−1
s=0 t s , which implies (4.21).

Indeed, the (circulant) matrix � with elements �rs = π(Er−s) has d dis-
tinct eigenvectors corresponding to the eigenvalues π(tj ), so that if π(tj ) �=
0 for all j , then (4.20) has λ(Es)=1/d for all s as its only solution.

But condition (4.19) depends only on the communication structure
of P , and not on the exact values of its positive elements, whereas
for (4.21) to be true needs careful choice of the values of these elements.
Hence, for most choices of P leading to a periodic Q, meaning those in
which π(Er)=1/d for all r is not true, Lλ(W) and TP (EλW,Var λW) are
not asymptotically close for λ = π , or if λ is concentrated on a single
point, or indeed, if π(tj ) �=0 for all j , for any λ not satisfying λ(Es)=1/d

for all s. In consequence, for most choices of P leading to a periodic Q,
the conclusions of Theorems 4.2 and 4.3 are very far from true.

In example (4.18), Q has period 3 when h(0)=3, h(1)=1 and h(2)=2.
Clearly, we have ρ0 = 0, ρ1 = 1 and ρ2 = 2; we then also have r0 = r2 = 0
and r1 = 1, so that E0 = {0,2}, E1 = {1} and E2 = ∅. It is easy to check
that (4.19) is satisfied, and that it would still be satisfied if p21 were also
positive. The matrices P consistent with condition (4.19) for these values
of the ρk and rk thus take the form




1−α α 0

0 0 1
β 1−β 0





for 0�α,β �1, so that π = (β,α,α)/{β +2α}; in (4.18), α=1/10 and β =1.
However, since π(E2) is necessarily zero, condition (4.21) is never satisfied.
Furthermore, λ(E2) must also be zero, and π(tj )=0 can only occur for tj
a complex cube root of unity if β =α. Thus, in this example, the conclu-
sions of Theorems 4.2 and 4.3 are never true; furthermore, if α �=β, trans-
lated Poisson approximation cannot be good for any initial distribution λ.
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As a second example, take K =3 and P of the form





1−α α 0 0
0 0 1 0
0 0 1−β β

1 0 0 0






for 0 � α,β � 1, so that π = (β,αβ,α,αβ)/{α + β + 2αβ}. This matrix sat-
isfies (4.19) for Y -distributions satisfying ρ0 =ρ2 =0 and ρ1 =ρ3 =1 with
d=2, and then r0 =r3 =0 and r1 =r2 =1, so that E0 ={0,3} and E1 ={1,2}.
Hence π(E0)=π(E1)= 1/2 only if α =β, and, if α �=β, π(−1) �= 0. Thus,
if α �=β, the conclusions of Theorems 4.2 and 4.3 are far from true, and
indeed translated Poisson approximation cannot possibly be good for any
initial distribution λ which does not give equal weight to E0 and E1.

The assumption that X has finite state space E greatly simplifies our
arguments, because uniform bounds on hitting and coupling times, such
as those given in (3.3) and (3.4), are immediate. Results similar to ours
can be expected to hold also for countably infinite E, provided that the
chain X is such that uniform bounds analogous to (3.3) and (3.4) are
valid, and if the distributions of the Yi are such that, for instance, (4.14)
also holds. However, a full analysis of the case in which E is countably
infinite would be a substantial undertaking.
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