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Abstract Organisms are known to adapt to regularly varying environments.
However, in most cases, the fluctuations of the environment are irregular and
stochastic, alternating between favorable and unfavorable regimes, so that cells
must cope with an uncertain future. A possible response is population diver-
sification. We assume here that the cell population is divided into two groups,
corresponding to two phenotypes, having distinct growth rates, and that cells
can switch randomly their phenotypes. In static environments, the net growth
rate is maximized when the population is homogeneously composed of cells
having the largest growth rate. In random environments, growth rates fluctu-
ate and observations reveal that sometimes heterogeneous populations have
a larger net growth rate than homogeneous ones, a fact illustrated recently
through Monte-Carlo simulations based on a birth and migration process in
a random environment. We study this process mathematically by focusing on
the proportion f (t) of cells having the largest growth rate at time t, and give
explicitly the related steady state distribution π . We also prove the convergence
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of empirical averages along trajectories to the first moment Eπ (f ), and provide
efficient numerical methods for computing Eπ (f ).
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1 Introduction

Organisms are known to adapt to regularly varying environments, by regulating
their intrinsic dynamics using circadian clocks. In most cases, the fluctuations
of the environment are however irregular and stochastic, alternating between
favorable and unfavorable regimes, so that cells must cope with an uncertain
future, see e.g., [6,19] or [20]. A possible response is population diversification:
the cell population divides into several groups of various phenotypes, and cells
can adapt their phenotypes to the changing environment [18]. In clonal popula-
tions, phenotypic diversity can be generated by stochastic phenotype-switching
mechanisms. A cell can switch from a state where some gene is consistently
expressed to a state in which it is silent. In what follows, we will consider an
analytical study of a stochastic model of phenotype switching proposed in [20],
which is similar to models proposed recently in [16] and [17].

When considering the time-evolution of phenotypes, the related switching
rates can be deterministic or stochastic, and subordinated to or independent of
the fluctuating environment. The above models are based on two main assump-
tions: cells can switch stochastically between various expression levels and the
switching rates depend on the (random) environment. Some additional assump-
tions can be considered according to the specificity of the setting, as provided
in [2] and [17] in the context of bacterial persistence. How do cells proceed
to realize these transitions ? Random phenotype-switching mechanisms have
been observed in bacteria having a gene network structure leading to bistability
(or multistability): such systems have two main states, corresponding typically
to low and high gene expression levels, see e.g. [18]. This is the case for example
in Escherichia coli for persister cells and in Bacillus subtilis, where cells can
choose between three different genetic programs according to culture condi-
tions, see e.g. [8] or [11]. The random switching mechanism is influenced by
chemical gradients, and depends on the life-style of the bacteria (natural iso-
lates or biofilms), see e.g. [14]. Bistability occurs when the regulatory network
can switch between two different gene expression levels, through, for example,
positive feedback loops (see e.g. [1,3], or [18]). Bistable switches are epigenetic,
that is, they are not mediated by genetic changes, mutations or DNA rearrange-
ment. Finally, mechanisms possessing similar bistable structures are also found
in eukaryotes, see e.g. [4] or [10].

The mathematical models presented in [16,17] and [20] assume a division
of the cell population into two or more sub-populations, corresponding to
the various phenotypes. Cells can change their states stochastically, with rates
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depending on the environment. The environment itself can be deterministic and
periodic as for example in [17], or random as in [16] and [20]. We will focus here
on the model proposed in [20], which can be translated mathematically as a
birth and migration process in a random environment (see below). We consider
here a switching environment, which alternates between two regimes.

The mathematical study is instrumental for many reasons: such switching
mechanisms occur in pathogenic bacteria (see e.g. [15]), so that this problem is
clinically relevant. Moreover, the tight control of mathematical models might be
useful in practical laboratory experiments, as shown for example in the case of
persistent bacteria in [17] or in [20], where it is shown that time-dependent con-
ditions, as given by the various switching rates, ought to play a central role in the
design and interpretation of laboratory experiments. We will derive the steady
state of the stochastic system and verify mathematically that there are situa-
tions where cell populations can adapt their phenotype-switching rates to escape
adverse conditions, should they arise, and increase the probability of being in
a favorable regime. Simulations provided in [20] indicate that heterogeneity
is however beneficial over only a small parameter range. A complete under-
standing of this phenomenon necessitates a tight control of the mathematical
model.

2 The stochastic population model

Assume that the cells, or for example the product of some gene, can be in two
distinct states or phenotypes. Let X(t) and Y(t) be the sizes of these populations.
The phenotype-switching mechanism is viewed here as a migration process: cells
of each group reproduce exponentially fast at some rates, and can switch their
phenotypes, or equivalently, migrate to the other group. We assume that the
birth rates are either γ2 or γ1 with �γ = γ2 − γ1 > 0, and that the associated
migration rates k2 and k1 are such that k1 ≥ k2, which means that cells located
in the group having the smaller birth rate migrate at a higher rate to the group
with the higher birth rate than the other way round.

