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expense. This mutant portfolio rule changes the asset valuation in the course of
time. The stochastic wealth dynamics in our evolutionary stock market model is
formulated as a random dynamical system. Applying this theory, necessary and
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to which assets are evaluated by expected relative dividends (with respect to the
objective probabilities).

Keywords and Phrases: Evolutionary finance, Portfolio theory, Incomplete mar-
kets.

JEL Classification Numbers: G11, D52, D81.

� We are grateful to Jarrod Wilcox and William Ziemba for valuable comments. Financial support by
the national center of competence in research “Financial Valuation and Risk Management” is gratefully
acknowledged. The national centers in research are managed by the Swiss National Science Foundation
on behalf of the federal authorities.
Correspondence to: K.R. Schenk-Hoppé



450 I.V. Evstigneev et al.

1 Introduction

The expected discounted dividends model is one of the cornerstones of finance.
According to this model the rational and fair value of common stocks is given
by the expected value of the discounted sum of future dividends paid out by the
company. Indeed in the very long run the trend of stock market prices coincides
with the trend of the dividends paid by the companies. Yet over shorter horizons
(sometimes even for decades) stock market prices can considerably deviate from
their fundamentals. This phenomenon, called excess volatility, was first pointed out
by Shiller (1981). While models based on complete rationality have difficulties to
cope with excess volatility, models based on adaptive behavior typically go to the
other extreme and generate too irregular price dynamics. We suggest here a solution
in between these two extremes.

This paper considers a stock market model with a heterogenous population of
portfolio rules. In our model rationality is important on the level of the market since
market selection may ultimately give pressure for selecting the rational portfolio
rules. It turns out that only a rational market in which assets are evaluated by ex-
pected relative dividends is evolutionary stable. Any other market can be invaded,
i.e. there are portfolio rules that will gain market wealth, and hence the valuation of
assets changes. While, as in De Long et al. (1990), rational strategies clearly face
the risk that there are too many irrational strategies, any set of irrational strategies
is however more easily turned over by invasion of even a small fraction of slightly
different strategies. That is to say, every now and then the market can be displaced
from its rational valuation by a big push of irrationality but eventually the market
selection pressure will lead the market back to the rational valuation because from
any irrational market there exists a sequence of small and nearby innovations lead-
ing back to the rational market. This stability property may be the explanation that
on long-term averages stock markets look quite rational while severe departures
are possible in the short- and medium-term.

In a sense our results give support to a long-held belief by Friedman (1953),
Fama (1965) and others, who argued that the market naturally selects for rational
strategies which, in effect, would lead to market efficiency. However, our paper also
makes clear that the mutation force has to be added to the selection argument in
order to prove this conjecture. Considering only the market selection process, the
economy can get stuck at any situation in which all investors use the same portfolio
rule. Moreover, our paper shows which portfolio rules can successfully enter which
market. For example, an irrational market can be turned over by portfolio rules that
are not themselves rational portfolio rules. The rational portfolio rule actually may
fail to invade an irrational market.

To make these ideas precise, we study an asset market (complete or incomplete)
where a finite number of portfolio rules manage capital by iteratively reinvesting
in a fixed set of long-lived assets. In every period assets pay dividends according
to the realization of a stationary Markov process in discrete time. In addition to
the exogenous wealth increase due to dividends, portfolio rules face endogenously
determined capital gains or losses. Portfolio rules are encoded as non-negative
vectors of expenditure shares for assets. The set of portfolio rules considered is
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not restricted to those generated by expected utility maximization. It may as well
include investment rules favored by behavioral finance models. Indeed any portfolio
rule that is adapted to the information filtration is allowed in our framework.

Portfolio rules compete for market capital that is given by the total value of
all assets in every period in time. The endogenous price process provides a market
selection mechanism along which some portfolio rules gain market capital while
others lose. We give a description of the market selection process from a random
dynamical systems perspective. In each period in time the evolution of the distri-
bution of market capital, i.e. the wealth shares of the portfolio rules as percentages
of total market wealth, is given by a map that depends on the exogenous process
determining the asset payoffs. An equilibrium in this model is provided by a dis-
tribution of wealth shares across portfolio rules that is invariant under the market
selection process. Provided there are no redundant assets, every invariant distribu-
tion of market shares is generated by a monomorphic population, i.e. all investors
with strictly positive wealth use the same portfolio rule at such an equilibrium.
These invariant distributions are fixed points in an appropriate space.

A portfolio rule is evolutionary stable if the state in which this rule has total
market wealth is robust against the entry of new portfolio rules with sufficiently
small wealth. In other words, an evolutionary stable portfolio rule drives out any
mutation. Criteria for evolutionary stability as well as evolutionary instability are
derived for such fixed points. The derivation is via the linearization of the local
dynamics. These sufficient and necessary conditions can be used to single out
one particular portfolio rule, denoted by λ∗, that is the unique evolutionary stable
portfolio rule. The rule λ∗ is the only one that has highest exponential growth rate
at its own market prices. In a sense, when the population pursues the evolutionary
stable portfolio rule, it plays the “best response against itself.” Moreover, any other
market with one portfolio rule can successfully be invaded by a slightly different
rule, i.e. the market can be destabilized by mutant portfolio rules that are small
variations of the incumbent portfolio rule. This mutant portfolio rule will then lead
to a change of the asset valuation in the market.

An explicit formula for the λ∗-rule is given, and it is applicable to real financial
markets. This λ∗-rule prescribes to divide one’s wealth proportionally to the ex-
pected relative dividends of assets. It is therefore justified to call a financial market
with λ∗ only rational, while any other market is termed irrational.

The effect of thisλ∗-rule on asset prices is to equalize all assets’expected relative
returns—in particular asset pricing is log-optimal in the sense of Luenberger (1997,
Chapter 15). It is well known that log-optimal pricing is obtained if all investors
have logarithmic von Neumann–Morgenstern utilities (Kraus and Litzenberger,
1975). The portfolio rule λ∗ could therefore be obtained as well as in an idealized
market with a single representative agent having rational expectations. For a market
selection model based on rational expectations see Blume and Easley (2000) and
Sandroni (2000). Our paper shows that such an idealized market with rational
expectations can be justified by evolutionary reasoning.

