
Computational Optimization and Applications, 35, 239–260, 2006
c© 2006 Springer Science + Business Media, LLC. Manufactured in The Netherlands.

DOI: 10.1007/s10589-006-6513-6

Solving the p-Median Problem with a
Semi-Lagrangian Relaxation∗

C. BELTRAN† cesar.beltran@urjc.es

Logilab, HEC, University of Geneva, Switzerland

C. TADONKI tadonki@embl.fr

Centre Universitaire Informatique, University of Geneva, Switzerland

J.-PH.VIAL jean-philippe.vial@hec.unige.ch

Logilab, HEC, University of Geneva, Switzerland

Received December 10, 2004; Revised August 15, 2005

Published Online: 5 June 2006

Abstract. Lagrangian relaxation is commonly used in combinatorial optimization to generate lower bounds

for a minimization problem. We study a modified Lagrangian relaxation which generates an optimal integer

solution. We call it semi-Lagrangian relaxation and illustrate its practical value by solving large-scale instances

of the p-median problem.

Keywords: Lagrangian relaxation, combinatorial optimization, p-median problem

1. Introduction

Lagrangian relaxation (LR) is commonly used in combinatorial optimization to gen-
erate lower bounds for a minimization problem [8]. For a given problem, there may
exist different Lagrangian relaxations. The higher the optimal value of the associated
Lagrangian dual function, the stronger the relaxation and the more useful in solving the
combinatorial problem in a branch-and-bound framework [11, 21]. Ideally, one would
like to work with the strongest possible Lagrangian, one that closes the integrality gap.
Are there combinatorial problems for which such a Lagrangian relaxation exists, and if
yes, are the associated subproblems computationally tractable?

In this paper we give a positive answer to the first question: we study a relaxation,
which we call semi-Lagrangian relaxation (SLR), that closes the integrality gap for any
(linear) combinatorial problem with equality constraints. Regarding the second ques-
tion, we also give a positive answer for the p-median problem, a well-studied combina-
torial problem [3, 17]. For this integer programming problem, the standard Lagrangian

∗This work was partially supported by the Fonds National Suisse de la Recherche Scientifique, grant

12-57093.99 and the Spanish government, MCYT subsidy dpi2002-03330.
†To whom correspondence should be addressed.



240 BELTRAN, TADONKI AND VIAL

relaxation consists in relaxing the equality constraints that ensure that each “customer”
is assigned to exactly one median. This yields a maxmin optimization problem, in which
the binding equality constraints are no longer present. The inner minimization problem
is thus separable and easy. Unfortunately, the Lagrangian relaxation yields the same
optimal value as the linear relaxation. To strengthen the standard Lagrangian relaxation,
we insert into the inner minimization problem the equality constraint, as a “less than or
equal” inequality. We call this process, a semi-Lagrangian relaxation. It is quite general,
as it applies to any problem with equality constraints.

The semi-Lagrangian relaxation has the theoretical property that its optimal value is
the same as for the original problem. This relaxation thus closes the integrality gap.
Unfortunately, the associated subproblem may be as difficult as the original problem
itself. However, for the p-median problem, the subproblem is an easy variant of the
uncapacitated facility location problem, in which only “profitable” customers must
be assigned to a facility. This subproblem is NP-hard, but when the Lagrange mul-
tipliers are small, it turns out that very few customers are “profitable” and the sub-
problem becomes easy. This suggests that a method that would approach the set of
optimal Lagrangian multipliers with small multiplier values, may keep the subprob-
lem relatively easy until it produces an optimal (dual) solution. Moreover, at this solu-
tion, the subproblem outputs a feasible integer solution that is optimal for the original
problem.

We have implemented this scheme for the p-median problem and tested it on a col-
lection of the large-scale instances studied in [2, 13]. We have been able to improve
the best known dual bounds for five of the six non solved difficult problems in that
collection (one of them is solved up to optimality by our method). We also improved
the computation time on a few difficult problems by a significant amount. However, in
the average, our approach does not improve the results of Avella et al., which are, in
our opinion, among the best reported computational results on the p-median problem.
This is not surprising, since these authors exploit the combinatorial structure of the
p-median problem to construct specific efficient cuts (lifted odd-hole inequalities, cycle
inequalities, etc.) to be used in a sophisticated branch-cut-and-price (BCP) algorithm.
In contrast our simpler method is general and does not resort to a branch-and-bound
scheme. Of course, the integer programming solver (CPLEX in our case) that handles
the semi-Lagrangian subproblems relies on sophisticated branch-and-bound schemes,
but the remarkable fact is that this solver cannot handle the p-median problems in their
initial formulation, unless they have small dimension. Since the semi-Lagrangian re-
laxed problem is a variant of the uncapacitated facility location problem, usually very
sparse, its special structure could be exploited to improve the solution time: any such
improvement will directly translate into the same improvement in the overall procedure.

Shortly after we completed the paper, we have been informed of a closely related work
[19]. This paper is concerned with sensitivity analysis for integer programming based
on the subadditive dual problem [16]. The author of [19] shows that it is not necessary to
work on the full class of subadditive functions but in what he calls the family of generator
subadditive functions. He proves that this family contains an optimal subadditive function
(OSF) that can be used to perform sensitivity analysis and to compute all the solutions
for an integer programming problem. The author applies his algorithm to solve small to
medium size instances of the set partitioning problem [20]. It turns out that maximizing



SOLVING THE p-MEDIAN PROBLEM 241

the semi-Lagrangian dual function is equivalent to computing a generator OSF, but there
are many possible methods to perform this operation.

Our work differs from Klabjan’s on the following aspects. First, we recognize that
the semi-Lagrangian dual function is concave but non-differentiable and thus difficult
to optimize. To perform this task, we use Proximal-ACCPM [6], an enhancement of
ACCPM (Analytic Center Cutting Plane Method) [9], which is discussed with more
detail in Section 4.2. Second, we are essentially concerned with numerical issues. We
exploit the remarkable fact that, in the p-median problem, the computation of the semi-
Lagrangian dual function often breaks down into several independent subproblems. For
this reason, we are able to solve p-median instances which have up to seven times the size
CPLEX can handle successfully. Third, we compare our approach with a state-of-the art
branch-cut-and-price method [2] for the p-median problem. Our numerical results on
very large instances are surprising as they show that our branch-and-bound free approach
is quite effective and able to close the integrality gap on some problems that were not
previously solved. Our approach is conceptually simple and easy to implement since it
is based on standard tools: Proximal-ACCPM to maximize the SLR dual function and
CPLEX to solve the associated subproblems.

The paper is organized as follows: In Section 2 we study the semi-Lagrangian re-
laxation (concept and properties) for the case of linear integer programming problems.
In Sections 3 and 4 we apply the semi-Lagrangian relaxation to the p-median problem.
In Section 5 we test the semi-Lagrangian relaxation by solving large scale p-median
problems. Conclusions are given in Section 6. case of general functions.