If the birth and migration rates are assigned once and for all to a corre-
sponding group (e.g. γ1 and k1 to X, and γ2 and k2 to Y), then the mean sizes
n1(t) = E(X(t)) and n2(t) = E(Y(t)) satisfy the pair of differential equations

dn1(t)
dt

= (γ1 − k1)n1(t) + k2n2(t),

dn2(t)
dt

= (γ2 − k2)n2(t) + k1n1(t).
(1)

According to [20], we say that cells of the first group represented by X(t) are
unfit (they have the lower birth rates), and conversely that cells of the sec-
ond group represented by Y(t) are fit. The proportion of fit cells in the total
population, y(t) = n2(t)/(n2(t) + n1(t)), t ≥ 0, satisfies the differential equation
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dy(t)
dt

= k1 + (�γ − k1 − k2)y(t) − (�γ )y(t)2. (2)

Then, as t → ∞, y(t) −→ y2, where 1
2 ≤ y2 ≤ 1, which follows directly from (2),

see Sect. 3. This describes the equilibrium value of the proportion of fit cells in
a non-changing environment. Fixing the values of the parameters k1, γ1 and γ2,
we can ask for the value of 0 ≤ k2 ≤ k1 which maximizes the proportion of fit
cells, i.e. the equilibrium value of y(t): the optimal strategy is to keep all the fit
cells in the fit state, that is to set their migration rate to zero, k2 = 0. This leads
to y2 = 1, and thus the optimal solution would be a homogeneous population.

Observations reveal however that most cell populations are not homoge-
neous; to explain this, [16] and [20] propose to introduce a modification in the
model by allowing environmental changes. In [20], the authors show through
Monte-Carlo simulations that the homogeneous solution k2 = 0 is then not
always optimal. The idea is to allow the birth and migration rates to switch at
random times from one group to the other, so that cells in the fit group become
unfit and vice versa. If for example an environmental change occurs at some
random time T1 > 0 (T0 = 0), then the function f2(t) representing the propor-
tion of fit cells solves (2) up to time T1, and just after T1, say at time T1 + 0, the
fit cells corresponding to Y(t) become unfit and vice versa. The proportion of
fit cells f2(t) is then switched to f2(T1 + 0) = 1 − f2(T1). After T1, the random
process {f2(t)}t≥0 solves (2) with initial data f2(T1 + 0) at time T1 + 0, until a
new environmental change occurs, say at time T2 > T1. There is a new switch,
and the process is again solution of (2), until a new event occurs and so on. This
model considers the evolution of the mean sizes n1(t) and n2(t) of the birth and
migration process; stochasticity is the result of the random environment. This
is of course a big simplification: the fully stochastic model, where no averaging
is assumed for the birth and migration process, is out of reach mathematically
at present time, and the model given in [20] is interesting since it permits a
mathematical treatment while conserving the main features of the problem.

In [16] and [20], the fluctuations of the environment are modeled using a
renewal process; the instants Ti, i ≥ 0, are such that the sequence of random
variables {ti}i≥1 given by ti ≡ Ti − Ti−1, i ≥ 1, is i.i.d. distributed according to
some law µ on R

+. The authors then use Monte-Carlo simulations to estimate
the limiting value of the time averages along trajectories of the process f2(t), of
the form

SN = 1
TN

TN∫

0

f2(s) ds. (3)

This limiting average value is denoted by Av(f2)k2 to express its dependency on
the migration rate k2 < k1, when all the remaining parameters are fixed. Their
simulations indicate that there is a range of parameters (k1 not too large) such
that

Av(f2)k2>0 > Av(f2)k2=0,
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which means that, for these parameters, heterogeneous populations are better
adapted than homogeneous ones.

In this paper, we study mathematically the limiting behavior of the stochastic
process f2(t) and the associated time average SN by giving analytically the den-
sity of the stationary measure π . Our technique uses the process Xk = f2(Tk−0),
X0 = f2(0), which is such that Xk+1 = φtk+1(1 − Xk), for some mapping φt(x)

(see Definition 1). (Xk)k≥0 is a stochastic recursive Markov chain, and SN can
be expressed as an additive functional of the trajectory of (Xk)1≤k≤N . In Sect. 3,
we recall a Theorem from [7] on the convergence of stochastic recursive chains,
which applies in this setting. We give conditions ensuring the existence and
uniqueness of a stationary measure π , as well as geometric ergodicity. In Sect. 4,
we consider the case where µ is exponential of parameter κ > 0, and show that
π has a C∞ density P with respect to Lebesgue measure. We furthermore prove
in Theorem 2 that a multiple G of P solves a second order differential equation
with weak singularities. Proposition 1 provides series expansions for P, which
are necessary to derive properties of P near the singularities. Section 5 considers
time averages: It is proved that the empirical average SN given in (3) converges
to the steady state expectation Eπ (f ), where f is a random variable distributed
according to π . In Sect. 6, we provide efficient numerical integration methods
for computing the density associated to π , and therefore for computing the
steady state average limN→∞ SN = Eπ (f ). We then show numerical solutions,
using the series expansions of Proposition 1 to start the numerical integration.
The main results are summarized in Sect. 7.

3 Convergence of recursive chains

We first give some basic results for the differential equation (2). The right
hand side of (2) can be factored into −�γ (y − y1)(y − y2), where y1 = (�γ −
k1 − k2) − √

d)/(2�γ ) < 0, y2 = ((�γ − k1 − k2) + √
d)/(2�γ ) > 0, and

d = (�γ −k1−k2)
2+4k1�γ . Then k1 > k2 implies that 0 < 1−y2 < 1

2 < y2 < 1,
and that the derivative df2(t)/dt is positive when f2(t) is in the interval [0, y2),
negative in (y2, 1], and it vanishes for f2(t) = y2. It is not hard to check that any
realization of the trajectory {f2(t)}t≥0, with initial data f2(0) ∈ I = (1−y2, y2) will
remain forever in I, and that any trajectory starting in the interval Ic = [0, 1] \ I
will enter I after an almost surely finite time. (However, f2(0) = y2 implies
f2(t) ≡ y2.) We thus restrict our study to the interval I.