A further implication of our evolutionary stability result is that, among all pro-
portional portfolio rules, only the λ∗-rule is a candidate for a globally evolutionary
stable portfolio rule, i.e. convergence to the status quo when the disturbance of the
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market can be large in the sense that any initial distribution of wealth is permit-
ted. Indeed, global stability of the λ∗-rule has recently been proved for the case
of short-lived assets Evstiigneev et al. (2002). Simulations with simple (i.e. deter-
ministic) portfolio rules also indicate that the λ∗-rule has this property in the case
of long-lived assets Hens et al. (2002). An analytical proof of this finding is still
warranted.

Our approach is related to the classical finance approach to maximize the ex-
pected logarithm of the growth rate of relative wealth for some exogenously given
return process. From this perspective we show which portfolio rule maximizes the
expected logarithm of the growth rate of wealth in a model with endogenously de-
termined returns. Following the early work by Kelly (1956) and Breiman (1961), in
a series of papers Hakansson (1970), Thorp (1971), Algoet and Cover (1988), and
Karatzas and Shreves (1998), among others, have explored this maximum growth
perspective. Computing the maximum growth portfolio is a stochastic non-linear
programming problem. Even if one restricts attention to i.i.d. returns, when mar-
kets are incomplete and there are more than two assets, there is no explicit solution
to this investment problem in general. To overcome this problem, numerical algo-
rithms to compute the maximum growth portfolio have been provided by Algoet
and Cover (1988) and Cover (1984, 1991). Our result is interesting also in this
respect because the simple portfolio rule that we obtain shows that considering the
equilibrium consequences of this maximization does not make matters more com-
plicated but rather much easier. Indeed, as mentioned above, the portfolio rule λ∗

can be characterized as the unique portfolio rule that maximizes the logarithm of
the growth rate of relative wealth in a population in which the rule itself determines
the returns. Note however that applying the λ∗-rule does not require the solution of
any optimization problem. The forces of market selection and its robustness against
mutations make the λ∗-rule look such a smart investment rule.

The next section presents the financial market model which has the mathe-
matical structure of a random dynamical system. The model is based on Lucas
(1978)’s infinite horizon asset market model with long-lived assets and a single
perishable consumption good. This model is populated by a finite number of dif-
ferent portfolio rules that are adapted to the information filtration. The evolution of
the stochastic wealth distribution is governed by a sequence of short-run equilibria.
In Section 3 we define the long-run equilibrium concepts and different stability
notions. In particular we define invariant distributions of relative wealth and show
that deterministic ones are characterized by monomorphic populations, i.e. where
all investors use the same portfolio rule. We then define evolutionary stability of
invariant distributions as robustness to the entry of other portfolio rules. Section 4
contains the main result. Section 5 concludes.

2 An evolutionary stock market model

This section introduces an infinite horizon asset market model with long-lived assets
and a single perishable consumption good, as in the seminal paper Lucas (1978).

There are K ≥ 1 long-lived assets and cash. Time is discrete and denoted
by t = 0, 1, ... . Each asset k = 1, ..., K pays off a dividend per share at the
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beginning of every period and before trade takes place in this period. Dk
t ≥ 0

denotes the total dividend paid to all shareholders of asset k at the beginning of
period t. Assume that

∑
k Dk

t > 0.1 Dk
t depends on the history of states of the

world ωt = (..., ω0, ..., ωt) where ωt ∈ S is the state revealed at the beginning
of period t. For technical convenience (and without loss of generality) we assume
infinite histories. S is assumed to be finite, and every state is drawn with some
strictly positive probability.

Dividend payoffs are in cash. Cash is only used to buy consumption goods—in
particular it cannot be used to store value. Assets are issued at time 0. The initial
supply of every asset k, sk

0 , is normalized to 1. At any period in time the supply
remains constant: sk

t = sk
0 . The supply of cash s0

t is given by the total dividends of
all assets.

There are finitely many portfolio rules indexed by i = 1, ..., I , I ≥ 2, each is
pursued by a group of investors. Each investor’s claim is equal to his initial share,
and consumption rates are identical within groups. The portfolio rule i is a time- and
history-dependent vector of proportions, denoted by λi

t(ω
t) = (λi

t,k(ωt))k=0,...,K

with 0 ≤ λi
t,k(ωt) ≤ 1 for all k and

∑K
k=0 λi

t,k(ωt) = 1. For each k ≥ 1, λi
t,k(ωt)

is the fraction of the wealth portfolio rule i assigns to the purchase of the risky asset
k in period t, while λi

t,0(ω
t) is the fraction of wealth held in cash.

In the following discussion we assume that everything is well-defined. In par-
ticular prices are assumed to be strictly positive. Sufficient conditions ensuring
well-definedness are provided after the full derivation of the model.

Portfolio rule λi
t(ω

t) with wealth wi
t purchases at the beginning of period t the

portfolio

θi
t,k =

λi
t,k(ωt) wi

t

pk
t

k = 0, 1, ..., K. (1)

θi
t,0 is the units of cash and θi

t,k is the units of assets held. Since we have normalized
the supply of the long-lived assets to 1, θi

t,k is the percentage of all shares issued
of asset k that portfolio rule i purchases. pk

t denotes the market clearing price of
asset k in period t. We normalize the price for cash p0

t = 1 in every period t. The
price of the consumption good is also the numeraire.

For any portfolio holdings (θi
t)i=1,...,I , the market equilibrium conditions for

cash and long-lived assets are

I∑
i=1

θi
t,k = sk

t , k = 0, ..., K, (2)

where the supply of the risky assets is sk
t = 1, while the supply of cash is

s0
t =

K∑
k=1

Dk
t (ωt) > 0 (3)

with strict positivity by the assumption that at least one asset pays a dividend.
1 This assumption avoids “dead” periods in which no dividends are paid.
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The budget constraint of portfolio rule i in every period t = 0, 1, ...

K∑
k=0

pk
t θi

t,k = wi
t (4)

is fulfilled because the fractions λi
t,k(ωt), k = 0, ..., K, sum to one, see (1).

Since the consumption good is perishable, the wealth of portfolio rule i (in
terms of the price of the consumption good) at the beginning of period t + 1 and
after dividends are payed is

wi
t+1 =

K∑
k=1

(Dk
t+1(ω

t+1) + pk
t+1) θi

t,k. (5)

Wealth can change over time because of dividend payments and capital gains. Since
the cash θi

t,0 held by every portfolio rule is consumed, the amount of cash available
in any one period stems only from the current’s period dividend payments.

