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Abstract Specific immunotherapy (SIT) represents the only curative treatment of allergy
and is, therefore, of particular interest for immunological and pharmacological research.
The current understanding of immunological mechanisms underlying SIT focuses on regu-
latory T cells (T regs), which balance Th1 and Th2 effector functions. This ensures that
allergens are recognized, but tolerated by the immune system. There is clear evidence that
SIT restores the disturbed balance of T regs and effector cells in allergic patients. Current
efforts are focused to improve SIT regimens to make them more applicable in atopy and
asthma. The current review provides an overview on the mechanisms of SIT and possible
adjuvant treatment strategies on the background of the T reg concept.

Keywords Specific immunotherapy · Regulatory T cells · Allergy

Introduction

Allergies are mainly characterized by IgE-mediated immediate hypersensitivity against
environmental antigens (allergens), which are normally tolerated by healthy individuals
and which are non-pathogenic. The fact that the disease-relevant allergens are often known
allows the specific peripheral tolerance to be restored by repeated injections of high doses
of allergen over a long period of time. This specific immunotherapy (SIT) treatment, also
termed allergen vaccination, is most successfully applied to allergies against insect venom
[1] or to rhinitis [2]. It currently represents the only specific curative treatment of allergy.
Ongoing studies are focusing on the molecular mechanisms, but also on improved treat-
ment strategies, including the treatment of asthma and juvenile respiratory disease (Ta-
ble 1). Studies in recent years have shown a significant treatment success and recommend
SIT for treatment of allergies (Table 1). SIT of allergic rhinitis also reduces the risk of de-
veloping allergic asthma [3], and was shown to improve clinical symptoms of established
disease [4, 5, 6]. Intensive research in the field of SIT has revealed molecular mechanisms
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that control peripheral tolerance to allergen and which create the basis for the adaptation
of SIT to more complex, atopic diseases.

Cellular requirements for tolerance induction to allergen by SIT

A key feature in the pathogenesis of allergy lies in the generation of allergen-specific IgE
instead of IgG and IgA antibodies, which discriminates allergic from non-allergic inflam-
mations. The immediate hypersensitivity reaction is initiated by an allergenic compound,
generally soluble proteins or glycoproteins, penetrating through epithelial surfaces and
then binding to specific IgE antibodies that were generated before by a first allergen con-
tact. To generate allergen-specific IgE, it is necessary that naÔve B cells recognize the al-
lergen and receive help from IL-4-producing T cells, which is an essential cytokine for
switching from IgM to IgE. The IL-4 production by T cells is also dependent on the pres-
ence of antigen [7]. The crucial role of the T cell is further reflected by the fact that the
degree of T cell activation strictly correlates with the number of low-affinity IgE receptor
(CD23) -bearing B cells [8], eosinophil cationic protein (ECP) and other serum factors of
allergic inflammation [9]. This clearly demonstrates that allergy is a T cell-dependent dis-
ease [9, 10]. Thus, it is not surprising that peptides [11, 12] or engineered allergen vac-
cines [13, 14] lacking B cell epitopes are as efficient in SIT as native allergens. Peptides
or engineered allergens appear in fact to be of advantage for the reduction of side effects
of SIT, which appear when the allergen cross-links specific IgE on mast cells or basophils,
bound to high-affinity FceRI, leading to activation and degranulation of the cells, and
causing the allergic symptoms or even anaphylactic shock.

The SIT shows a reduction in allergen responsiveness in terms of skin prick test and
immunological differences become apparent starting on day 7 [15, 16]. It was a key find-
ing that SIT against bee venom allergies induces T cell unresponsiveness (anergy) in vitro,
28 days following initiation of SIT [16, 17]. These experiments support the concept that
SIT restores the natural peripheral tolerance to allergens by re-introducing T cell tolerance.
This concept of tolerance re-induction is supported by the molecular analysis of SIT and
natural tolerance of allergens, as investigated in bee venom-induced immune responses of
healthy and bee venom-allergic patients [15].