2. Semi-Lagrangian relaxation

Consider the primal problem

z∗ = min
x

cT x

s.t. Ax = b, (1a)

x ∈ S := X ∩ Nn. (1b)

Assumption 1. All components in A, b and c are non-negative and X ⊂ Rn is a cone
(thus, 0 ∈ X ). Note that, since A and b are non-negative, the set {x ∈ S | Ax ≤ b} is
bounded (finite).

The standard Lagrangian relaxation consists in relaxing the (linear) equality constraints
and solving the dual problem

zLR = max
u

LLR(u), (2)

where

LLR(u) = bT u + min
x

{(c − AT u)T x | x ∈ S}. (3)



242 BELTRAN, TADONKI AND VIAL

The optimal solution of the Lagrangian dual yields a lower bound for the original problem
zLR ≤ z∗.

The semi-Lagrangian relaxation consists in relaxing the equality constraint as in (3),
but keeping in the meantime a weaker form of the equality constraint in the oracle
(subproblem). Namely,

zSLR = max
u

LSLR(u), (4)

where

LSLR(u) = bT u + min
x

{(c − AT u)T x | Ax ≤ b, x ∈ S}. (5)

The oracle (5) is more constrained than (3). Its minimum value is thus higher

zLR ≤ zSLR ≤ z∗.

The semi-Lagrangian relaxation is thus stronger than the Lagrangian relaxation. How-
ever, solving the oracle (5) may be (much) more difficult than solving (3). Actually, the
difficulty in solving (5) depends on the particular values of u. We shall consider two
extreme cases. First, assume that u = 0. By Assumption 1, b ≥ 0 and 0 ∈ S, therefore 0
is feasible to (5). Also by Assumption 1, c ≥ 0 and then 0 is a trivial solution to (5). The
second case occurs when all components of u are positive and very large. If we write
(5) as

LSLR(u) = min
x

{cT x + (b − AT x)T u | Ax ≤ b, x ∈ S}

the very large penalty on b − AT x imposes to chose x such that Ax ≥ b. Since x is
explicitly constrained by Ax ≤ b, the optimal solution of (5) meets the original constraint
Ax = b. Solving the oracle may be just as difficult as solving the original problem (2).
This is the bad side of the situation, but it also has a positive side: it gives indication that
the optimal solution of (4) may be strictly bigger that (2), thereby reducing the integrality
gap.

We want to argue that there may exist intermediary situations, where the oracle (5)
is not too difficult to solve, and thus is practical. To this end, we cast our previous
discussions into formal propositions.

Theorem 1. The original problem (1) and the semi-Lagrangian dual problem (4) have
the same optimal value.

Proof: By [8] we know that

zSLR = min{cT x : Ax = b, x ∈ conv(Ax ≤ b, x ∈ S)} (6a)

= min{cT x : Ax = b, Ax ≤ b, x ∈ S} (6b)

= min{cT x : Ax = b, x ∈ S} (6c)

= z∗. (6d)

Equality (6b) comes from the fact that the faces of an integer polytope are integral. �



SOLVING THE p-MEDIAN PROBLEM 243

Theorem 1, already proved in [19], shows that the suggested oracle is the strongest
possible relaxation. The next theorem and its corollary show that the optimal set of
LSLR(u) is unbounded.

Theorem 2. The function LSLR is non-decreasing.

Proof: Let u ≥ u′ and let x(u) and x(u′) be optimal solutions of (5) at u and u′

respectively. Let us show that LSLR(u) ≥ LSLR(u′). Using the fact that Ax(u) ≤ b and
that x(u′) minimizes cT x + (b − Ax)T u′, we have

LSLR(u) = cT x(u) + (b − Ax(u))T u,

= cT x(u) + (b − Ax(u))T u′ + (b − Ax(u))T (u − u′),
≥ cT x(u) + (b − Ax(u))T u′,
≥ cT x(u′) + (b − Ax(u′))T u′ = LSLR(u′).

�

Theorem 2 induces a domination criterion in the set of optimal multipliers u. Formally,
we state the following corollary.

Corollary 2.1. Let u∗ be an optimal solution of (4). The optimal set contains the
unbounded set {u | u ≥ u∗}.

We can define the set of non dominated optimal solution as the Pareto frontier of the
optimal set U ∗. Let us picture in Figure 1 the set U ∗ and a possible trajectory of multipliers
from the origin to the set.

We observe that we can choose an optimal solution x in the oracle (5) with the property
that x j = 0 if the reduced cost (c − AT u) j is nonnegative. At the origin O (u = 0) of
Figure 1, the oracle has the trivial solution x = 0. At point C, far inside the optimal set,
all reduced costs are negative. The oracle is difficult, since it is essentially equivalent

Figure 1. Path to the optimal set of dual multipliers.



244 BELTRAN, TADONKI AND VIAL

to the original problem. The difficulty in solving the oracle increases as one progresses
along the path OAC. At A, close to the origin O, the oracle problem involves only few
variables and might thus be easy.

The key issue is whether the oracle (5) is easy enough to solve at points on the Pareto
frontier of U ∗ and near of it. If yes, we have at hand a procedure to find an exact solution
of the original problem by solving a sequence of moderately difficult problems. Let us
show here that if u ∈ int(U ∗) one can get an optimal solution to (1).

Theorem 3. Let x(u) be an optimal solution of the semi-Lagrangian relaxation problem
(4) at u. If x(u) satisfies (1a) at u ∈ U ∗, then it is optimal for the original problem (1).
Moreover, x(u) at any u ∈ int(U ∗) satisfies (1a) and is thus optimal for (1).

Proof: The first statement of the theorem is a standard result [7]. To prove the second
statement, let u ∈ int(U ∗). Since u ∈ int(U ∗), there exists u′ ∈ U ∗ such that u′ < u.
Then,

z∗ = cT x(u′) + (b − AT x(u′))T u′ = cT x(u) + (b − AT x(u))T u.

Thus

z∗ = cT x(u′) + (b − AT x(u′))T u′

≤ cT x(u) + (b − AT x(u))T u′ (since x(u) is suboptimal for (5) at u′)
= cT x(u) + (b − AT x(u))T u + (b − AT x(u))T (u′ − u)

= z∗ + (b − AT x(u))T (u′ − u).

Thus, (b − AT x(u))T (u′ − u) ≥ 0. Since u′ < u, and AT x(u) ≤ b in (5), one has
AT x(u) = b. This concludes the proof of the theorem. �

The above discussion suggests a procedure to solve the original problem (1) via a
semi-Lagrangian relaxation. The dual problem in the semi-Lagrangian relaxation is a
concave non-differentiable one that can be solved by a specialized method of the cutting
plane type. The difficulty in this approach is that the oracle is potentially difficult, possi-
bly as difficult as the original problem (1). To make the overall procedure workable, the
oracle should be solved exactly. An enumeration technique or an advanced commercial
solver must be used. The cutting plane method must therefore be particularly efficient
so as to require as few solvings of (5) as possible. In that respect, a good starting point
might be of a great help. The natural suggestion is to use the optimal point of the dual
problem of the standard Lagrangian relaxation (see Section 5.1)

max
u

{
bT u + min

x
{(c − AT u)T x | x ∈ S}

}
.