The market-clearing price pk
t for the risky assets (k ≥ 1) can be derived from

(2) by inserting (1). One finds

pk
t =

I∑
i=1

λi
t,k(ωt) wi

t = λt,k(ωt) wt (6)

where λt,k = (λ1
t,k, ..., λI

t,k) and wT
t = (w1

t , ..., wI
t ). Thus the price of asset k is

the weighted sum of the portfolio rules.
Inserting (1) and (6) in (5) yields

wi
t+1 =

K∑
k=1

(
Dk

t+1(ω
t+1) + λt+1,k(ωt+1) wt+1

) λi
t,k(ωt) wi

t

λt,k(ωt) wt
(7)

This is an implicit equation for portfolio rule i’s wealth in period t + 1, wi
t+1, for

a given distribution of wealth wt across portfolio rules in period t. Define

Ai
t =

K∑
k=1

Dk
t+1(ω

t+1) θi
t,k, where θi

t,k =
λi

t,k(ωt) wi
t

λt,k(ωt) wt
(8)

The time index refers to the dependence on wealth. The dividend income of portfolio
rule i, Ai

t and the portfolio θi
t,k both depend on the wealth in period t. (7) can now

be written as

wi
t+1 = Ai

t +
K∑

k=1

θi
t,k λt+1,k(ωt+1) wt+1 (9)

and thus

wt+1 = At + Θt Λt+1(ωt+1) wt+1 (10)

where Λt+1(ωt+1)T = (λt+1,1(ωt+1)T , ..., λt+1,K(ωt+1)T ) ∈ R
I×K is the ma-

trix of portfolio rules, and Θt ∈ R
I×K is the matrix of portfolios in period t.
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AT
t = (A1

t , ..., A
I
t ) ∈ R

I are the dividends payments, and Θt Λt+1(ωt+1) wt+1
are the capital gains.

Solving the linear equation (9) gives an explicit law of motion governing the
evolution of the wealth distribution over portfolio rules. One has

wt+1 =
[
Id − Θt Λt+1(ωt+1)

]−1
At (11)

(assuming existence of the inverse matrix) with Id being the identity matrix in R
I×I .

The following result ensures that the evolution of wealth (11) is mathematically
well-defined.

The next two assumptions are imposed throughout the text.

(A.1) Consumption takes place but does not exhaust any portfolio rule’s wealth,
i.e. 0 < λi

t,0(ω
t) < 1 for all i, t and ωt.

(A.2) There is at least one completely diversified portfolio rule, i.e. there is a j such
that λj

t,k(ωt) > 0 for all k = 1, ..., K, t and ωt.

Proposition 1. Suppose w0 > 0, (A.1) holds, and (A.2) is satisfied for some port-
folio rule with wj

0 > 0. Then the evolution of wealth (11) is well-defined in all
periods in time. Moreover, for every i = 1, ..., I , wi

t > 0 if and only if wi
0 > 0.

Proof of Proposition 1. It suffices to prove the following which ensures that every
transition from time t to t + 1 is well-defined: Suppose wt > 0, (A.1) holds, and
(A.2) is satisfied for some portfolio rule with wj

t > 0. Then (11) is well-defined,
wt+1 > 0, and, moreover, wi

t+1 > 0 if and only if wi
t > 0 for every i = 1, ..., I .

In particular a portfolio rule j that satisfies (A.2) and has strictly positive initial
wealth wj

0 > 0 fulfills wj
t > 0 for all t.

We show first that the matrix C := Id−Θt Λt+1(ωt+1) is invertible by proving
that it has a column dominant diagonal Murata (1977, Corollary p. 22). C has
entries

Cjj = 1 −
K∑

k=1

λ̄j
k

λj
kwj

λkw
and Cij = −

K∑
k=1

λ̄j
k

λi
kwi

λkw
(i �= j)

on the diagonal and off-diagonal, respectively, where λ̄i
k = λi

t+1,k(ωt+1), λi
k =

λi
t,k(ωt), and w = wt for notational ease. All entries are well-defined because

prices λkw ≥ λj
kwj > 0 (for some j) by our assumption.

The condition for a column dominant diagonal is in particular satisfied, if for
every j = 1, ..., I ,

|Cjj | >
∑
i �=j

|Cij |. (12)

Off-diagonal entries are non-positive, i.e. Cij ≤ 0 for i �= j. The diagonal
elements are strictly positive, i.e. Cjj > 0, since 0 ≤ λj

kwj/(λkw) ≤ 1 and
therefore

Cjj ≥ 1 −
K∑

k=1

λ̄j
k = 1 − (1 − λ̄j

0) = λ̄j
0 > 0
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according to assumption (A.1).
Thus (12) is equivalent to

1 >

I∑
i=1

K∑
k=1

λ̄j
k

λi
kwi

λkw
(13)

Since the right-hand side of the last equation is

K∑
k=1

λ̄j
k

I∑
i=1

λi
kwi

λkw
=

K∑
k=1

λ̄j
k = 1 − λ̄j

0

and λ̄j
0 > 0 by assumption, (13) holds true. Thus C is invertible.

The matrix C has strictly positive diagonal entries and non-positive off-diagonal
entries. Thus, Murata (1977, Theorem 23, p. 24) ensures that wt+1 ≥ 0 if At ≥
0 (see (8) for the definition of At). Clearly, At ≥ 0 if wt ≥ 0. This implies
λt+1,k(ωt+1) wt+1 ≥ 0 for all k.

Our assumptions ensure that there is a portfolio rule j which is completely
diversified and has strictly positive wealth. This implies θj

t,k > 0 for all k. Because

at least one asset pays a strictly positive dividend, Aj
t > 0. Equation (7) implies,

together with the above result that prices in period t+1 are non-negative, wj
t+1 > 0.