Molecular mechanisms of SIT

The ex vivo culture of PBMC isolated during the course of SIT showed increased IL-10
production by T cells along with the induction of T cell anergy. Later on, monocytes and
B cells also produce IL-10 [15]. Similar observations were made with SIT directed against
house dust mite or birch pollen, with the interesting difference that TGF-b was also in-
creasingly produced by T cells [18, 19], suggesting that allergen entering tissues via mu-
cosal surfaces triggers different, TGF-b-dependent tolerization pathways. The T cell aner-
gy could be prevented by the addition of IL-10-neutralizing antibodies or soluble TGF-b
receptors to the culture. The cytokines IL-10 and TGF-b are both known to suppress T cell
activity [20, 21]. Thus, SIT is accompanied by increasing suppression of the allergen-spe-
cific response. The changes on the T cell levels are followed by changes of the B cell phe-
notype. The cytokines IL-10 and TGF-b also affect B cell activity towards IgG4 and IgA
production. Both are suppressive for IgE. Accordingly, the allergen-specific isotype pro-
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file shifts during SIT towards normal IgG4/IgA levels, and the ratio of specific IgE to
IgG4 or IgA changes about 100–1,000-fold [18].

It could be shown that suppression not only plays a role in SIT but also maintains aller-
gen tolerance in healthy individuals, who are sensitized to allergen, but do not show aller-
gic symptoms. It was demonstrated that neutralization of IL-10 or TGF-b reveals allergen
responsiveness, particularly to allergens to which everyone is exposed, such as food aller-
gens or house dust mites [18]. The T cells which produce these suppressive cytokines are
low in IL-4 and IFN-g, and thus are neither typical Th1 nor Th2 cells. They are called reg-
ulatory T cells (T reg) [22, 23]. T regs have been demonstrated to suppress immune reac-
tion in several experimental systems in vitro and in vivo [24, 25, 26, 27, 28, 29, 30, 31].
Recent studies defined a CD25+ subset of T cells, which has a suppressive capacity in vitro
and in vivo [32, 33, 34, 35, 36]. However, it is currently not fully established whether
CD25+ T cells are identical to IL-10- and/or TGF-b-producing T regs [35], since the sup-
pression was in some cases contact dependent [34]. However, suppressive cytokines may
be secreted into an immunological synapse [37] or may act in a surface-bound form on the
target cell [38]. This CD25+ T reg subset also plays an important role in allergen-specific
immunotherapy (SIT), since SIT-induced unresponsiveness could be prevented by deple-
tion of CD25+ T cells in vitro [18], indicating that allergen reactivity is controlled by a
CD25+ and IL-10/TGF-b-producing T reg population. The T reg phenotype controlling al-
lergen-specific effector cells (Table 2), particularly of mucosal origin, may have a differ-
ent phenotype from those T regs controlling autoantigens or tumor antigens. It should be
considered that CD25 is not a satisfactory marker for T regs, since recently activated T
cells also express CD25. Other activation markers, such as the cutaneous lymphocyte-acti-
vation antigen (CLA), are known to be on one hand an activation marker for recently acti-
vated T cells, but on the other hand are also indicative for terminal differentiated cells,
which have already synthesized cytokines and secrete them without de novo synthesis fol-
lowing TCR engagement [39]. In analogy, it might be that T regs represent terminal differ-
entiated cells derived from Th1 or Th2 memory cells. This hypothesis is in fact supported
by the observation that T regs can be generated by CD46 stimulation of both memory and
naÔve T cells [40]. The combination of CD25 with different activation markers, such as
HLA II or CD69, may improve the identification of T regs [41]. An interesting develop-
ment is the discovery of the FOXP3 transcription factor, which appears to be essential for
the generation of CD25+ T regs [42, 43, 44]. In contrast to the CD25 gene, FOXP3 is not

Table 2 Phenotype of T regs controlling allergen-specific T cells

Phenotype Function Reference

Antigen specific Allergen-driven suppression Akdis M, et al (submitted)a

Non-proliferating Terminally differentiated? Akdis M, et al (submitted)
CD4 T cell subset [15], Akdis M, et al (submitted)
IL-10 Suppression of T cells and APCs [15], Akdis M, et al (submitted)
IL-10R Differentiation into T reg? Akdis M, et al (submitted)
TGF-b Suppression of T cells and APCs [19]
CD25 IL-2 receptor, survival and gowth of the T cells [18]
CTLA-4 Homolog of CD28, inhibits T cell activity Akdis M, et al (submitted)
PD-1 Receptor of the PDL1, inhibits T cell activity Akdis M, et al (submitted)
CD105 TGF-b co-receptor, surface binding of TGF-b Schmidt-Weber CB,et al (submitted)b

a T regulatory 1 cells in allergic and healthy immune response
b Endoglin expression acts as a TGF-b mediator of CD25+ regulatory T cells
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up-regulated following T cell activation; however, its nuclear/intracellular localization
does not allow the use of this gene for diagnostic purposes. It is particularly interesting
that FOXP3 is operatively involved in silencing the IL-2 gene expression, as demonstrated
by FOXP3 overexpression in the Jurkat cell line [44]. Current studies are now focused on
the effect of FOXP3 on T reg genes such as IL-10 and TGF-b.