Given t ∈ R
+, we define the mapping φt : I −→ I such that φt(x) is the value

of the solution of (2) at time t when starting at x ∈ I at time t0 = 0. Using
separation of variables for (2), we obtain the relation

φt(x) − y1

y2 − φt(x)
= x − y1

y2 − x
exp(βt), (4)

where we set β = �γ (y2 − y1). Given u ∈ I, let δt(u, y) denote the time interval
the orbit of the dynamical system (2) needs to join u and y, y ≥ u, when starting
at time t = 0 at u. Then
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βδt(u, y) = ln
( (y − y1)(y2 − u)

(y2 − y)(u − y1)

)
. (5)

Definition 1 Given X0 = f2(0) ∈ I, consider the Markov chain with values in I
defined by

Xk+1 = φtk+1(1 − Xk),

where the sequence of random variables {tk}k∈N+ is i.i.d. distributed according
to some law µ on R

+. This Markov chain describes the evolution of f2(Tk − 0),
at the instants just before the switches, with Tk+1 − Tk = tk+1.

We first recall and adapt results of [7] on the convergence of such Markov
chains, also called stochastic recursive chains. The general setting is described
by a complete separable metric space (S, ρ), the set of values taken by the
Markov chain, a family of mappings fθ : S −→ S, indexed by parameters θ

living in some parameter space Θ , and a probability measure µ on Θ . Given
an i.i.d. sequence of random elements θn, n ≥ 1, of law µ, we can consider the
Markov chain (Xn)n∈N given by Xn+1 = fθn+1(Xn). The following Theorem gives
conditions for the existence and uniqueness of a stationary measure. In what
follows, P(n)(x, dy) denotes the law of the Markov chain Xn and ρ[P(n)(x, ·), π ]
is the Prokhorov metric, see below.

Theorem 1 [Theorem 1.1 of [7]] Assume that the family of functions fθ , θ ∈ Θ

is Lipschitz with

ρ(fθ (x), fθ (y)) ≤ Kθρ(x, y), x, y ∈ S,

∀θ ∈ Θ . Assume furthermore that

∫
Kθµ(dθ) < ∞,

∫
ρ(fθ (x0), x0)µ(dθ) < ∞, (6)

for some x0 ∈ S, and that ∫
ln(Kθ )µ(dθ) < 0. (7)

Then

– The Markov chain has a unique stationary distribution π ,
– ρ[P(n)(x, ·), π ] ≤ Axrn, for constants Ax and r with 0 < Ax < ∞ and

0 < r < 1; this bound holds for all times n and all starting positions x,
– the constant r does not depend on n or x; the constant Ax does not depend

on n, and Ax < a + bρ(x, x0), where 0 < a, b < ∞.
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In our setting, S is given by I and the parameter set Θ is just R
+. The Prokhorov

distance dn := ρ[P(n)(X0, ·), π ] is the infimum of the δ > 0 such that

P(n)(X0, C) < π(Cδ) + δ and π(C) < P(n)(X0, Cδ) + δ, (8)

where C runs over the Borel sets of I and, for given C ∈ B(I), Cδ denotes the
set of points of I whose distance from C is less than δ (see Sect. 5.1 of [7]).
Condition (7) means that the functions fθ are contractions in the average. We
first express this condition in our setting: for t ∈ Θ = R

+ and u ∈ I = S, the
mapping φt(u) is given explicitly by

φt(u) = y1(y2 − u) + y2(u − y1) exp(βt)
y2 − u + (u − y1) exp(βt)

. (9)

Setting ft(x) = φt(1 − x), we obtain

Lemma 1 For all t ∈ R
+,

d
dx

ft(x) = − (y2 − y1)
2 exp(βt)

(y2 − 1 + x + (1 − x − y1) exp(βt))2 ,

Kt := sup
x∈I

| d
dx

ft(x)| = (y2 − y1)
2 exp(βt)

(2y2 − 1 + (1 − y2 − y1) exp(βt))2 .

If µ is exponential of parameter κ > 0, and α = κ/β, then the conditions given
in (6) are satisfied, and

∫

R+
κ exp(−κt) ln(Kt)dt = −α − 2z

∞∫

0

exp(−(1 + α)t)
1 − z exp(−t)

dt,

where we set z = −(2y2 − 1)/(1 − y2 − y1) < 0. Condition (7) is thus satisfied if

−α − 2z

∞∫

0

exp(−(1 + α)t)
1 − z exp(−t)

dt < 0. (10)

Remark 1 When |z| ≤ 1, the integral
∫ ∞

0 (exp(−(1+α)t))/(1−z exp(−t))dt is the
Lerch Phi function Φ(z, s, v) = ∑

n≥0(v + n)−szn, with s = 1 and v = 1 + α, and
is also equal to Gauss’s Hypergeometric function 2F1(1, 1 + α; 2 + α; z)/(1 + α)

(see e.g. [9], Chap. 1.11).

Proof Taking the derivative of (9) with respect to u, we obtain

d
du

φt(u) = (y2 − y1)
2 exp(βt)(

y2 − u + (u − y1) exp(βt)
)2
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and thus

f ′
t (x) = − d

du
φt(1 − x) = − (y2 − y1)

2 exp(βt)
(y2 − 1 + x + (1 − x − y1) exp(βt))2 < 0,

as required. The expression for Kt follows from direct computation.