By assumption (A.2) one also has λj
t+1,k(ωt+1) > 0 for all k. Since for each

investor with wi
t > 0, θi

t,k > 0 for some k. (7) further implies that wi
t+1 > 0 for

every investor with wi
t > 0. Obviously, wi

t+1 = 0 if wi
t = 0. This completes the

proof. ��
Proposition 1 ensures that the evolution of the wealth distribution on R

I
+ is well-

defined: for given wt, (11) yields the distribution of wealth wt+1 in the subsequent
period in time. We can state the law of motion in the convenient form2

wt+1 = ft(ωt+1, wt) (14)

where

ft(ωt+1, wt) =
Id −

[
λi

t,k(ωt)wi
t

λt,k(ωt)wt

]
i,k

Λt+1(ωt+1)




−1 [
K∑

k=1

Dk
t+1(ω

t+1)
λi

t,k(ωt)wi
t

λt,k(ωt)wt

]
i

The final step is to derive the law of motion for the portfolio rules’ market
shares. This will complete the derivation of the evolutionary stock market model.

The following assumption is imposed throughout the remainder of this paper.

2 It is also convenient to define wt+1 = (0, ..., 0), if wt = (0, ..., 0).
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(B.1) There is a common constant consumption rate, i.e. λi
t,0(ω

t) = λ0.

It is clear that, other things being equal, a smaller rate of consumption leads to
a higher growth rate of wealth. Without assumption (B.1) the evolution of wealth
would be biased in favor of portfolio rules with higher saving rate. Since we want
to analyze the relative performance of different asset allocation rules no rule should
have an disadvantage in terms of the rate at which wealth is withdrawn from it.

Aggregating (7) over portfolio rules, one finds

Wt+1 =
K∑

k=1

Dk
t+1(ω

t+1) +
K∑

k=1

λt+1,k(ωt+1) wt+1

= Dt+1(ωt+1) + (1 − λ0) Wt+1 (15)

where Dt+1(ωt+1) =
∑K

k=1 Dk
t+1(ω

t+1) is the aggregate dividend payment. The

last equality holds because
∑K

k=1 λt+1,k wt+1 =
∑I

i=1
∑K

k=1 λi
t+1,k wi

t+1 = (1−
λ0)

∑I
i=1 wi

t+1.
Equation (15) implies

Wt+1 =
Dt+1(ωt+1)

λ0
(16)

The economy grows (or declines) with rate Dt+1(ωt+1)/λ0 Wt. The growth
rate is thus the ratio of the rate at which additional wealth is injected by dividends,
Dt+1(ωt+1)/Wt, to the rate at which wealth is withdrawn from the process for
consumption, λ0.

The market share of investor i is ri
t = wi

t/Wt. Using (16) and exploiting the
particular structure of the variables (8) that define the law of motion (14), we obtain

rt+1 =
λ0

Dt+1(ωt+1)
ft(ωt+1, rt) (17)

or, equivalently,

rt+1 =

λ0


Id −

[
λi

t,k(ωt)ri
t

λt,k(ωt)rt

]
i,k

Λt+1(ωt+1)




−1 [
K∑

k=1

dk
t+1(ω

t+1)
λi

t,k(ωt)ri
t

λt,k(ωt)rt

]
i

where

dk
t+1(ω

t+1) =
Dk

t+1(ω
t+1)

Dt+1(ωt+1)

is the relative dividend payment of asset k. Equation (17) is referred to as the market
selection process.

The wealth of an investor i in any period in time can be derived from their
market share and the aggregate wealth, defined by (16), as

wi
t+1 =

Dt+1(ωt+1)
λ0

ri
t+1 (18)
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3 Evolutionary stability

This section introduces the stability concepts needed to formalize the notion of
evolutionary stability of portfolio rules. Stability is to be understood as properties
of the long-run behavior of the portfolio rules’ wealth shares under the market
selection process. Our analysis is restricted to the stationary case which is achieved
by assuming that the calender date neither enters through portfolio rules nor the
dividend process, i.e. the model becomes stationary; only the observed history
matters.

(B.2) Portfolio rules are stationary, i.e. λi
t,k(ωt) = λi

k(ωt) for all i = 1, ..., I and
k = 1, ..., K.

(B.3) Relative dividend payments are stationary and depend only on the current
state of nature, i.e. dk

t (ωt) = dk(ωt) for all k = 1, ..., K.

Assumption (B.3) is fulfilled, for instance, if Dk
t+1(ω

t+1) = dk(ωt+1) Wt

with Wt =
∑

i wi
t, i.e. the dividend payment of every asset has an idiosyncratic

component dk(ωt+1) (depending only on the state of nature in the respective period)
and an aggregate component Wt. Dividends grow or decline with the same rate as
aggregate wealth.

Under these assumptions, the market selection process (17) generates a random
dynamical system (Arnold 1998) on the simplex ∆I={r ∈ R

I | ri≥0,
∑

i ri=1}.
For any initial distribution of wealth w0 ∈ R

I
+, (17) defines the path of market

shares on the event tree with branches ωt. The initial distribution of market shares
is (ri

0)i = (wi
0/W0)i. Formally, this can be stated as follows.

Denote by Ω = SZ the set of all sequences of states of nature ω = (ωt)t∈Z.
Denote the right-hand side of (17) by h(ωt+1, rt) : ∆I → ∆I . This map is in-
dependent of the calender date by assumptions (B.1)-(B.3). Define ϕ(t, ω, r) =
h(ωt+1, ·) ◦ . . . ◦h(ω1, r) for all t ≥ 1, and ϕ(0, ω, r) = r. ϕ(t, ω, r) is the vector
of market shares at time t for the initial distribution of market shares r and the
sequence of realizations of states ω.

Given stationary portfolio rules (λi), one is particularly interested in those
distribution of wealth shares that evolve in a stationary fashion over time. Here
we restrict ourselves to deterministic distributions of market shares, i.e. those that
are fixed under the market selection process (17). This restriction might seem to
be very strong but actually it is not. Before discussing this point let us specify the
notion of a deterministic fixed point. Given portfolio rules (λi), denote by ϕ the
associated random dynamical system.

A state r̄ ∈ ∆I is called a (deterministic) fixed point of ϕ if, for all ω ∈ Ω and
all t,

r̄ = ϕ(t, ω, r̄). (19)

The vector of market shares r̄ is also said to be invariant under the market selection
process (17).