Additional genes of diagnostic and pharmacological interest might become apparent
when the molecular mechanisms underlying T cell suppression are fully understood. Initial
studies on these mechanisms revealed that T cell suppression is linked to costimulation of
T cells [45, 46, 47, 48]. Biochemical analysis of costimulation revealed that the phosphati-
dyl inositol 3-kinase (PI3K) plays a key role in this process [49, 50]. IL-10 suppresses the
association of the PI3K with CD28 [51] as well as other costimulatory molecules, and
thereby directly prevents costimulatory signals. The PI3K phosphorylates phosphatidyl
inositol 2-phosphates (PIP2) into phosphatidyl 3-phosphates (PIP3). Interestingly, the im-
mune inhibitory receptor of B cells or NK cells also addresses PIP3 lipids by activating
PIP-phosphatases (e.g., SHIP; [52]), suggesting that prevention of PIP3 increases repre-
sents a general principle of immune suppression. The PIP3 lipids recruit molecules to the
membrane, which contain pleckstrin or FYVE domains. One of the best known down-
stream targets of PI3K is the PKB or Akt kinase, which regulates diverse cellular process-
es such as proliferation and apoptosis [53].

The PI3K is, however, not only stimulated by costimulatory molecules. It is also a tar-
get for growth factor-mediated signals, including IL-2 and IL-4. Therefore, PIP3 levels
can reflect multiple signals from the current environment of T cells, which will influence
suppressive mechanisms. The PKB/Akt kinase collectively converts these signals in prolif-
eration and/or survival signals. Recent investigations in our laboratory showed that IL-10
and TGF-b induce a negative feedback on PIP3 mobilization by inducing the phosphati-
dylinositol phosphatase PTEN (C.B. Schmidt-Weber, unpublished results), which is other-
wise induced by CD28 engagement as a natural recovery mechanism of PIP3-mediated ac-
tivation [54]. In contrast to IL-10, TGF-b mobilizes the SMAD2/3-4 complex, which in-
teracts with other transcription factors to bind DNA elements that will down-regulate ex-
pression of the particular gene [55]. Alternative means of TGF-b suppression would in-
clude the transforming growth factor-activated kinase-1 (TAK1) or the activation of phos-
phatases [56], which could immediately block or reduce signal transduction of TCR-medi-
ated signals [57]. The suppression of CD25+ T cells is contact mediated, but the molecular
details are currently unknown [58]. Further research will be necessary to define tissue con-
ditions where suppression operates to control peripheral tolerance and affect SIT.

The T reg concept

It was originally believed that Th2 cells can be inhibited, if T cell differentiation is skewed
towards Th1 cells, lacking IL-4 or IL-13 for IgE isotype switching. The current under-
standing of T cell regulation favors a relationship of T cell populations where Th0, Th1 or
Th2 cells are in a balance with a regulatory T cell population (T effector/T reg). The aller-
gy relevant Th2 cells, producing typically IL-4, IL-5 and IL-13, are generated by differen-
tiation of naÔve T cells recognizing processed and MHC class II-presented allergen by den-
dritic cells in the presence of IL-4. This cytokine is also needed for differentiation of the
Th2 pathway, whereas IL-12 is required for Th1 differentiation [59]. The two pathways

Springer Semin Immun (2004) 25:377–390 381



inhibit one other, which leads to the hypothesis that allergy emerges in consequence of re-
duced Th1 cell frequency (two population model). Since Th1 cells are generated by infec-
tions and other inflammatory reactions, it was hypothesized that the pathogen-low envi-
ronment in industrialized countries allows a shift of the Th1-Th2 balance towards the pro-
allergenic Th2 cells.