SOLVING THE p-MEDIAN PROBLEM 245

3. Semi-Lagrangian relaxation for the p-median problem

In the p-median problem the objective is to open p ‘facilities’ from a set of m candidate
facilities relative to a set of n ‘customers’, and to assign each customer to a single facility.
The cost of an assignment is the sum of the shortest distances ci j from a customer to a
facility. The distance is sometimes weighed by an appropriate factor, e.g., the demand
at a customer node. The objective is to minimize this sum. Applications of the p-median
problem can be found in cluster analysis [12, 22], facility location [4], optimal diversity
management problem [3], etc. The p-median problem can be formulated as follows

z∗ = min
x,y

m∑
i=1

n∑
j=1

ci j xi j (7a)

s.t.
m∑

i=1

xi j = 1, ∀ j, (7b)

m∑
i=1

yi = p, (7c)

xi j ≤ yi , ∀i, j, (7d)

xi j , yi ∈ {0, 1}, (7e)

where xi j = 1 if facility i serves the customer j , otherwise xi j = 0 and yi = 1 if we
open facility i , otherwise yi = 0.

The p-median is a NP-hard problem [17] for which polyhedral properties and some
families of valid inequalities have been studied in [1, 5]. For this reason the p-median
problem has been solved either by heuristic methods, such as the variable neighbor-
hood decomposition method [13], or by exact methods, such as the branch-and-cut
approach [3] and the branch-cut-and-price approach [2]. As far as we know, the latter
represents the state of the art regarding exact solution methods to solve the p-median
problem.

Following the ideas of the preceding section, we formulate the standard Lagrangian
relaxation of the p-median problem, and two semi-Lagrangian relaxations.

3.1. Standard relaxation

The constraints (7b) and (7c) are both relaxed to yield the dual problem

z1 = max
u,v

L1(u, v)

and the oracle

L1(u, v) = min
x,y

f (u, v, x, y) (8a)

s.t. xi j ≤ yi , ∀i, j, (8b)

xi j , yi ∈ {0, 1}, (8c)



246 BELTRAN, TADONKI AND VIAL

where

f (u, v, x, y) =
m∑

i=1

n∑
j=1

ci j xi j +
n∑

j=1

u j

(
1 −

m∑
i=1

xi j

)
+ v

(
p −

m∑
i=1

yi

)

=
m∑

i=1

(
n∑

j=1

(ci j − u j )xi j − vyi

)
+

n∑
j=1

u j + vp.

We name Oracle 1 this oracle; it is trivially solvable. Its optimal solution is also optimal
for its linear relaxation. Consequently, the optimum of L1 coincides with the optimum
of the linear relaxation of (7) [24].

It is not possible to make this relaxation stronger by keeping the constraint on the
number of medians (7c) in the oracle. Indeed, one can easily check that the linear
relaxation of the ensuing oracle has an integer optimal solution. Therefore, keeping the
constraint (7c) in the oracle, does not make the Lagrangian relaxation stronger than L1.

3.2. Partial semi-Lagrangian relaxation

To strengthen L1 we introduce the constraints
∑

i xi j ≤ 1, j = 1, . . . , n in the oracle.
We obtain the dual problem

z2 = max
u,v

L2(u, v)

and the new oracle

L2(u, v) = min
x,y

f (u, v, x, y) (9a)

s.t.
∑

i

xi j ≤ 1, ∀ j, (9b)

xi j ≤ yi , ∀i, j, (9c)

xi j , yi ∈ {0, 1}. (9d)

We name Oracle 2 this oracle. In view of the cost component in the y variables in the
objective (9a), the problem resembles the well-known uncapacitated facility location
(UFL) problem. However, the oracle differs from UFL on one important point. The
standard cover (all customers must be assign to one facility) is replaced by a subcover
inequality (9b). It implies the necessary condition that a customer j may be served by
facility j only if the reduced cost ci j − u j is negative. This fact will be used exten-
sively in the procedure to solve the oracle: all variables xi j with a non-negative cost are
automatically set to zero, thereby reducing the size of the problem to solve dramatically.

The oracle for L2 is more difficult than the one for L1, but z2 may be larger than z1

when there exists an integrality gap between the optimal integer solution of (7) and its
linear relaxation.



SOLVING THE p-MEDIAN PROBLEM 247

3.3. Semi-Lagrangian relaxation

If the solution of the strong oracle problem evaluated at the optimum of L2 is feasible
for (7), then this solution is optimal for (7). In our numerical experiments, it has been
the case on many instances. On other instances, the solution produced by the oracle only
violates the constraint (7c) on the number of medians. To cope with this difficulty, we
consider the strongest relaxation,

z3 = max
u,v

L3(u, v)

with the new oracle

L3(u, v) = min
x,y

f (u, v, x, y) (10a)

s.t.
∑

i

xi j ≤ 1, ∀ j, (10b)∑
i

yi ≤ p, (10c)

xi j ≤ yi , ∀i, j, (10d)

xi j , yi ∈ {0, 1}. (10e)

We name Oracle 3 this oracle. In view of (10c), relaxation L3 is stronger than L2. It is
also more difficult to solve.

4. p-Median solved by semi-Lagrangian relaxation

To solve the p-median problem by means of the semi-Lagrangian relaxation, we use the
following general procedure.

Step 1. Solve the LR dual problem

(u1, v1) = arg max
u,v

L1(u, v).

Let (x1, y1) be an optimal solution of (8) at (u1, v1). If (x1, y1) is feasible to (7),
STOP: (x1, y1) is an optimal solution to (7).

Step 2. Solve the intermediate dual problem by using (u1, v1) as starting point

(u2, v2) = arg max
u,v

L2(u, v).

1. Let (x2, y2) be an optimal primal solution associated to (u2, v2). If (x2, y2) is
feasible to (7), STOP: (x2, y2) is an optimal solution to (7).

2. Let (x̂2, ŷ2) be a heuristic solution for problem (7). If this heuristic solution closes
the primal-dual gap, STOP: (x̂2, ŷ2) is an optimal solution to (7).



248 BELTRAN, TADONKI AND VIAL

Step 3. Solve the SLR dual problem by using (u2, v2) as starting point

(u3, v3) = arg max
u,v

L3(u, v).

Let (x3, y3) be an optimal solution of (10) at (u3, v3). If (x3, y3) is feasible (satisfies
(7b–7c)), STOP: (x3, y3) is an optimal solution to (7).

Step 4. Compute L3(u4, v4), with u4
i = u3

i + δ, v4
i = v3

i + δ, for a small positive
perturbation δ (i = 1, . . . , n). Let (x4, y4) be an optimal solution of (10) at (u4, v4).
STOP: (x4, y4) is an optimal solution to (7).