By the definition of ϕ(t, ω, r), condition (19) is equivalent to r̄ = ϕ(1, ω, r̄)
for all ω, i.e. a deterministic state is fixed under the one-step map if and only if it is
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fixed under all t-step maps. It is straightforward to see that any state in which one
portfolio rule owns the entire wealth does not change over time, i.e. in any set of
portfolio rules each unit vector (i.e. each vertex of ∆I ) is a fixed point. This follows
from Proposition 1 which shows that ri = 0 implies ϕi(t, ω, r) = 0.

To elaborate on the degree of restrictiveness of only considering fixed points,
consider a situation in which several portfolio rules co-exist and the distribution
of market shares is a stationary process that obeys the law of motion. In other
words, there is a random vector r̄(ωt) ∈ ∆I such that r̄(ωt+1) = ϕ(t, ω, r̄(ωt))
for all t, ω. This is a more general, stochastic fixed point concept, see e.g. Schenk-
Hoppé (2001) for a detailed discussion. One can now define a new portfolio rule
λ̂(ω) =

∑I
i=1 λi(ω) r̄i(ω). This portfolio rule inherits stationary, and in any market

with λ̂ managing total wealth, prices are identical to those in the original model.
In terms of evolutionary stability, as introduced below, these two models are not
exactly equivalent but the latter provides necessary conditions for stability as well
as sufficient conditions for instability. This is so because introducing a new portfolio
rule reduces the market share of all incumbent rules by the same proportion.

The following result even holds without conditions (B.2)–(B.3).

Proposition 2. Suppose the dividend plus capital gain matrix has full rank at a
deterministic fixed point. Then all portfolio rules with positive wealth are identical.

Proof. Equations (7) and (16) give

ri
t+1 =

K∑
k=1

(λ0 dk
t+1(ωt+1) + qk

t+1(ω
t+1))

λi
t,k(ωt)ri

t

qk
t (ωt)

(20)

with

qk
t (ωt) =

I∑
i=1

λi
t,k(ωt) ri

t. (21)

Suppose ri
t+1 = ri

t = ri > 0 for all i. Then equation (20) can be written as(
K∑

k=1

[
λ0 dk

t+1(ωt+1) + qk
t+1(ω

t+1)
] λi

t,k(ωt)

qk
t (ωt)

− 1

)
ri = 0. (22)

If the dividend plus capital gain matrix

λ0 dk
t+1(ωt+1) + qk

t+1(ω
t+1)

has full rank (as a function of k and ωt+1 for each given history ωt), then (22)
implies λi

t,k(ωt) = qk
t (ωt). In light of (21), this means that for all i = 1, ..., I

λi
t,k =

I∑
j=1

λj
t,k rj .

Hence λi and λj are identical for all i, j. ��
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In this paper we are only interested in stable fixed points of the market selection
process. Loosely speaking, stability means that small perturbations of the initial
market share distribution do not have a long-run effect. If a fixed point of market
shares is stable, every path of market shares starting in a neighborhood of this fixed
point becomes asymptotically identical to it. Since fixed points are associated to
unique portfolio rules by Proposition 2 (the total wealth being concentrated on one
portfolio rule), the natural definition of a portfolio rule’s stability is that of the fixed
point’s stability. Two different notions of stability will be needed. They are defined
as follows.

In what follows the analysis is restricted to the case of two portfolio rules. One
pursued by the incumbent and the other by the mutant, or entrant. It is assumed that
for any given incumbent portfolio rule λi, mutant portfolio rules λj are distinct in
the sense that they produce a different payoff stream with certainty. Otherwise it
might happen that incumbent and mutant cannot be distinguished by their payoffs.
We assume that for almost every ω there are infinitely many points in time t such
that λi(ωt) �= λj(ωt). We write λj �= λi to express this property.3 The first entry
in the pair of wealth shares r = (ri, rj) refers to the incumbent, while the other
refers to the entrant.

Definition 1. A portfolio rule λi is called evolutionary stable, if for every portfolio
rule λj �= λi there is a random variable ε > 0 such that limt→∞ ϕi(t, ω, r) = 1
for all ri ≥ 1 − ε(ω) almost surely.

For each evolutionary stable portfolio rule there exits an entry barrier (a random
variable here) below which no new portfolio rule gains against the incumbent’s rule.
Any perturbation of the distribution of market shares, if sufficiently small, does not
change the long-run behavior. The market selection process asymptotically leaves
the mutant with no market share.

Finally, a corresponding stability criterion for local mutations is introduced.

Definition 2. A portfolio rule λi is called locally evolutionary stable, if there exists
a random variable δ(ω) > 0 such that λi is evolutionary stable for all portfolio
rules λj �= λi with ‖λi(ω) − λj(ω)‖ < δ(ω) for all ω.

A locally evolutionary stable portfolio rule is evolutionary stable with respect to
local mutations. That is, mutants’ portfolio rules are restricted to small deviations
from the status quo rule.

Consider again the case in which several portfolio rules co-exist in the market.
Evolutionary stability of λ̂(ω) =

∑I
i=1 λi(ω) r̄i(ω) implies that the state r̄(ω) is

stable against local deviations which reduce all incumbents’ market shares by the
same proportion, i.e. in the perturbation in the original system is perpendicular to
the face of the simplex in which r̄(ω) is located. For instance if there is one mutant,
the perturbed system starts at (ε(ω), (1 − ε(ω))r̄1(ω), ..., (1 − ε(ω))r̄I(ω)). Thus
evolutionary stability (instability) of the fixed point which assigns all wealth to

3 Under ergodic states of the world this set has probability one or zero. This holds in particular if
the state is an i.i.d. or irreducible Markov process. Assuming that this property holds with positive
probability then ensures that it holds almost surely.
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λ̂(ω) is a necessary (sufficient) condition for evolutionary stability (instability) of
the random fixed point r̄(ω).

4 The main result

A detailed analysis is provided of the evolutionary stability of stationary portfolio
rules. The local (in)stability conditions obtained here lead to a unique evolution-
ary stable portfolio rule, provided the relative dividend payoffs are governed by
a stationary Markov process. The derivation of these conditions uses an approach
that is motivated by the technique first applied for short-lived asset in Hens and
Schenk-Hoppé (2005) – though the model in that paper is considerably simpler.