4 Convergence to stationarity in Poissonian environments

Assume that µ is exponential of parameter κ > 0. We will see in what follows
that the stationary measure π has, under some conditions, a density P(y) such
that with Q(y)= ((y − y1)/(y2 − y))α , where α = κ/β, the function G(y) =
P(y)Q(y)(y − y1)(y2 − y) satisfies the differential equation

G′′(y) + U(y)G′(y) + V(y)G(y) = 0, (11)

where ỹ1 = 1 − y1, ỹ2 = 1 − y2,

U(y) = α + 1
y − ỹ1

− α − 1
y − ỹ2

+ α

y − y2
− α

y − y1
, (12)

and

V(y) = α2(y2 − y1)
2

(y − y1)(y − y2)(y − ỹ2)(y − ỹ1)
. (13)

The following proposition will therefore be useful:

Proposition 1 The solutions of the second order homogeneous linear differential
equation (11) are analytic on the interval I = (ỹ2, y2). Two fundamental solutions
G̃1(y), G̃2(y) are

– G̃1(y) = (y − ỹ2)
αW̃1(y), where W̃1(y) is analytic on (ỹ2 − δ, y2) for some

δ > 0 and with W̃1(ỹ2) = 1.

– G̃2(y) =
{

W̃2(y), if α �∈ R,
W̃2(y) + C̃G̃1(y) ln(y − ỹ2), if α ∈ R,

with W̃2(y) analytic on (ỹ2 − δ, y2) for some δ > 0, W̃2(ỹ2) = 1 and C̃ ∈ R.

Another set of two fundamental solutions G1(y), G2(y) is

– G1(y) = (y2 − y)1−αW1(y), where W1(y) is analytic on (ỹ2, y2 + δ) for some
δ > 0 and with W1(y2) = 1.

– G2(y) =
{

W2(y), if α �∈ R,
W2(y) + CG1(y) ln(y2 − y), if α ∈ R,

with W2(y) analytic on (ỹ2, y2 + δ) for some δ > 0, W2(y2) = 1 and C ∈ R.

In the appendix, we prove this result for completeness, and also show how these
fundamental solutions can be computed by series expansion about ỹ2 and y2
respectively.



Stochastic gene expression 257

Theorem 2 Assume that

−α − 2z

∞∫

0

exp(−(1 + α)t)
1 − z exp(−t)

dt < 0,

where z = −(2y2 −1)/(1−y2 −y1) < 0. Then the Markov chain Xk from Defini-
tion 1, with initial data X0 ∈ I = (1 − y2, y2) has a unique stationary distribution
π of C∞ density

P(y) = Q(y)−1(y − ỹ2)
αW̃1(y)/(y2 − y)/(y − y1)∫

I Q(z)−1(z − ỹ2)αW̃1(z)/(y2 − y)/(y − y1) dz
.

Here, Q(y)=
(

y−y1
y2−y

)α

, where α = κ/β, W̃1(y) is the analytic function on (ỹ2−δ, y2)

with W̃(ỹ2) = 1, such that G̃1(y) = (y − ỹ2)
αW̃1(y) is a solution of the differ-

ential equation (11). In the neighborhood of y = y2, this solution is such that
0 < limy→y2 W̃1(y) < +∞. Finally, the behavior of the density P near y2 is given
by (y2 − y)α−1, and thus converges when α ≥ 1 and diverges toward +∞ when
α < 1. Let f (x) = x and g(x) = ln((x − 1 + y2)/(y2 − x)) be defined on I. Then
g ∈ L1(I, B(I), π) with

Eπ (f ) = y1 + κ

�γ
Eπ (g). (14)

Remark 2 (14) will be useful when considering time averages for Monte-Carlo
simulations, see Sect. 5.

Proof The existence and uniqueness of the stationary measure follows from
Theorem 1 and Lemma 1. Let Y be a random variable of law π , and let T be
exponential of parameter κ > 0, independent of Y. In the stationary regime,
Y =L φT(1 − Y). Let F(y) = P(Y < y). Then

F(y) =
∫

I×R+
π(dv)κ exp(−κt)I(φt(1 − v) < y)dt,

where I(·) denotes the indicator function. For given y ∈ I, the time variable t is
restricted to the interval 0 ≤ t < δt(ỹ2, y) , see (5). Thus

F(y) =
δt(1−y2,y)∫

0

κ exp(−κt)
∫

I

π(dv)I(φt(1 − v) < y)dt.

For given t in this interval, the set of v ∈ I with φt(1 − v) < y is given by

{
v ∈ I; 1 − v <

y2(y − y1) + exp(βt)(y2 − y)y1

y − y1 + exp(βt)(y2 − y)

}
.
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It follows that
∫

I π(dv)I(φt(1 − v) < y) = 1 − F(1 − u), where we set u =(
y2(y − y1)+ exp(βt)(y2 − y)y1

)
/
(
y − y1 + exp(βt)(y2 − y)

)
, with t = δt(u, y). We

make the change of variable t = δt(u, y) with

dt
du

= − y2 − y1

β(y2 − u)(u − y1)
.

Then

F(y) = α
(y2 − y

y − y1

)α
y∫

1−y2

y2 − y1

(y2 − u)(u − y1)

(u − y1

y2 − u

)α

(1 − F(1 − u))du.

This is a fixed point equation for the distribution function F. We use it for
proving that the probability measure π has a C∞ density on the interval I. First
notice that F is monotonically increasing and integrable on I. The above rela-
tion then shows that F is continuous on I. Using again this argument recursively,
one sees that F is the integral of a continuous function and is therefore differ-
entiable, with a continuous derivative. The C∞ differentiability is obtained by
iterating this argument. Let P be the C∞ density of π with respect to Lebes-
gue measure. Our strategy runs as follows: We use the fixed point relation to
show that a multiple G of P satisfies a second order differential equation, which
has only weak singularities, and then deduce properties of P with the help of
Proposition 1.