The stopping criterion in Step 3 is justified by Theorem 3. It may happen that this stopping
criterion is not met when (u3, v3) belongs to the boundary of U ∗. But, by Theorem 3
akin, the stopping criterion will be met at any (u4, v4) > (u3, v3), i.e., (u4, v4) ∈ int(U ∗).
This is the motivation for Step 4. In our computational experience (see Section 5) we
have never attained Step 4 either because we obtained a primal optimal point in Step 3
or because the algorithm exceeded the allowed CPU time.

In Step 2.2 we first use a simple heuristic method (Heuristic 1). If Heuristic 1 does
not close the primal-dual gap, then we use a second and more sophisticated heuristic
method (Heuristic 2). As Heuristic 1 we use the following simple method. We distinguish
two cases after computing (x2, y2): (a) If the number of open medians is less than p,
say p′, then we set as new medians the p − p′ most expensive customers. (b) If the
number of open medians is greater than p, say p′′, then we close the p′′ − p medians
with least number of assigned customers. We reassign these customers to their closest
open median. As Heuristic 2 we use the ‘Variable Neighborhood Decomposition Search’
(VNDS) [13].

4.1. Solving the dual problems

The point is now how to solve the dual problems

max
u

Lr (u) r = 1, 2, 3, (11)

associated to the semi-Lagrangian relaxation. For the ease of notation we drop the v

component of Lr (u, v), r = 1, 2, 3, with no loss of generality. Functions Lr (u), r =
1, 2, 3, are implicitly defined as the pointwise minimum of linear functions in u. By
construction they are concave and nonsmooth. Extensive numerical experience shows
that ACCPM and in particular Proximal-ACCPM, is an efficient tool for solving (11).
See, for instance, [10] and references therein included; see also [6] for experiments with
the linear relaxation of the p-median problem.

In the cutting plane procedure, we consider a sequence of points {uk}k∈K in the
domain of L(u) (for ease of notation we drop the r index of Lr (u)). We denote by
sk a subgradient of L(u) at uk , that is, sk ∈ ∂L(uk), the subdifferential of L(u) at uk

(properly speaking, we should use the terminology supergradient and superdifferential
given that L(u) is concave). We consider the linear approximation to L(u) at uk , given



SOLVING THE p-MEDIAN PROBLEM 249

by Lk(u) = L(uk) + sk · (u − uk) and have

L(u) ≤ Lk(u)

for all u.
The point uk is referred to as a query point, and the procedure to compute the objective

value and subgradient at a query point is called an oracle. Furthermore, the hyperplane
that approximates the objective function L(u) at a feasible query point and defined by
the equation z = Lk(u), is referred to as an optimality cut.

A lower bound to the maximum value of L(u) is provided by:

θl = max
k

L(uk).

The localization set is defined as

L = {(u, z) ∈ Rn+1 | u ∈ Rn, z ≤ Lk(u) ∀k ∈ K , z ≥ θl}. (12)

The basic iteration of a cutting plane method can be summarized as follows

1. Select (ū, z̄) in the localization set L .
2. Call the oracle at ū. The oracle returns one or several optimality cuts and a new lower

bound L(ū).
3. Update the bounds:

(a) θl ← max{L(ū), θl}.
(b) Compute an upper bound θu to the optimum 1 of problem (11).

4. Update the lower bound θl in the definition of the localization set (12) and add the
new cuts.

These steps are repeated until a point is found such that θu − θl falls below a prescribed
optimality tolerance. The reader may have noticed that the first step in the summary is
not completely defined. Actually, cutting plane methods essentially differ in the way
one chooses the query point. For instance, the intuitive choice of the Kelley point (ū, z̄)
that maximizes z in the localization set [18] may prove disastrous, because it over-
emphasizes the global approximation property of the localization set. Safer methods, as
for example bundle methods [15] or Proximal-ACCPM [6, 9, 10], introduce a regular-
izing scheme to avoid selecting points too “far away” from the best recorded point. In
this paper we use Proximal-ACCPM (Proximal Analytic Center Cutting Plane Method)
which selects the proximal analytic center of the localization set. Formally, the proximal
analytic center is the point (ū, z̄) that minimizes the logarithmic barrier function 2 of the
localization set plus a quadratic proximal term which ensures the existence of a unique
minimizer.3 This point is relatively easy to compute using the standard artillery of Inte-
rior Point Methods. Furthermore, Proximal-ACCPM is robust, efficient and particularly
useful when the oracle is computationally costly—as is the case in this application.



250 BELTRAN, TADONKI AND VIAL

4.2. Solving the oracle L2

Step 2 of the cutting plane method calls the oracle L at ū. This amounts to compute
L(ū) and one s ∈ ∂L(ū). In our case, this implies to solve the relaxed problems of
Section 3 (solve the oracles, in our terminology). Solving the oracle L2 is by no means a
trivial matter. However, problem (9) has many interesting features that makes it possible
to solve by a direct approach with an efficient solver such as CPLEX. We can reduce
the size of the problem and decompose it by taking into account the following three
observations.

Our first observation is that all variables xi j with reduced cost ci j − u j ≥ 0 are set to
zero (or simply eliminated). Associated to the p-median problem, there is a underlying
graph with one link (i, j) connecting facility i with customer j , which has a positive
cost ci j . After the Lagrangian relaxation, the p-median graph may become very sparse,
since only links (i, j) with negative reduced costs are kept in the graph.

Our second observation is that the above elimination of links in the p-median graph,
not only reduces the problem size, but, may break the p-median graph into K smaller
independent subgraphs. In that case, to compute L2(u, v) we end up solving K indepen-
dent subproblems. The important point is that the union of all these problems is much
easier for CPLEX to solve than the larger instance collecting all the smaller problems
into a single one. It seems that CPLEX does not detect this decomposable structure,
while it is easy for the user, and almost costless, to generate the partition.

Our third observation is that if a column j̄ in the array {(ci j −u j )
−} of negative reduced

costs has a single negative entry cı̄ j̄ − u j̄ , then we may enforce the equality xı̄ j̄ = yı̄ .

4.3. Solving the oracle L3

Solving (10) is more challenging, though it just suffices to add the constraint
∑

i yi = p
to (9). This certainly makes the problem more difficult for CPLEX. Moreover, this
constraint links all blocks in the graph partition discussed above. This is particularly
damaging if the partition contains many small blocks. When this situation occurs, it
often appears that the solution (x2, y2) in Step 2 of our algorithm violates the constraint
(10c) by few units, say for example 3, i.e.,∑

y2
i = p + 3.

Let I = {1, . . . , n} = ∪K
k=1 Ik be the partition resulting from the graph decomposition.