To analyze evolutionary stability of a portfolio rule, one has to consider the
random dynamical system (17) with an incumbent (with market share r1

t ) and a
mutant (with market share r2

t = 1 − r1
t ). The resulting one-dimensional system

governing the market selection process for two stationary portfolio rules is given
by

r1
t+1 =

λ0

δt+1

([
1−

K∑
k=1

λ2
t+1,kθ2

t,k

] K∑
k=1

dk
t+1θ

1
t,k +

[ K∑
k=1

λ2
t+1,kθ1

t,k

] K∑
k=1

dk
t+1θ

2
t,k

)

(23)

where λi
t,k = λi

k(ωt), dk
t+1 = dk(ωt+1), and

δt+1 =

[
1 −

K∑
k=1

λ1
t+1,kθ1

t,k

][
1 −

K∑
k=1

λ2
t+1,kθ2

t,k

]

−
[

K∑
k=1

λ2
t+1,kθ1

t,k

][
K∑

k=1

λ1
t+1,kθ2

t,k

]
.

The portfolio of the incumbent and the mutant, respectively, are given by

θ1
t,k =

λ1
t,k r1

t

λ1
t,k r1

t + λ2
t,k (1 − r1

t )
and θ2

t,k =
λ2

t,k (1 − r1
t )

λ1
t,k r1

t + λ2
t,k (1 − r1

t )
.

Denote the right-hand side of (23) by h(ωt+1, r1
t ). The variational equation

vt+1 = [∂h(ωt+1, r1
t )/∂r1

t |r1
t =1]vt governs the stochastic dynamics of the lin-

earization of (23) at the fixed point r1
t ≡ 1. It is derived from the derivative of

(23)’s right-hand side with respect to r1
t evaluated at r1

t = 1. This derivative can
be equated as

∂h(ωt+1, r1
t )

∂r1
t

∣∣∣∣
r1

t =1
=

K∑
k=1

(
λ1

k(ωt+1) + λ0 dk(ωt+1)
) λ2

k(ωt)
λ1

k(ωt)
. (24)

(The necessary calculations are lengthy but elementary and therefore omitted.)
From (24) one can read off the exponential growth rate of portfolio rule λ2’s

market share in a small neighborhood of r1 = 1, i.e. the state in which portfolio rule
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λ1 owns total market wealth. Before going into detail, let us make an assumption on
the process that governs the state of nature and in turn determines the asset payoffs.

Throughout the following the analysis is restricted to the stationary Markov
case. It is imposed that

(C) The state of nature follows a Markov process with strictly positive transition
probabilities, i.e. πss̃ > 0 for all s, s̃ ∈ S.

Together with the stationarity assumption, (C) implies that the state of nature
is governed by an ergodic process.

The exponential growth rate of portfolio rule λ2’s wealth share in a small neigh-
borhood of r1 = 1 is given by the Lyapunov exponent of the above variational
equation. It is given by

gλ1(λ2) =
∫

SN

∑
s∈S

πω0s ln

[
K∑

k=1

(
λ1

k(ω0, s) + λ0 dk(s)
) λ2

k(ω0)
λ1

k(ω0)

]
P(dω0)

(25)

where P denotes the stationary probability measure on histories ωt induced by the
Markov chain.

gλ1(λ2) can be interpreted as the growth rate of the portfolio rule λ2 at λ1-prices
because for r1 = 1 the asset prices correspond to the budget shares of portfolio
rule λ1 and thus to the vector λ1. Clearly asset prices are not constant but change
over time due to changes in the wealth allocation of the incumbent’s portfolio rule
λ1. For instance at time t, prices are equal to the vector λ1(ωt).

This growth rate determines the local stability of the fixed point r1 = 1, i.e.
the qualitative properties of the original, non-linear system’s local dynamics is
governed by that of its linearization, see Hens and Schenk-Hoppé (2005) for a
detailed account. If the growth rate is negative, gλ1(λ2) < 0, portfolio rule λ2

loses market share while portfolio rule λ1’s market share tends to one. In this case
the portfolio rule λ1 is stable against λ2. If the growth rate is positive, gλ1(λ2) >
0, portfolio rule λ2 gains market share while that of rule λ1 falls. In this case
the portfolio rule λ1 is not stable against λ2. The latter property defines (local)
evolutionary instability of a portfolio rule.

Our main result shows that this (in)stability condition can be employed to single
out a unique evolutionary stable portfolio rule. Moreover, an explicit representation
can be given for this portfolio rule

Theorem 1. Define the portfolio rule λ∗ by λ∗
0 = λ0 and

λ∗ = λ0

∞∑
m=1

(1 − λ0)m πm d, (26)

using the matrix notation λ∗ = (λ∗
k(s))s,k and d = (dk(s))s,k.
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Stability

(i) Suppose [λ∗
k(s) + λ0 dk(s)]s,k has full rank. Then for every portfolio rule

λ �= λ∗, one has gλ∗(λ) < 0. Thus λ∗ is evolutionary stable.

(ii) For every λ, one has gλ∗(λ) ≤ 0. Thus λ∗ is never evolutionary unstable.

Instability

(iii) For every λ �= λ∗ there exist arbitrarily close portfolio rules µ �= λ such that
gλ(µ) > 0. Thus every λ �= λ∗ is locally evolutionary unstable and, in particular,
evolutionary unstable.

A proof of Theorem 1 is provided at the end of this section.
The portfolio rule λ∗ defined in Theorem 1 is a stationary vector of budget

shares and forms a Markov process that only depends on the current state of nature.
The portfolio rule λ∗ is well-defined because πmd is bounded and 1 − λ0 < 1.

According to the portfolio rule λ∗ one has to divide wealth across assets ac-
cording to the expected discounted value of their (relative) future dividend payoffs.
The discounting rate is given by the saving rate 1 − λ0, and the expected value is
taken with respect to the objective probability measure. If the λ∗ portfolio rule man-
ages all market wealth then all asset prices are given by this vector of fundamental
values. In this respect the λ∗-rule corresponds to a rational market.

Theorem 1 shows that the λ∗-rule has the following properties. A λ∗ market is
evolutionary stable, it cannot be invaded by a portfolio rule that is distinct from λ∗.
Every non-λ∗ market is not robust against small deviations from the status quo. The
stronger version of the first finding requires that every mutant portfolio generates
a different payoff stream—this is ensured here by the full rank condition.