For given v ∈ I, the time variable t is restricted to the interval

0 ≤ t ≤ δt(u, y) = ln
(
(y − y1)(y2 − y)/(y2 − y)(u − y1)

)
/β,

where u = 1 − v (see 5). It follows that

F(y) =
y2∫

1−y

P(v)dv

δt(u,y)∫

0

κ exp(−κt)dt,

with

P(y) = dF(y)

dy
=

y2∫

1−y

P(v)dvκ exp(−κδt(u, y))
dδt(u, y)

dy

= α

y2∫

1−y

dvP(v)
Q(u)

Q(y)

(y2 − y1)

(y − y1)(y2 − y)
,
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where we set Q(y) = ((y − y1)/(y2 − y))α . Using u = 1 − v and setting G(y) =
P(y)Q(y)(y − y1)(y2 − y), one gets

G(y) =
y∫

1−y2

G(1 − u)R(u)H(u) du, (15)

where R(u) = αQ(u)Q(1 − u)−1 is such that R(1 − u) = α2/R(u), and H(u) =
(y2 − y1)/(y2 − 1 + u)/(1 − u − y1). Taking the derivative gives

G′(y) = G(1 − y)R(y)H(y), (16)

or

G(1 − y) = G′(y)R(y)−1H(y)−1 = α−2G′(y)R(1 − y)/H(y).

Taking a second derivative then gives

G′′(y) + d
dy

ln(
R(1 − y)

H(y)
)G′(y) + α2H(y)H(1 − y)G(y) = 0.

and simplifying the terms leads to (11). We see that R(u)H(u) ∼ (u−1+y2)
α−1,

as u → 1 − y2. The exponents associated with the fundamental solutions are
ρ = 0 or α in the neighborhood of y = 1 − y2 and ρ′ = 0 or 1 − α near y = y2.

Assume first that α �∈ N
+. We first check the behavior of G in a neighborhood

of y = ỹ2. Set y = ỹ2 + ε, ε > 0, with 1 − y = y2 − ε. Proposition 1 shows that
G is a linear combination G(y) = ÃεαW̃1(y) + B̃W̃2(y), for constants Ã, B̃ ∈ R.
Similarly, G(1 − y) = Aε1−αW1(1 − y) + BW2(1 − y), for real constants A and
B. As ε → 0, the right hand side of (15) behaves like εαG(y2 − ε) → 0. Suppose
that B̃ �= 0. Then G(y) ∼ B̃W̃2(y) �= 0, and (15) can’t be satisfied. One must
thus have B̃ = 0, so that G(y) = ÃεαW̃1(y). When α > 1, (15) implies that
A = 0. It follows that, for arbitrary α > 0, limy→y2 G(y) = BW2(y2) �= 0, and
that G(ỹ2 + ε) ∼ ÃεαW̃1(ỹ2), ε → 0, as required. The corresponding result for
P follows.

Suppose that α ∈ N
+. The right hand side of (15) behaves like

F(ε) := εα(Aε1−αW1(y2) + B(W2(y2) + Cεα−1W1(y2) ln(ε))),

with F(ε) → 0 as ε → 0, and G(ỹ2 + ε) behaves like

F̃(ε) := ÃεαW̃1(ỹ2) + B̃(W̃2(ỹ2) + C̃εαW̃1(ỹ2) ln(ε)).

One has F̃(ε) ∼ B̃W̃2(ỹ2), ε → 0, when B̃ �= 0 and F̃(ε) ∼ ÃεαW̃1(ỹ2), when
B̃ = 0. (15) shows that necessarily B̃ = 0. Suppose that α = 1. Then one must
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have BC = 0, implying the existence of the limit limy→y2 G(y) �= 0. When α > 1,
A = 0, B �= 0, and limy→y2 G(y) = BW2(y2), as required.

Finally, we check the identity (14). First g ∈ L1(I, B(I), π) follows from the
behavior of the density P at the boundaries of I, as described above. Next,

Eπ (g) =
∫

I

ln

(
y − 1 + y2

y2 − y

)
P(y)dy,

where J := ∫
I ln(y − 1 + y2)P(y)dy is such that

J =
∫

I

ln(y − 1 + y2)G(y)Q(y)−1 H(1 − y)

y2 − y1
dy

= 1
y2 − y1

∫

I

ln(y2 − u)G(1 − u)Q(1 − u)−1H(u)du

= 1
α(y2 − y1)

∫

I

ln(y2 − u)

Q(u)
G(1 − u)R(u)H(u)du

= 1
α(y2 − y1)

∫

I

ln(y2 − u)

Q(u)
G′(u)du

= 1
α(y2 − y1)

(
G(u)

ln(y2 − u)

Q(u)

∣∣∣y2

1−y2
−

∫

I

G(u)
( ln(y2 − u)

Q(u)

)′
du

)

= 1
α(y2 − y1)

∫

I

G(u)

Q(u)

(u − y1)

(y2 − u)(u − y1)
du +

∫

I

ln(y2 − u)P(u)du,

where we use (16). It follows that

Eπ (g) = 1
α(y2 − y1)

Eπ (f ) − y1

α(y2 − y1)
,

proving (14) since α = κ/(�γ (y2 − y1)).

Corollary 1 Assume that condition (10) holds. Then, as t → +∞, the law of the
stochastic process f2(t), t ≥ 0, f2(0) ∈ I, converges toward the stationary measure
π of density P of the Markov Chain Xk.