(Note that one set, say IK may collect all the indices of rows of the reduced cost ma-
trix with no negative entry.) Let pk = ∑

i∈Ik
y2

i . For each k we solve the subproblem
associated with graph Ik , with the added constraint∑

i∈Ik

y2
i ≤ bk,

for bk = pk, pk −1, pk −2, pk −3 (if bk becomes zero or negative, we do not solve the
corresponding subproblem). We then solve a knapsack auxiliary problem to combine



SOLVING THE p-MEDIAN PROBLEM 251

the solutions of the independent blocks to generate an optimal solution to (10) (such that∑
y2

i ≤ p.).

5. Numerical experiments

The objective of our numerical experiments is threefold: first we whish to study the
influence of using a good starting point to maximize L2, second we study the solution
quality of the semi-Lagrangian relaxation and third we will study its performance.

To test the semi-Lagrangian relaxation we use data from the traveling salesman prob-
lem (TSP) library [25], to define p-median instances, as already used in the p-median
literature [6], especially in [2]. In the tables of this paper the name of the instance in-
dicates the number of customers (e.g. vm1748 corresponds to a p-median instance with
1748 customers).

Programs have been written in MATLAB 6.1 [14] and run in a PC (Pentium-IV,
2.4 GHz, with 6 Gb of RAM memory) under the Linux operating system. The program
that solves Oracle 1 has been written in C. To solve Oracles 2 and 3 we have intensively
used CPLEX 8.1 (default settings) interfaced with MATLAB [23, 26]. To make our
approach as general as possible, we have used the same set of parameters for Proximal-
ACCPM in all the instances.

5.1. Influence of the starting point

Considering that Oracle 2 is a strengthened version of Oracle 1, our hypothesis is that the
set of dual optimizers associated to Oracle 2 may be close to the optimal set associated
to Oracle 1. As a matter of fact, in our tests we have observed that the more accurate
the dual optimizer associated to Oracle 1, the easier the solving of the Oracle 2 dual
problem. To illustrate this empirical observation we display the results obtained for a set
of 10 medium p-median instances with data from the TSP library.

We compare the results obtained by using two different starting points for Oracle 2.
In the first approach we use, as starting point, a low accuracy optimal point obtained
by using Oracle 1 (Proximal-ACCPM stopping criterion threshold equal to 10−3). In
the second approach we use 10−6. In the two cases the maximum number of Oracle 1
iterations has been set equal to 500. We also set a limit of 30000 seconds for the CPU
time.

In Table 1 we have the optimal values and in Table 2 the number of iterations and
CPU time in seconds. We can observe that the extra iterations spent to compute an
accurate starting point for the Oracle 2 is largely compensated by cutting down the
number of very expensive Oracle 2 iterations. On average the ‘High accuracy’ approach
is over six times faster (12030/1937) than the ‘Low accuracy’ one. In Table 2 we ob-
serve that instances vm1748 need a great amount of CPU time compared to the other
instances. As we will see in Section 5.3, the CPU time strongly depends on the ANSO2
parameter and we also will see that instances vm1748 have a disadvantageous ANSO2
value.



252 BELTRAN, TADONKI AND VIAL

Table 1. Starting point accuracy: Optimal values and relative increase in %. Labels ‘Low accuracy’ and ‘High

accuracy’ correspond to use 10−3 and 10−6 respectively, in the stopping criterion when solving Oracle 1.

Instance Low accuracy High accuracy

Label p Oracle 1 Oracle 2 % Oracle 1 Oracle 2 %

r11304 100 491356.2 491639 0.06 491487.3 491639 0.03

rl1304 300 177270.5 177326 0.03 177317.4 177326 0.00

rl1304 500 96986.4 97024 0.04 97008.9 97024 0.02

fl1400 100 15946.3 15962 0.10 15960.6 15962 0.01

fl1400 200 8787.4 8806 0.21 8792.2 8806 0.16

u1432 20 588424.5 588766 0.06 588719.7 588766 0.01

vm1748 10 2979175.9 2983645 0.15 2982731 2983645 0.03

Vm1748 20 1894608.6 1899152a 0.24 1898775.2 1899680 0.05

vm1748 50 1002392.9 1004331 0.19 1004205.2 1004331 0.01

vm1748 100 635515.8 636515 0.16 636324.1 636515 0.03

Average 789046.4 790317 0.12 790132.2 790369 0.03

aOptimal value not attained because the maximum CPU time was reached while solving Oracle 2.

Table 2. Starting point accuracy: Iterations and CPU time (seconds). Labels ‘Low accuracy’ and ‘High

accuracy’ correspond to use 10−3 and 10−6 respectively, in the stopping criterion when solving Oracle 1.

Low accuracy High accuracy
Instance

Label p
Iter.

Or. 1

Iter.

Or. 2

CPU

(s)

Iter.

Or. 1

Iter.

Or. 2

CPU

(s)

r11304 100 124 44 429 256 40 268

r11304 300 88 16 26 161 8 20

r11304 500 90 16 67 133 15 48

fl1400 100 107 15 886 442 13 572

fl1400 200 121 14 877 500 16 916

u1432 20 126 15 1548 346 9 192

vm1748 10 235 41 27774 500 21 3945

vm1748 20 220 100 82424 500 38 10768

vm1748 50 154 51 3675 462 19 551

vm1748 100 133 60 2596 500 40 2085

Average 140 30 12030 380 20 1937

5.2. ‘Easier’ instances

By ‘easier’ TSP instances we mean the instances that in [2] required less than 7500
seconds to be solved. The remaining instances, which required at least 28000 seconds,
are called ‘difficult’ and studied in Section 5.3. In this section we solve the ‘easier’TSP



SOLVING THE p-MEDIAN PROBLEM 253

instances. As we can see in Table 3, easier instances range form 1304 to 3795 customers
and each problem is solved for different values of p. By no means these easier instances
are easy since commercial solvers, as CPLEX, are able to solve instances up to 400
customers. The maximal CPU time CPUmax for each instance is set equal to the minimum
between: ten times the reported CPU time in [2] for each case and 30000 seconds. The
maximal number of Oracle 1 iterations is set equal to 500.

The main two factors to evaluate are first, the quality of the solutions, as expressed by
the optimality gap and second, the computing time. Let us discuss first the issue of the
quality of the solutions computed by the semi-Lagrangian relaxation. In Table 3 we can
observe that in general the semi-Lagrangian relaxation gives tighter dual bounds than
the Lagrangian relaxation. On average, the Oracle 2 lower bounds are 0.03% larger than
the Oracle 1 ones.

In most cases (see Tables 3 and 4) the procedure stops with an optimal integer solution
obtained by Oracle 2. In few cases, the time limit is reached while solving Oracle 2. The
use of a heuristic yields a bound on the integrality gap. We notice that the percentage
of optimality is higher than 98.98%. The remaining cases concerns the use of Oracle 3.
Indeed, Oracle 2 sometimes produces an integer solution that is feasible for all constraints
but

∑
yi = p. If the heuristic does not produce an optimal integer solution, then we must

resort to Oracle 3 which corresponds to the full semi-Lagrangian relaxation. Then, on
the easier instances Oracle 3 always terminates with an optimal solution.