The intuition for the main result is immediate from the expression for the expo-
nential growth rate (25). From this equation one can read off that λ∗ is the portfolio
rule with the highest exponential growth rate in any population where itself deter-
mines market prices. In this sense the λ∗ portfolio rule plays the “best response
against itself.” (25) also shows that the λ∗ portfolio rule is an equilibrium in a stan-
dard two-period economy with a log-utility investor. Therefore the λ∗ portfolio rule
yields the maximum growth portfolio and λ∗-prices prevail in such an economy.

The budget shares of the λ∗ portfolio rule have the following remarkable prop-
erty. From the definition (26) one can easily verify that λ∗ satisfies

E(λ∗
k | s) + λ0 E(dk | s) = λ∗

k(s)/(1 − λ0) (27)

for all k and all s.4 That is, the λ∗ portfolio rule “balances” capital and dividend
gains. Due to the Markov structure of dividends, an adjustment is necessary when-
ever the conditional expected future payoff E(dk | s) changes.

Few remarks on the case of i.i.d. dividend payments are in order. If the state
of nature is i.i.d., the transition probability matrix has constant rows, each with

4 The conditional expected value is defined as E(dk | s) =
∑

s̃ πss̃ dk(s̃). The term (1 − λ0) on
the right-hand side appears because

∑K
k=1 λ∗

k(s) = 1 − λ0.
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the probability of the corresponding state. The portfolio rule is straightforward to
equate as λ∗

k = (1−λ0)Edk, i.e. the budget shares are equal to the assets’ expected
payoff.Again in a λ∗ market each asset is priced at its fundamental value. Moreover,
in the i.i.d. case the budget shares are fixed since the current state of nature does
not provide any valuable information on the future dividend payoffs.

Let us finally give a result on the full rank condition in Theorem 1(i).

Lemma 1. The condition

[λ∗
k(s) + λ0 dk(s)]s,k has full rank (28)

is satisfied
(i) in the i.i.d. case, if and only if [dk(s)]s,k has full rank.
(ii) in the Markov case, if and only if [dk(s)]s,k and [Id− (1−λ0)π] have full rank.

Proof. In the i.i.d. case, λ∗
k = (1 − λ0)Edk, i.e. every column vector of the matrix

λ∗ is constant. As all row sums of d = [dk(s)]s,k are equal to 1, adding a constant
column vector does not change d’s rank. Therefore, if d has full rank then so does
λ∗ + λ0d. And the converse also holds true.

In the Markov case, notice that λ∗ + λ0d = λ0[
∑∞

m=0(1 − λ0)m πm] d =
λ0[Id − (1 − λ0)π]−1 d. Assertion (ii) follows straightforwardly from this repre-
sentation. ��

The proof also shows that the full rank condition is satisfied if d has full rank
and the Markov transition matrix is sufficiently close to a matrix with constant rows
(as is true in the i.i.d. case). Let π be the transition matrix of an i.i.d. process, and
denote all (constant) entries on row s by ps. Then Id − (1 − λ0)π has a column-
dominant diagonal, if 1 − (1 − λ0)ps >

∑
s̄ �=s(1 − λ0)ps̄. The right-hand side is

equal to (1 − λ0)(1 − ps). As λ0 > 0, the previous inequality holds. Continuity
now ensures the above assertion.

We conclude the section by providing the main result of this paper.

Proof of Theorem 1. We prove assertion (iii) before treating (i) and (ii). For
notational simplicity, let us normalize portfolio rules with 1 − λ0 to achieve∑K

k=1 λk = 1, and let us denote λ = (λ1, .., λK) ∈ ∆K .
Let λ �= λ∗. To prove assertion (iii), it suffices to show that gλ(µ) > 0 for some

µ in a given neighborhood of λ. Using (25), the growth rate of portfolio rule µ at
λ-prices can be written as

gλ(µ) =
∫

SN

g̃λ(µ(ω0), ω0) P(dω0) (29)

with

g̃λ(µ(ω0), ω0) =
∑
s∈S

πω0s ln

[
K∑

k=1

[
(1 − λ0)λk(ω0, s) + λ0 dk(s)

] µk(ω0)
λk(ω0)

]
.

Obviously, g̃λ(λ(ω0), ω0) ≡ 0 and, for every fixed ω0, µ → g̃λ(µ, ω0) is a concave
function.
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Assertion (iii) is proved if it can be established that, for every λ �= λ∗, gλ(µ)
does not take on a local maximum at λ = µ.

One has

∂g̃λ(µ(ω0), ω0)
∂µn(ω0)

=
∑
s∈S

πω0s

[
(1 − λ0) λn(ω0, s) + λ0 dn(s)

]
/λn(ω0)∑K

k=1 [(1 − λ0) λk(ω0, s) + λ0 dk(s)] µk(ω0)/λk(ω0)

Thus

K∑
n=1

(
∂g̃λ(µ(ω0), ω0)

∂µn(ω0)

∣∣∣∣
µ(ω0)=λ(ω0)

)
dµn(ω0)

=
K∑

n=1

∑
s∈S πω0s

[
(1 − λ0) λn(ω0, s) + λ0 dn(s)

]
λn(ω0)

dµn(ω0) (30)

for every dµ1(ω0), ..., dµK(ω0) with
∑K

n=1 dµn(ω0) = 0.
We now show that (30) is strictly positive for some (dµ1(ω0), ..., dµK(ω0)) with∑K

n=1 dµn(ω0) = 0 provided λ(ω0) �= λ∗(ω0). This property implies existence
of some µ(ω0), arbitrarily close to λ(ω0), with g̃λ(µ(ω0), ω0) > 0.

We then choose such a µ(ω0) for all ω0 with λ(ω0) �= λ∗(ω0) (which happens
with some strictly positive probability by the assumption λ �= λ∗) and set µ(ω0) =
λ(ω0) otherwise. This defines a portfolio rule µ that can be arbitrarily close to
λ. Measurability of µ follows from the fact that, due to finiteness of S, the sigma
algebra of the probability space under consideration is the power set (and thus every
function is measurable). By construction the portfolio rule µ satisfies gλ(µ) > 0,
which verifies assertion (iii).