Proof Given t ∈ R
+, let t∗ be the last renewal time before t, and set S∗ = t − t∗.

When the length of the overlapping random interval is exponential, S∗ is also
exponential. In the stationary regime, or equivalently for large t, one has the
identity in law f2(t) =L φS∗(1 − X), where X is distributed according to π , and
the result follows.
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5 Time averages

When the conclusions of Theorem 1 hold, the chain Xk has a unique stationary
probability measure π , and

∑n
k=1 g(Xk)/n converges a.s. toward the expecta-

tion of g under π , for any function g in L1(I, B(I), π), (see e.g. [5]). In [20], the
authors use Monte-Carlo methods based on the process f2(t), t ≥ 0, to estimate
the mean fitness by considering the time average

SN = 1
TN

TN∫

0

f2(s) ds, (17)

where N is a fixed number of renewal periods.

Lemma 2 Let N ∈ N
+. Given a realization 0 = T0 < T1 < · · · < TN of the

renewal process, we have

1
TN

TN∫

0

f2(s) ds = y1 + (y2 − y1)

βTN
ln

( N∏
i=1

Xi−1 − (1 − y2)

y2 − Xi

)
. (18)

Proof Consider the integrals

Ti∫

Ti−1

f2(s) ds,

where f2(Ti−1+0) = 1−Xi−1 and f2(Ti−0) = Xi. The value of y(s) = f2(Ti−1+s),
s ∈ (0, Ti − Ti−1) is given implicitly by (4); Therefore

y(s) = y1(y2 − u) + y2(u − y1) exp(βs)
y2 − u + (u − y1) exp(βs)

,

where we set u = 1−Xi−1, and thus, after a longer but not difficult computation,
one obtains

Ti∫

Ti−1

f2(s) ds=y1(Ti−Ti−1)+ y2 − y1

β
ln

(
y2 − u + (u − y1) exp

(
β(Ti − Ti−1)

)
y2 − y1

)
,

and the result follows, since

y2 − u + (u − y1) exp(β(Ti − Ti−1)) = (y2 − u)
(
1 + u − y1

y2 − u
exp(βti)

)

= (y2 − (1 − Xi−1))(y2 − y1)

y2 − Xi
.
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Theorem 3 Suppose that µ is exponential of parameter κ > 0, and assume (10).
Let f (x) = x and g(x) = ln((x − 1 + y2)/(y2 − x)) be defined on I. Then

lim
N→∞

1
TN

TN∫

0

f2(s) ds = y1 + κ

�γ
Eπ (g) = Eπ (f ), a.s.

Proof From Eq. (18), we obtain

1
TN

TN∫

0

f2(s) ds = y1 + (y2 − y1)

βTN
ln(

X0 − 1 + y2

y2 − XN
) + (y2 − y1)

βTN

N−1∑
i=1

g(Xi).

As TN is a renewal process with exponential inter arrival times of parameter
κ , it follows that TN/N converges a.s. toward 1/κ . Next, g ∈ L1(I, B(I), π) fol-
lows from the behavior of the density P at the boundaries of I, as described
in Theorem 2. From Proposition 1 and Theorem 2, the behavior of P in the
neighborhood of y = 1 − y2 is given by (y − 1 + y2)

ρ1 where ρ1 = α and by
(y2 − y)ρ2+α−1 in the neighborhood of y = y2, where ρ2 = 0. The Markov
chain Xk is geometrically ergodic, and thus the last term converges a.s. toward
(κ/(�γ ))Eπ (g). We finally check that ln(y2 − XN)/N converges a.s. toward 0.
Given ε > 0, consider the probability

P(| ln(y2 − XN)| > Nε) = P(ln(y2 − XN) < −Nε)

= P(XN > y2 − exp(−Nε)) = P(N)(X0, AN),

where AN = {x > y2 − exp(−Nε)}. Using the behavior of P in the neigh-
borhood of y = y2, one gets that π(AN) ≤ M(exp(−εN))ρ2+α , for some
positive constant M. Let γN := |P(N)(X0, AN) − π(AN)|, and let dN be the
Prokhorov distance defined in (8). If π(AN) ≥ P(N)(X0, AN), then γN ≤ π(AN).
If π(AN) ≤ P(N)(X0, AN), one has P(N)(X0, AN) ≤ π((AN)dN ) + dN , and it
follows that

γN = P(N)(X0, AN) − π(AN) ≤ π((AN)dN ) − π(AN) + dN

=
y2−exp(−εN)∫

y2−exp(−εN)−dN

P(y)dy + dN

≤ dN + D(exp(−εN)ρ2+α

−(dN + exp(−εN))ρ2+α),

for some positive constant D > 0. Theorem 1 gives that
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P(| ln(y2 − XN)| > εN) ≤ |P(N)(X0, AN) − π(AN)| + π(AN) ≤ h(X0)λ
N ,

for some bounded function h and a positive number 0 < λ < 1. The result then
follows from the Borel-Cantelli Lemma. The last identity is (14) of Theorem 2.

6 Numerical examples

We now compute the density P given in Theorem 2 numerically. To do so, we
solve the differential equation (11) numerically, starting in the neighborhood
of the singular point y = ỹ2 = 1 − y2. Proposition 1 and Theorem 2 show that
limy→ỹ2 P(y) = 0, and that the first derivative of P behaves like (y − ỹ2)

α−1,
which goes to +∞ when α < 1. We start the numerical solution at the point
y = ỹ2 + ε, where ε > 0 is small, and use the initial conditions G(ỹ2 + ε) and
G′(ỹ2 +ε) from the series expansions given in Proposition 1. In addition, we use
numerical integration procedure to compute the integral to scale the density P,
by adding an additional ordinary differential equation to (11).