In summary, 27 of the 33 ‘easier’ instances (82%) are solved up to optimality by
the semi-Lagrangian approach (label SLR in column ‘Upper bound/Method’). In the
remaining instances (18%) we stopped the semi-Lagrangian procedure because of an
excess of CPU time. Nevertheless, these instances are almost completely solved by
computing a quasi optimal primal solution by using the VNDS heuristic [13]. For these
instances, the solution quality is no worse than 98.98% of optimality gap. In [2] all these
instances are fully solved (solution quality equal to 100% in all cases).

The performance of the semi-Lagrangian relaxation for this test can be found in
Table 4. On average, the number of Proximal-ACCPM iterations is 378, 19 and 0.4, for
the Oracles 1, 2 and 3 respectively. As we have seen in Section 5.1, the use of an effective
convex optimization solver, as Proximal-ACCPM, is important to limit the number of
calls to the very expensive Oracle 2 (19 calls on average). Oracle 3 is called 2 times
at most. A possible explanation for this low number of Oracle 3 calls, is that L2(u, v)
and L3(u, v) only differ in constraint (10c), and therefore it is likely that the respective
associated optimal sets are similar. Furthermore, as we have seen in Corollary 2.1, the
optimal set of L3(u, v), i.e. U ∗, is an unbounded set and therefore it should not take too
many iterations to find one of the infinitely many optimal solutions, once we are close
to U ∗.

On average, the CPU time is 108 seconds, 2283 seconds and 464 seconds for the
Oracles 1, 2 and 3 respectively, which shows that most of the time corresponds to Oracle
2. The average CPU time for the semi-Lagrangian relaxation is 2859 seconds which
is 3.62 times4 the averaged CPU time reported in [2]. In our opinion, the main reason
that explains this difference in performance is that in [2] the polyhedral structure of the
p-median problem is exploited in a a branch-cut-and-price (BCP) algorithm. In contrast,
our algorithm is based on the semi-Lagrangian relaxation, a general purpose simple
method independent of the p-median problem.



254 BELTRAN, TADONKI AND VIAL

Table 3. Easier instances: Solution quality. Symbols: ‘Or.’ stands for Oracle, ‘VNDS’ for variable neigh-

borhood decomposition search, ‘SLR’ for semi-Lagrangian relaxation. ‘% Optimality’ is computed as 100 ×
[1−(‘optimal primal value’—‘optimal dual value’)/‘optimal dual value’].

Instance Lower bounds Upper bound Optimality

Label p Or. 1 Or. 2 Or. 3 Value Method (%)

r11304 10 2131787.5 2133534 – 2134295 VNDS 99.96

r11304 100 491487.3 491639 – 491639 SLR 100

r11304 300 177317.4 177326 – 177326 SLR 100

r11304 500 97008.9 97024 – 97024 SLR 100

fl1400 100 15960.6 15962 15962 15962 SLR 100

fl1400 200 8792.2 8806 8806 8806 SLR 100

u1432 20 588719.7 588766 – 588766 SLR 100

u1432 100 243741.0 243793 – 243793 SLR 100

u1432 200 159844.0 159885 – 160504 VNDS 99.61

u1432 300 123660.0 123689 123689 123689 SLR 100

u1432 500 93200.0 – – 93200 VNDS 100

vm1748 10 2982731.0 2983645 – 2983645 SLR 100

vm1748 20 1898775.2 1899390 – 1899680 VNDS 99.98

vm1748 50 1004205.2 1004331 – 1004331 SLR 100

vm1748 100 636324.1 636515 – 636515 SLR 100

vm1748 300 286029.5 286039 – 286039 SLR 100

vm1748 400 221522.2 221526 – 221526 SLR 100

vm1748 500 176976.2 176986 176986 176986 SLR 100

d2103 10 687263.3 687321 – 687321 SLR 100

d2103 20 482794.9 482926 – 482926 SLR 100

d2103 200 117730.8 117753 – 117753 SLR 100

d2103 300 90417.2 90471 90471 90471 SLR 100

d2103 400 75289.3 75324 75324 75324 SLR 100

d2103 500 63938.4 64006 64006 64006 SLR 100

pcb3038 5 1777657.0 1777677 – 1777835 VNDS 99.99

pcb3038 100 351349.1 351461 – 353428 VNDS 99.44

pcb3038 150 280034.0 280128 – 280128 SLR 100

pcb3038 200 237311.0 237399 – 237399 SLR 100

pcb3038 300 186786.4 186833 – 186833 SLR 100

pcb3038 400 156266.6 156276 – 156276 SLR 100

pcb3038 500 134771.8 134798 134798 136179 VNDS 98.98

fl3795 400 31342.5 31354 – 31354 SLR 100

fl3795 500 25972.0 25976 25976 25976 SLR 100

Averagea 498243.9 498392 498554 99.94

aAverage figures do not take into account problem u1432 with p = 500.



SOLVING THE p-MEDIAN PROBLEM 255

Table 4. Easier instances: Performance. Symbols: ‘Or.’ stands for Oracle, ‘ANSO2’ for average number of

subproblems per Oracle 2 call, (*)‘Total CPU time’ includes 100 seconds of the VNDS heuristic.

Instance Oracle calls CPU time (seconds)

Label p Or. 1 Or. 2 Or. 3 ANSO2 Or. 1 Or. 2 Or. 3 SLR BCPa

rl1304 10 390 35 0 1 95 17141 0 (*)17336 1614

rl1304 100 256 40 0 11 26 242 0 268 40

rl1304 300 161 8 0 69 11 9 0 20 18

rl1304 500 133 15 0 143 8 40 0 48 20

fl1400 100 442 13 2 28 89 483 558 1130 378

fl1400 200 500 16 2 48 119 797 5384 6300 191

u1432 20 346 9 0 1 54 138 0 192 101

u1432 100 297 21 0 2 36 940 0 976 119

u1432 200 500 21 0 5 114 1219 0 (*)1433 58

u1432 300 500 26 1 19 112 310 78 500 43

u1432 500 158 2 0 11 11 362 0 (*)473 36

vm1748 10 500 21 0 1 174 3771 0 3945 478

vm1748 20 500 23 0 1 162 5045 0 (*)5307 341

vm1748 50 462 19 0 2 152 399 0 551 36

vm1748 100 500 40 0 4 157 1928 0 2085 136

vm1748 300 230 25 0 51 30 39 0 69 24

vm1748 400 158 7 0 93 16 24 0 40 155

vm1748 500 146 15 2 131 14 61 22 97 74

d2103 10 241 7 0 2 41 504 0 545 260

d2103 20 389 11 0 2 109 2682 0 2791 733

d2103 200 500 27 0 20 155 2178 0 2333 1828

d2103 300 500 23 1 26 146 1465 535 2146 1133

d2103 400 500 17 1 37 145 618 1426 2189 235

d2103 500 500 26 2 39 143 10086 4309 14538 5822

pcb3038 5 341 5 0 1 111 1888 0 (*)2099 1114

pcb3038 100 464 21 0 2 188 32714 0 (*)33002 7492

pcb3038 150 500 11 0 2 202 11292 0 11494 3057

pcb3038 200 500 12 0 5 201 11792 0 11993 2562

pcb3038 300 446 16 0 12 166 3853 0 4019 2977

pcb3038 400 330 14 0 24 99 2874 0 2973 454

pcb3038 500 211 17 2 38 56 3269 3800 (*)7225 704

fl3795 400 500 24 0 26 254 2218 0 2472 6761

fl3795 500 500 38 1 25 259 2531 218 3008 770

bAverage 378 19 0.4 31 108 2283 464 2859 1053

aTimes were obtained with a processor Pentium IV-1.8 GHz. We use a Pentium IV-2.4 GHz.
bAverage figures do not take into account the 5 problems not solved up to optimality (see Table 3).