It is clear that (30) is strictly positive for some (dµ1(ω0), ..., dµK(ω0)) with∑K
n=1 dµn(ω0) = 0 if and only if∑

s∈S πω0s

[
(1 − λ0) λn(ω0, s) + λ0 dn(s)

]
λn(ω0)

(31)

is not constant in n (for given ω0).
We will show that (31) is constant, i.e.∑

s∈S

πω0s

[
(1 − λ0) λn(ω0, s) + λ0 dn(s)

]
= cλn(ω0)

for all n, if and only if λ = λ∗.
Taking the sum over n on both sides of the last equality shows that c = 1. The

condition that (31) is constant therefore becomes∑
s∈S

πω0s

[
(1 − λ0) λn(ω0, s) + λ0 dn(s)

]
= λn(ω0) (32)

By definition of λ∗, (32) holds if λ = λ∗. To show that (32) implies λ = λ∗, we
need to consider three distinct cases: (a) λ(ω0) does not depend on ω0; (b) λ(ω0)
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depends only on a finite history, i.e. λ(ω0) = λ(ω−T , ..., ω0) for some T ≥ 0; and
(c) λ(ω0) depends on an infinite history.

Case (a): In this case (32) takes the form

(1 − λ0) λn + λ0 E(dn | ω0) = λn (33)

which is equivalent to E(dn | ω0) = λn. This can only hold if the dividend process
is an i.i.d. process, otherwise it is a contradiction. But in the i.i.d. case, λ∗

n = Edn.
Case (b): If λ(ω0) depends only on ω0, then obviously λ = λ∗, cf. (27). For a

portfolio rule λ(ω0) that depends on a history of length T ≥ 1, (32) becomes∑
s∈S

πω0s [(1 − λ0) λn(ω−T+1, ..., ω0, s) + λ0 dn(s)] = λn(ω−T , ..., ω0) (34)

If λn would vary with ω−T , (34) could not hold for all ω0. Thus (34) implies
that λ(ω0) = λ(ω−T+1, ..., ω0). Repeated application shows that λ(ω0) = λ(ω0).
However, this implies λ = λ∗, as discussed above.

Case (c): In this case, (32) reads∑
ω1∈S

πω0ω1

[
(1 − λ0) λn(ω1) + λ0 dn(ω1)

]
= λn(ω0). (35)

An analogous equation holds with λn(ω1) on the right-hand side,∑
ω2∈S

πω1ω2

[
(1 − λ0) λn(ω2) + λ0 dn(ω2)

]
= λn(ω1). (36)

Inserting (36) in (35) yields

λn(ω0) = (1 − λ0)2π2
ω0ω2

λn(ω2)

+λ0

[
(1 − λ0)

∑
ω2

π2
ω0ω2

dn(ω2) +
∑
ω1

π1
ω0ω1

dn(ω1)

]

where πm
ω0ωm

=
∑

ω1,...,ωm
πω0ω1 ...πωm−1ωm .

Repeating this procedure and observing that

(1 − λ0)m
∑
ωm

πm
ω0ωm

λn(ωm) → 0 as m → ∞

we find

λn(ω0) =
λ0

1 − λ0

∞∑
m=1

(1 − λ0)m
∑
ωm

πm
ω0ωm

dn(ωm) (37)

Thus λn(ω0) is a function of ω0 only, implying that λ = λ∗, as discussed in case (b).
Assertion (i) can be proved as follows. If the full rank condition holds for some

ω0, then µ → g̃λ(µ, ω0) is a strictly concave function. This is so because the full
rank assumption in (i) ensures that ([(1 − λ0)λ∗

k(s) + λ0 dk(s)]/λ∗
k(ω0))s,k also

has full rank. (After the above normalization of portfolio rules, the condition in (i)
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says that ((1−λ0)λ∗
k(s)+λ0 dk(s))s,k has full rank. The above term is obtained by

multiplying every column with a strictly positive constant. This operation preserves
the full rank.)

Statement (i) is thus obtained if it can be shown that the maximum of µ →
g̃λ∗(µ, ω0) with µ ∈ ∆K is equal to zero and that this maximum is attained at
µ(ω0) = λ∗(ω0). Obviously, g̃λ∗(λ∗(ω0), ω0) ≡ 0. The function µ → g̃λ∗(µ, ω0)
takes on its maximum at µ(ω0) = λ∗(ω0) if (31) is constant for λ(ω0) = λ∗(ω0).
But this has already been proved.

Assertion (ii) is obvious from the proof of (i). If the full rank condition does not
hold, then zero is still the maximum of µ → g̃λ∗(µ, ω0). However, the portfolio
rule at which this maximum is attained is not necessarily unique. Thus the assertion
is weaker than in (i). ��

5 Conclusion and outlook

We have studied the evolution of wealth shares of portfolio rules in arbitrary (com-
plete or incomplete) markets with long-lived assets. Prices are determined endoge-
nously. The performance of a portfolio rule in the process of repeated reinvestment
of wealth is determined by the wealth share eventually conquered in competition
with other portfolio rules. Using random dynamical systems theory, we derived
necessary and sufficient conditions for the evolutionary stability of portfolio rules.
In the case of Markov (in particular i.i.d.) payoffs these local stability conditions
lead to a (surprisingly) simple portfolio rule that is the only evolutionary stable
one. This rule possesses an explicit representation as it invests proportionally to
the expected relative dividends. This stability property may help to explain why on
long-term averages stock markets look quite rational while severe departures are
possible in the short- and medium-term.

As in many other papers on economic theory, our results are based on several
assumptions and modeling choices that shall be extended in future research. For
example, we have restricted portfolio rules to be adapted to the information filtration
given by the revelation of the states of the world that are exogenous to the model.
Hence, we did not allow for price dependent portfolio rules as for example simple
momentum strategies like “buy (sell) when prices have gone up (down).” Moreover,
we made a clear distinction between the market selection process and the mutation
process. The latter act at the selection process only once the former has settled at
a point of rest. It would be desirable to consider a selection process with ongoing
mutations. Finally, in our model the wealth shares of the portfolio rules increase
due to “internal growth,” i.e. they increase by the returns they have generated. This
process shall be augmented by a process of “external growth” in which portfolio
rules increase their wealth share by attracting wealth from less successful rules. Data
from Mutual Funds and Hedge Funds, for example, show that internal growth leads
external growth so that one effect of this extension my be speeding up the market
selection process. However, this and the other possible extensions mentioned have
to be checked carefully in future research.
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