We show in Figs. 1, 2 and 3 the results obtained for five different sets of
parameters.

In all the figures, we show the computed solution G of the differential equa-
tion (11) in dashed, the computed density P as a solid line, and the results of a
Monte-Carlo simulation with 100,000 samples as circles. The density from the
theory and the Monte-Carlo simulations agree very well. It is interesting to see
in Figs. 1 and 2 the variety of densities that can be generated by this simple
model. Figure 2 contains a case where increasing k2 increases the overall fitness
of the population. Figure 3 finally shows a case where α < 1. We note that the
numerical integration out of the singularity can be challenging. In particular,
for the first case in Fig. 1, the standard ode45 from Matlab needed very small
absolute tolerances to succeed with the integration for ε < 1e − 2. A more
robust method turned out to be DOPRI853, see [12].
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Fig. 1 Density P on the left when κ = 10, �γ = 1, k1 = 0.4, k2 = 0.05, and on the right when
κ = 1.5, �γ = 1, k1 = 0.1, k2 = 0.05
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Fig. 2 Density P on the left when κ = 10, �γ = 9, k1 = 0.1, k2 = 0. Av(f2)k2=0 = 0.553274111,
and on the right when κ = 10, �γ = 9, k1 = 0.1, k2 = 0.05. Av(f2)k2=0.05 = 0.55672212. Clearly
the average fitness is larger when k2 = 0.05 than when k2 = 0

Fig. 3 Density P when κ = 5,
�γ = 3, k1 = 3, k2 = 1, a case
where α < 1
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7 Concluding remarks

We have analyzed a stochastic population model presented in [20], which is
similar to models considered in [16] and [17]. The biological setting introduced
in Sect. 1 shows that the stochastic model given in Sect. 2 might be relevant
for the design of laboratory experiments involving time-dependent conditions
or various time-scales. We now discuss the obtained results for non-specialists
in probability and statistics. Our main object of study is the proportion f2(t) of
fit cells at time t, that is in the cells having the largest growth rate. Denoting
by Ti the instants where environmental changes occur, we consider the process
Xk = f2(Tk − 0), giving the proportion of fit cells just before the occurrence
of the kth environmental change. We assume in Sect. 4 a Poisson environment,
that is, we suppose that the collection of random variables �i = Ti − Ti−1,
giving the length of the time intervals separating two environmental changes, are
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independent with the same exponential density of the form P(�i ∈ [t, t + dt]) ≈
κ exp(−κt)dt, for small dt. A related process is given by Nt, which gives the
number of environmental changes before t. When the random variables �i are
independent with the same exponential distribution, the law of Nt is Poisson
of parameter κt, that is, P(Nt = j) = (κt)j/j! exp(−κt), hence the terminology
Poissonian environment. We proved that the process Xk admits a steady state
distribution π of density P, as given in Theorem 2. The statistical meaning of
this statement is simply that for a given interval J = [a, b], π(J) = ∫ b

a P(x)dx
gives the probability of observing Xk in J when k is large. We next proved that
the limiting law of f2(t) is also given by π for t large, hence P(f2(t) ∈ J) ≈ π(J),
t >> 1.

Typical problems considered in [20] consist in finding the maximum value of
the average steady state fitness Eπ (f2) = ∫

xP(x)dx as a function of k2, when
all the other parameters are fixed. Heterogeneity is beneficial when this max-
imum is realized for some positive value k∗

2 > 0 (homogeneous populations
are obtained when k2 = 0). The authors of [20] showed that heterogeneity
is beneficial for a small range of the parameter space, namely when k1 is not
too large. They used Monte-Carlo simulations, which are roughly described as
follows: pick some realization of the process f2(t) for 0 ≤ t ≤ TN , and com-
pute the empirical average SN = ∫ TN

0 f2(s)ds/TN . Of course, one must repeat
this procedure several times to get statistically significant estimates. SN gives a
time-averaged fitness, and we expect that SN converges to some limiting value
as N is large. The above optimization problem can thus be approximatively
solved by repeating Monte-Carlo simulations for many values of the parame-
ter k2, and then looking for the maximum. We however proved in Theorem 3
that SN converges to Eπ (f2), giving thus the limiting average proportion of the
cell population having the largest growth rate, which corresponds to our basic
notion of fitness. Our analytical results permit thus to avoid the computation
of thousands of Monte-Carlo simulations by computing exactly the density P.
These computations can be efficiently performed using optimized integration
schemes, as given in Sect. 6. Furthermore, closed analytical formulas of this kind
will be essential for a complete understanding of the properties of the model.

Acknowledgments The authors thank their collaborator and friend Gerhard Wanner for many
fruitful discussions concerning numerical solutions of differential equations.

8 Appendix

In this appendix we show for completeness the proof of Proposition 1 and
describe a method how to solve the differential equation (11) (see also [13],
pp. 317–321). This equation is of the form

G′′(y) + U(y)G′(y) + V(y)G(y) = 0,
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where the functions U(y) and V(y) are meromorphic in the complex plane with
four poles of order one at y1 < ỹ2 := 1 − y2 < y2 < ỹ1 := 1 − y1. The solu-
tions are therefore analytic in the open disk of radius (y2 − ỹ2)/2 centered at
1/2. We look for real solutions in the interval I = (ỹ2, y2). In order to simplify
calculations, we use the variable transformation

y = ỹ2 + (y2 − ỹ2)z, z = y − ỹ2

y2 − ỹ2
(19)

and set g(z) := G(y). With this transformation, the differential equation (11)
becomes

g′′(z) + u(z)g′(z) + v(z)g(z) = 0, (20)

where u and v have four poles of order one at the points −b < 0 < 1 < 1 + b
with b = (ỹ2 − y1)/(y2 − ỹ2):

u(z)= 1 − α

z
+ α

z − 1
− α

z + b
+ α + 1

z − (1 + b)
, v(z)= α(1 + b)2

z(1 − z)(z + b)(1 + b − z)
.