256 BELTRAN, TADONKI AND VIAL

Each time we call Oracle 2, we solve a relaxed facility location problem. For most
Oracle 2 calls the underlying graph is disconnected and then CPLEX solves as many
subproblems as the number of graph components. In column ‘ANSO2’ we have the
‘average number of subproblems per Oracle 2 call’. The averaged ANSO2 parameter is
31 subproblems, that is, on average, each time we call Oracle 2, we solve 31 independent
combinatorial subproblems.

In general, the difficulty to solve the Oracle 2 increases with the problem size but
decreases with the ANSO2 parameter. Clearly ANSO2 is a critical parameter. Thus for
example in Tables 3 and 4 we can see that our procedure fails to completely solve the
smallest reported problem (rl1304 with p = 10) within the time limit (ANSO2 = 1).
Nevertheless, the computed solution is 99.96% optimal. On the other extreme, one of
the biggest reported instances (fl3795) is fully solved by our procedure (ANSO2 ≥ 17
for all the cases).

5.3. Difficult instances

In the previous section we have seen that the semi-Lagrangian relaxation does not
outperform state-of-art BCP approaches. Nevertheless, in this section we will see that
for the instances not solved by [2] (we call them difficult instances), the performance of
the SLR procedure is similar. The maximal CPU time and maximal number of Oracle 1
calls are set equal to 360000 seconds and 1000 calls, respectively.

Regarding the quality of the (dual) lower bounds, Table 5 shows that except for prob-
lem u1432, the SLR lower bounds are equal or tighter than the BCP bounds. Regarding
the quality of the best integer solution, Table 6 shows that in cases of partial optimal-
ity, the heuristic used in [2] outperforms heuristics we have used (H1 and VNDS). No
method has solved up to optimality problem fl1400 with p = 500, but our lower bound
3764 combined with the upper bound in [2] solves the problem.

Table 5. Difficult instances: Lower bounds.

Instance Lower bounds

Label p Or. 1 Or. 2 Or. 3 SLR BCP

fl1400 300 6091.8 6109 6109 6109 6099

fl1400 400 4635.4 4648 – 4648 4643

fl1400 500 3755.7 3764 3764 3764 3760

u1432 50 361683.6 362005 362057 362057 362072

u1432 400 103403.8 103623 – 103623 103783

d2103 50 301565.4 301705 – 301705 301618

d2103 100 194390.1 194495 – 194495 194409

fl3795 150 65837.6 65868 – 65868 65868

fl3795 200 53908.9 53928 53928 53928 53928

fl3795 300 39576.7 39586 – 39586 39586

Average 113484.9 113573 113578 113577



SOLVING THE p-MEDIAN PROBLEM 257

Table 6. Difficult instances: Best integer solution.

Instance Best integer solution % Optimality

Label p Method SLR BCP SLR BCP

fl1400 300 VNDS 6146 6111 99.39 99.80

fl1400 400 H1 4648 4648 100 99.89

fl1400 500 H1 3765 3764 99.97 99.89

u1432 50 VNDS 362100 362072 99.97 100

u1432 400 VNDS 104735 103979 98.93 99.81

d2103 50 VNDS 302916 302337 99.60 99.76

d2103 100 VNDS 195273 194920 99.60 99.74

fl3795 150 SLR 65868 65868 100 100

fl3795 200 SLR 53928 53928 100 100

fl3795 300 SLR 39586 39586 100 100

Average 113897 113721 99.74 99.89

Table 7. Difficult instances: Oracle calls and average number of subproblems in Oracle 2.

Instance Oracle calls

Label p Or. 1 Or. 2 Or. 3 ANSO2

fl1400 300 261 16 1 82

fl1400 400 196 17 0 100

fl1400 500 218 16 1 145

u1432 50 423 26 15 1

u1432 400 1000 16 0 29

d2103 50 741 2 0 3

d2103 100 1000 5 0 8

fl3795 150 1000 27 0 17

fl3795 200 1000 32 3 16

fl3795 300 1000 15 0 26

Average 684 17 2 43

Tables 7 and 8 display the number of oracle calls, the average number of subproblems
per Oracle 2 call (ANSO2) and the computing times. Both methods have fully solved
four of the ten difficult problems. Even considering that our computer is about 33%
faster, it is remarkable the SLR time for instances fl3795 and especially instance fl1400
(p = 400). The reason for this very good performance probably is the high ANSO2
parameter. However, a high ANSO2 parameter is not enough to guarantee a good SLR
performance. See for example the unsolved instance fl400 (p = 500) which has the
highest ANSO2 parameter (145).



258 BELTRAN, TADONKI AND VIAL

Table 8. Difficult instances: CPU time.

Instance CPU time (seconds)

Label p Or. 1 Or. 2 Or. 3 SLR BCP

fl1400 300 27 2632 357341 360000 360000

fl1400 400 16 652 0 678 360000

fl1400 500 20 261715 98265 360000 360000

u1432 50 80 135331 224589 360000 28257

u1432 400 856 359144 0 360000 360000

d2103 50 476 359524 0 360000 360000

d2103 100 928 359072 0 360000 360000

fl3795 150 1100 39199 0 40299 346396

fl3795 200 1459 32975 30125 64559 84047

fl3795 300 1266 2264 0 3530 53352

Average 623 155251 71032 226907 267205

6. Conclusion

In this paper we have studied the semi-Lagrangian relaxation (SLR) which applies to
combinatorial problems with equality constraints. In theory it closes the integrality gap
and produces an optimal integer solution. This approach has a practical interest if the
relaxed problem (oracle) becomes more tractable than the initial one.

We applied this approach to the p-median problem. In this case, the oracle is much
easier than the original problem: its size is drastically reduced (most variables are auto-
matically set to zero) and it is often decomposable. The SLR approach has solved most
of the tested large-scale p-median instances exactly. This fact is quite remarkable. Of
course, the oracle for the strong relaxation is difficult and time consuming, but it is still
easy enough to be tackled directly by a general purpose solver such as CPLEX. In sharp
contrast, CPLEX is unable to solve these problems in their initial formulation if the size
exceeds 400 customers.