One obvious argument against the concept of Th1/Th2 balance, is that allergen-specific
T cells express a Th2-like cytokine pattern not only in allergic, but also in healthy individ-
uals [60]. Furthermore, it is important to notice that, although Th2 cells are important for
IgE switching, IFN-g typically expressed by Th1 cells also plays an important role in tis-
sue destruction in chronic disease, particularly in keratinocyte/epithelial cell death in atop-
ic dermatitis and asthma [61, 62]. In severe asthma, IL-12 serum levels are in fact known
to be elevated [63], and alveolar monocytes are also primed to produce more IL-12 com-
pared to healthy individuals [64]. The cell death-inducing IFN-g in peripheral tissues can
also be provided by Th2 cells, if they have been exposed to IL-12 [65], despite lower ex-
pression of the IL-12R [66]. Interestingly, the IL-12-primed Th2 cells keep their ability to
produce IL-5 [67], which may be particularly relevant for asthma. Taken together, these
studies show that, although T cell differentiation towards Th1 and Th2 cells is important,
the balance will not determine whether T cells become pathogenic or not. The fact that it
is not Th1/Th2 balance, but rather the T effector/T reg balance that determines the general
outcome of an immune response to given antigen [21, 68, 69] represents the current con-
cept. Although a shift in T cell populations lies beneath this concept, it does not necessari-
ly depend on a distinct Th2 cell subset as a cause of allergy pathogenesis. This concept is
likely to change the strategy in hygiene hypothesis-motivated studies in a sense that infec-
tions are important for the generation, maintenance and survival of T regs [70]. In fact,
danger signals provided by viral or microbial infections are assumed to play an important
role in the regulation of peripheral tolerance [71], which should be considered as contra-
indicative for SIT.

On the basis of the T reg concept, current research is focused on obvious questions of
how T regs are generated and how the target cells are suppressed by the T regs. The an-
swer to these questions will allow SIT strategies to be improved and provide keys for im-
proving induction and maintenance of peripheral T cell tolerance to allergen.

New therapeutic approaches

The change in immunological concepts is likely to affect the therapeutic rationale for the
design of SIT. Adjuvant therapies are likely to improve the treatment efficacy if applied in
a regimen supporting tolerance re-induction.

Vaccine optimization

The most obvious improvement of SIT is the generation of optimized allergens, reducing
unwanted IgE-mediated side effects. Successful allergen engineering included fragmenta-
tion of the allergen [72], destruction of three-dimensional structure by di-/trimerization
[13], mutagenesis of B cell epitopes by site-directed mutagenesis [73], dissection of the
allergen in peptides [74, 75] or by fusion of several different major allergens into a single
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molecule (Kussebi et al., unpublished results). Besides the increased safety of these vac-
cines, it may be an advantage that the vaccine is not subjected to IgE-facilitated antigen
presentation [76], which is supposed to further enhance IgE production in secondary re-
sponses. Is efficient antigen presentation also required for the activation and/or generation
of T regs? This question remains open, since the origin of T regs and the mechanism of T
reg-mediated suppression is not yet completely understood.

A broader range of indications of SIT for multiple forms of allergy requires the design
of vaccines covering several allergen specificities. Ubiquitous allergens such as Bet V1,
which cross-react with multiple allergens of other allergenic sources, may be engineered
by T cell epitope shuffling to generate super-vaccines covering multiple specificities.

Adjuvants in SIT: cyclosporine A and rapamycin

The activity of T regs is at least limited in vitro by IL-2 [77, 78, 79, 80] and IL-15 [81,
82]. These cytokines can resolve T cell unresponsiveness (anergy) and prohibit anergy in-
duction by IL-10 [77, 78, 79, 80]. Since both cytokines are secreted in conditions of acute
inflammation, it appears that a balance of T regs and T effectors can only be established if
acute inflammation is controlled. Thus, it would be favorable to use anti-inflammatory
drugs to facilitate SIT against multiple allergenic responses and if unknown allergens con-
tribute to perpetuation of the allergic inflammation. Cyclosporine A (CsA) and rapamycin
efficiently block IL-2 expression and may help generate a pro-tolerogenic microenviron-
ment. However, CsA [83] and rapamycin [84] are also known to inhibit the IL-10 gene
expression and may, therefore, delay or block T reg activity, possibly preventing re-induc-
tion of peripheral tolerance.

Adjuvants in SIT: anti-histamines and other non-steroidal anti-inflammatory drugs

Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used in anti-inflammato-
ry therapy and generally address G protein-coupled receptors (GPCR; [77, 78, 79, 80]).
These GPCR are expressed on smooth muscle, epithelia and endothelial cells and induce
contraction, vasodilatation and various other inflammatory reactions. For example, GPCR
agonists or antagonists are used as therapies for asthma either by promoting airway smooth
muscle relaxation (beta2 adrenergic receptor agonists) or by inhibiting inflammation in the
nasal mucosa and airways (cysteinyl leukotriene receptor antagonists; [85]). Recent stud-
ies showed that GPCR can negatively regulate T cell activation [86, 87, 88, 89, 90, 91],
mediated by the activation of the adenylate cyclase (AC) and subsequently increased intra-
cellular cAMP [92, 93, 94]. Thus, IgE-triggered mast cell-released mediators negatively
feedback on the T cell population, which is responsible for the initiation of IgE antibodies
by B cells. Histamine, prostaglandins (PG) and leukotrienes (LT) are recognized by
GPCR, of which four are known for PGE2 (EP1-4), two for PGD2 (DP, CRTH2), four for
histamine (HR1-4), two for LTB4 and two for cysteinyl LT. All of these GPCRs can either
signal via the phospholipase C pathway to mobilize Ca2+ transients or via activation of the
AC, increasing intracellular cAMP. For T cells expressing H2R, it was shown that the his-
tamine-induced cAMP pathway mobilizes protein kinase A (PKA), which negatively regu-
lates T cell proliferation [87] by down-regulation of IL-2 and IFN-g [95, 96] and by in-
creased IL-10 production [97]. This could also be shown for T cells isolated from asthmat-
ic patients [98]. We recently demonstrated that histamine enhances the responsiveness of
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Th2 cells to TGF-b in an H2R-dependent fashion, resulting in more efficient IL-4 suppres-
sion by TGF-b [99]. The latter findings indicate that GPCR signaling is tied into the regu-
latory network of suppressive cytokines, but it is not clear under which circumstances
GPCR ligands enhance or reduce T reg-mediated suppression. Although the effect of anti-
GPCR supplemented SITs were not studied in view of T cell immunology, anti-H1R an-
tagonists were successfully used to reduce side effects of the treatment [100, 101, 102].
Since the antagonists are specific, histamine can still act on H2R to suppress T cells under
these treatment regimens. Interestingly a recent study demonstrated that anti-H1R therapy
during the initial rush protocol improved treatment in the sense of reduced skin sensitivity
and allergen-specific IgE [103], suggesting improved tolerance induction.

Adjuvants in SIT: anti-IgE

Anti-IgE treatment covers the advantages of reduced IgE binding to the vaccine, reducing
the risk of side effects on one hand and limiting the release of mast cell mediators, which
are the targets of NSAIDs, on the other. Initial studies demonstrate significantly decreased
allergic symptoms in patients receiving SIT and anti-IgE compared to SIT alone; however,
anti-IgE was given 12 weeks after the first vaccine [104]. Further studies are now required
to verify an immunological improvement in terms of T cell tolerance and long-term effica-
cy of anti-IgE supplement of SIT.

Adjuvants in SIT: steroids

Although steroids are potent immunosuppressors, it is currently not clear whether and how
steroids affect the regulation of peripheral tolerance. Steroids are assumed to suppress the
immune system by blocking cytokine production by blocking a crucial transcription factor
(NF-kB) by transcriptional up-regulation of its natural, cellular inhibitor IkB [105]. How-
ever, steroids show more immediate effects and also induce long-lasting changes in the
differentiation of T cells. Very soon (3–4 h) after systemic steroid administration, gluco-
corticoids induce a redistribution of cells, which can be measured as reduced T cell counts
and increased NK cell numbers [106]. The disappearing T cells were shown to migrate
into the bone marrow [106], but remaining T cells are functionally intact [107]. The redis-
tribution is possibly mediated by the steroid-mediated suppression of the adhesion mole-
cules CD62L and CD11a [108]. This redistribution also affects T regs, which are found
more frequently in the peripheral blood following steroid treatment (Karagiannidis et al.,
unpublished results). The origin and the immunological consequence of this steroid effect
is still unclear.

Steroids promote chromatin remodeling [109, 110], which is known to be an important
event in the differentiation of T effector cells [111] and, therefore, affects long-lasting im-
munological memory. Although this effect of steroids is problematic because of its antigen
unspecificity, it is interesting to note that in vitro differentiation of T cells in the presence
of steroids promotes the generation of IL-10-expressing T cells [112]. Further studies are
necessary to understand the relationship of steroids, T regs and SIT. However, in vitro
studies suggest that steroids do not necessarily inhibit T regs, and thus may go well along
with SIT.
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Conclusion

Although the potential of SIT is currently not fully used for the treatment of allergies, it
has been proven as the only curative and non-symptomatic treatment of allergy. The anal-
ysis of underlying mechanisms of SIT indicate that generation of T regs, which control pe-
ripheral tolerance, is a key to treatment success. Available drugs and novel molecular tar-
gets are currently being tested to interfere with the differentiation of T regs, induction and
maintenance of T cell suppression (Fig. 1). Of great importance for SIT is the immunolog-
ical monitoring of SIT and its progress into the post-challenge phase, which is important
for the evaluation of treatment success, which in turn determines the treatment-duration.
The understanding of T reg-mediated suppression is likely to facilitate the identification of
specific, molecular targets and will also improve SIT strategies and monitoring.
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