We can therefore rewrite this equation as

g′′(z) + h(z)

z
g′(z) + k(z)

z2 g(z) = 0, (21)

where h(z) and k(z) are analytic in the disk of radius min{1, b} centered at 0:

h(z) =
∞∑

n=0

αnzn, k(z) =
∞∑

n=0

βnzn.

Multiplying the equation (21) by z2 we get an equivalent equation which can
be written as

L(g) := (µz
2D2 + µhµzD + µk)(g) = 0, (22)

where D denotes differentiation and µf multiplication by a function f (z). Look-
ing for solutions of the form

g(z) = zρw(z), w(z) = 1 +
∞∑

n=1

wnzn,

we may identify the function g(z) with the infinite row [w] = [1, w1, w2, w3, . . .]
and write (22) in matrix form:

[Lρ][w]T = 0. (23)
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If we write L as L = (µzD+µh−1)µzD+µk, we get the lower triangular matrix
[Lρ] given by

⎡
⎢⎢⎢⎣

ρ(ρ + α0 − 1) + β0 0 . . .

ρα1 + β1 (ρ + 1)(ρ + α0) + β0 0 . . .

ρα2 + β2 (ρ + 1)α1 + β1 (ρ + 2)(ρ + 1 + α0) + β0 0 . . .
...

...
...

...
. . .

⎤
⎥⎥⎥⎦ .

A solution [w] = [1, w1, w2, . . .] of the linear system (23) exists if and only if
Lρ

00 = 0. This is the so-called indicial equation for ρ. From now on we shall no
longer treat the general case but only the case corresponding to our differential
equation (20). In this case α0 = 1 − α and β0 = 0. So the indicial equation is
ρ(ρ − α) = 0 and yields the two characteristic exponents ρ1 = α and ρ2 = 0.
We shall write Lν

ij instead of Lρν

ij .

For ρ = ρ1, the solution [w(1)] = [1, w(1)

1 , w(1)
2 , . . .] may be calculated by the

recursion scheme

w(1)
0 = 1, w(1)

n = −1
L1

nn

⎛
⎝n−1∑

j=0

L1
njw

(1)
j

⎞
⎠ for n ≥ 1.

With these coefficients w(1)
n , the function

g1(z) = zρ1

(
1 +

∞∑
n=1

w(1)
n zn

)

is a solution of (20). From the general theory of linear differential equations
in the complex plane it follows that g1 is analytic in the disk of radius 1/2 cen-
tered at 1/2, but the power series for w1(z) might have a convergence radius
0 < δ < 1.

If α is not an integer, another solution g2(z), linearly independent of g1(z),
can be obtained in the same way from ρ = ρ2 = 0. If, however, α is an integer,
the corresponding matrix has the entry L2

nn = 0 for n = α, and we look in this
case for a solution g2(z) of the form g2(z) = 1 + ∑

n≥1 w(2)
n zn + Cg1(z) ln z.

As g1 is a solution, the terms in L(g2) containing ln z cancel and the function
w(2)(z) = 1 + ∑

n≥1 w(2)
n zn must satisfy the equation

L(w(2)) = −C(2µzD + µh−1)(g1).

Identifying w(2)(z) with the infinite row [w(2)] = [1, w(2)

1 , w(2)
2 , . . .], we can write

this in matrix form
[L2][w(2)]T = −C[v1, v2, . . .]T. (24)
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For the right-hand side one checks easily that vj = 0 for j = 0, . . . , α − 1 and
vα = α. Therefore we can resolve the inhomogeneous linear system (24) in the
following way:

1. We determine w(2)
j for j ≤ α in the same way as w(1)

j .

2. We set w(2)
α := 0 and determine the constant C by the equation∑α−1

j=0 L(2)
α,j wj(2) = −Cvα .

3. We determine the coefficients w(2)
n for n > α by the recursion formula

w(2)
n = −1

L2
nn

⎛
⎝Cvn +

n−1∑
j=0

L2
njw

(2)
j

⎞
⎠ for n ≥ α + 1.

We shall not go into further details, for example present concrete formulas
expressing the vn by the w(1)

n , because we don’t really need the solution g2 of
(21) in our case, as we have shown in the proof of Theorem 2.

Using the variable transformation (19) we get the solutions G̃j(y) of the
original differential equation (11), in particular

G̃1(y) = (y2 − ỹ2)
αg1

(
y − ỹ1

y2 − ỹ2

)
= (y − ỹ2)

αW̃1(y)

= (y − ỹ2)
α

(
1 +

∞∑
n=1

w(1)
n

(y2 − ỹ2)n

)

In order to find fundamental solutions near the singularity y2, we can apply
the same method once more, but using the variable transformation

y = y2 − (y2 − ỹ2)z, z = y2 − y
y2 − ỹ2

.

One easily checks that in this case the indicial equation is ρ(ρ + α − 1) = 0 and
that therefore the two characteristic exponents at y2 are ρ′

1 = 1 − α and ρ′
2 = 0.

We obtain thus the second fundamental system of solutions G1(y) and G2(y).
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