The SLR for the p-median problem has two interesting features from a computational
point of view: First, if the oracle is decomposable, the SLR is easily parallelizable (one
combinatorial subproblem per processor). Second, in contrast with sophisticated branch-
cut-and-price implementations, the implementation of SLR is easy, since the complex
tasks are all performed by standard tools (CPLEX and Proximal-ACCPM). Any im-
provement on these tools or similar, could be incorporated without further programming
effort.

On the other hand, the relative ease in solving the integer programming subprob-
lems is not sufficient to allow the use of the convex optimization solvers that are com-
monly used in connection with the standard Lagrangian relaxation or column genera-
tion scheme. We believe that a subgradient method or Kelley’s cutting plane method,
would entail too many queries to the oracle to make the approach workable. The
use of an advanced convex solver, such as Proximal-ACCPM, is a must; it turns out



SOLVING THE p-MEDIAN PROBLEM 259

that this solver is efficient enough to solve in a short time all the instances we have
examined.

This approach opens the road for further investigations. The SLR of the p-median
problem is a special variant of the uncapacitated facility location (UFL) problem, with
a profit maximizing objective and the additional property that not all customers need
to be served. Moreover, the underlying graph of this UFL may be (massively) sparse
and disconnected. Those characteristics are attractive enough to justify the search for
a dedicated exact algorithm and for powerful and fast heuristics. Progresses in that
direction could make the SLR approach more competitive.

Acknowledgments

We thank L. A. Wolsey for pointing out the reference to Klabjan’s work and for a short
proof of Theorem 1. We also thank P. Hansen, N. Mladenovic and D. Perez-Brito for
making available to us the VNDS p-median FORTRAN code [13]. Finally we thank the
referees for their comments which have improved the readability of the paper.

Notes

1. For example, θu = max{z | (u, z) ∈ L ∩ D} where D is a compact domain defined for example by a set

of lower and upper bounds for the components of u.

2. The logarithmic barrier for the half space {u ∈ Rn | a · u ≤ b} is − log(b − a · u).

3. That is, the proximal analytic center of L is the point

(ū, z̄) = argmin
u,z FL (u, z) + ρ‖u − û‖2

where FL (u, z)is the logarithmic barrier for the localization set L , ρ is the proximal weight, and û is the

proximal point (current best point).

4. This time ratio has been scaled taking into account that in [2] the authors use a Pentium IV-1.8 GHz,

whereas we use a Pentium IV-2.4 GHz, that is, (2859/1053) × (2.4/1.8) = 3.62. It has also to be taken

into account that in [2] the code was written in C, a compiled language, whereas our code is written in

Matlab, an interpreted language (although our oracles are also coded in C).

References

1. P. Avella and A. Sassano, “On the p-median polytope,” Mathematical Programming, vol. 89, pp. 395–411,

2001.

2. P. Avella, A. Sassano, and I. Vasil’ev, “Computational study of large-scale p-median problems,” Technical

Report, Dipartimento Di Informatica e Sistemistica, Università di Roma “La Sapienza”, 2003.

3. O. Briant and D. Naddef, “The optimal diversity management problem,” Operations Research, vol. 52,

no. 4, 2004.

4. Christofides, Graph Theory: An Algorithmic Approach. Academic Press, New York, 1975.

5. I.R.J. de Farias, “A family of facets for the uncapacitated p-median polytope,” Operations Research

Letters, vol. 28, pp. 161–167, 2001.

6. O. du Merle and J.-P. Vial, “Proximal-ACCPM, a cutting plane method for column generation and

lagrangian relaxation: Application to the p-median problem,” Technical Report, Logilab, HEC, University

of Geneva, 2002.



260 BELTRAN, TADONKI AND VIAL

7. H. Everett III, “Generalized lagrange multiplier method for solving problems of optimum allocation of

resources,” Operations Research, vol. 11, no. 3, pp. 399–471, 1963.

8. A.M. Geoffrion, “Lagrangean relaxation for integer programming,” Mathematical Programming Study,

vol. 2, pp. 82–114, 1974.

9. J.L. Goffin, A. Haurie, and J.P. Vial, “Decomposition and nondifferentiable optimization with the projec-

tive algorithm,” Management Science, vol. 37, pp. 284–302, 1992.

10. J.-L. Goffin and J. Vial, “Convex nondifferentiable optimization: A survey focussed on the analytic center

cutting plane method,” Technical Report 99.02, Geneva University—HEC—Logilab, 1999.

11. M. Guignard and S. Kim, “Lagrangean decomposition: A model yielding stronger Lagrangean bounds,”

Mathematical Programming, vol. 39, pp. 215–228, 1987.

12. P. Hansen and B. Jaumard, “Cluster analysis and mathematical programming,” Mathematical Program-

ming, vol. 79, pp. 191–215, 1997.

13. P. Hansen, N. Mladenovic, and D. Perez-Brito, “Variable neighborhood decomposition search,” Journal

of Heuristics, vol. 7, pp. 335–350, 2001.

14. D.J. Higham and N.J. Higham, MATLAB Guide, SIAM, Philadelphia, Pennsilvania, USA, 2000.

15. J.B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms, volume I and II.

Springer-Verlag, Berlin, 1996.

16. E. Johnson, “Mathematical programming,” Chapter cyclic groups, cutting planes and shortest path, Aca-

demic press, pp. 185–211, 1973.

17. O. Kariv and L. Hakimi, “An algorithmic approach to network location problems. ii: The p-medians,”

SIAM Journal of Applied Mathematics, vol. 37, no. 3, pp. 539–560, 1979.

18. J.E. Kelley, “The cutting-plane method for solving convex programs,” Journal of the SIAM, vol. 8, pp.

703–712, 1960.

19. D. Klabjan, “A new subadditive approach to integer programming,” in W. Cook and A.S. Schulz, (eds.),

Integer Programming and Combinatorial Optimization, 9th International IPCO Conference, Cambridge,

MA, USA, May 27–29, 2002, Proceedings, volume 2337 of Lecture Notes in Computer Science. Springer,

2002.

20. D. Klabjan, “A practical algorithm for computing a subadditive dual function for set partitioning,” Com-

putational Optimization and Applications, vol. 29, pp. 347–368, 2004.

21. C. Lemaréchal and A. Renaud, “A geometric study of duality gaps, with applications,” Mathematical

Programming, Ser. A, vol. 90, pp. 399–427, 2001.

22. J.M. Mulvey and H.P. Crowder, “Cluster analysis: An application of lagrangian relaxation,” Management

Science, vol. 25, pp. 329–340, 1979.

23. D.R. Musicant, “Matlab/cplex mex-files,” 2000. www.cs.wisc.edu/∼musicant/data/cplex/.

24. G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial Optimization, John Wiley and Sons, 1988.

25. G. Reinelt, “Tsplib,” 2001. http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95.

26. C. Tadonki, “Using cplex with matlab,” 2003. http://www.omegacomputer.com/staff/tadonki/using

cplex with matlab.htm.


