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Abstract We consider a sub-model of the Hall-MHD equations: the so-called mag-
netic induction equations with Hall effect. These equations are non-linear and include
third-order spatial and spatio-temporal mixed derivatives. We show that the energy of
the solutions is bounded and design finite difference schemes that preserve the energy
bounds for the continuous problem. We design both divergence preserving schemes
and schemes with bounded divergence. We present a set of numerical experiments
that demonstrate the robustness of the proposed schemes.

Keywords Finite difference methods · Stability and convergence of numerical
methods

Mathematics Subject Classification 65M06 · 65M12

1 Introduction

Plasmas are increasingly becoming important in a variety of fields like astrophysics,
solar physics, electrical and aerospace engineering [6]. Specific problems include
the study of supernovas, accretion disks, waves in the solar atmosphere, magnetic
confinement fusion, the design of plasma thrusters for spacecraft propulsion and of
circuit breakers in the electrical power industry. It is standard to model plasmas as
magnetized fluids with fluid motion shaping and in turn being shaped by magnetic
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fields. The base model for such interaction are the equations of Magneto-Hydro Dy-
namics (MHD):

∂ ρ

∂t
= −∇ · (ρu), (1.1)

∂ (ρu)

∂t
= −∇

{
ρu ⊗ u +

(
p + |B|2

2

)
I3×3 − B ⊗ B

}
, (1.2)

∂ E

∂t
= −∇

{(
E + p − |B|2

2

)
u + E × B

}
, (1.3)

d B
dt

= −∇ × E. (1.4)

Here ρ, u, p are the gas density, velocity and pressure respectively. E and B are the
electric and magnetic fields. The total energy E is given by the equation of state:

E = p

γ − 1
+ ρ|u|2

2
+ |B|2

2
. (1.5)

Here, γ is the gas constant. Equations from (1.1) to (1.3) represent the conservation
of mass, momentum and energy and (1.4) describes the Maxwell’s equations for the
evolution of the magnetic field.

Applying the divergence operator to Maxwell’s equations results in,

d(∇ · B)

dt
= 0. (1.6)

Furthermore, magnetic monopoles have not been observed in nature. The above equa-
tion implies that if the divergence of the initial magnetic field is zero, then solutions
of the MHD equations also obey the divergence constraint:

∇ · B = 0. (1.7)

We need to describe the electric field in (1.4) to complete the MHD equations.
Different choices for the electric field (Ohm’s law) lead to different MHD models.
The most popular MHD model are the ideal MHD equations where the electric field
is given by

E = −u × B. (1.8)

The ideal MHD equations are extremely successful in several applications, see [1]
for an overview and [4] for a recent application in solar physics. However a major
limitation of the ideal MHD equations is the requirement that the magnetic field lines
are frozen into the fluid. In many interesting applications in both astrophysics and
engineering, we observe magnetic reconnection, i.e., the magnetic topology changes
during the flow [11]. In order to induce reconnection, a possible mechanism is mag-
netic resistivity resulting in the Ohm’s law:

E = −u × B + ηJ. (1.9)
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Here J is the current density and η is the resistivity parameter. The resulting equations
are termed the resistive MHD equations. However, the resistive MHD equations do
not suffice in modeling fast magnetic reconnection.

A more effective alternative is to include the Hall effect [11, 15]. The resulting
Ohm’s law is

E = −u × B + ηJ + δi

L0

J × B
ρ

+
(

δe

L0

)2 1

ρ
.

[
d J
dt

+ (u · ∇)J
]
. (1.10)

Here L0 is the normalizing length unit, and δe and δi denote electron and ion inertia
respectively; they are related to electron-ion mass ratio by ( δe

δi
)2 = me

mi
. The term J×B

is the so-called Hall term and Jt + (u · ∇)J is the electron inertia term [11].
The equations need to be completed by specifying Ampére’s law for the current:

J = ∇ × B. (1.11)

The MHD equations together with Ohm’s law (1.10) and the above Ampére’s law
are termed as the Hall MHD equations. The Hall MHD equations are non-linear, high-
order equations and are extremely complicated to study in a mathematically rigorous
manner. There have been various numerical studies of the Hall MHD equations in
[15, 19] and references therein. However, all these papers tackle the problem from a
computational point of view and do not include any rigorous results.

In contrast to the above papers where schemes were designed for the full Hall
MHD equations, we adopt a different approach. First, we consider a sub-model: the
magnetic induction equations with Hall effect,

∂

∂t

[
B +

(
δe

L0

)2 1

ρ
∇ × (∇ × B)

]

= ∇ × (u × B) − η∇ × (∇ × B)

−
(

δe

L0

)2 1

ρ
∇ × ((u · ∇)(∇ × B)

)

− δi

L0

1

ρ
∇ × ((∇ × B) × B

)
. (1.12)

The magnetic induction equations with Hall effect are augmented with the diver-
gence constraint (1.7) if the initial data is divergence free. Here, the unknowns are
the magnetic field B. The velocity field u is specified a priori. The parameters are
as before. Observe that the Magnetic induction equations with Hall effect are still
non-linear with the non-linearity being present in the Hall term. Furthermore, the
equations contain second-order spatial derivatives (resistivity) and third-order spatial
and spatio-temporal derivatives (electron inertia).

In this paper, we investigate the Magnetic induction equations with Hall effect
from a mathematical point of view and derive stability estimates. The key tool will
be to symmetrize the advection terms in (1.12) using the divergence constraint. See
[3, 8, 9, 13] for the use of this technique for the ideal magnetic induction equations
and the resistive induction equations. We then derive energy estimates in the Sobolev
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space H 1 for the Magnetic induction equations with Hall effect with smooth velocity
fields.

We also derive stable finite difference schemes for the Magnetic induction equa-
tions with Hall effect (1.12) in this paper. These schemes preserve a discrete version
of the energy estimate. In particular, we discuss both divergence preserving schemes
and schemes that are based on the symmetric form of the equation and may not pre-
serve a discrete version of the divergence constraint. Numerical experiments demon-
strating the robust performance of the proposed schemes are presented. To the best of
our knowledge, the proposed schemes are the first set of (rigorously proven) stable
schemes for the Magnetic induction equations with Hall effect.

The rest of the paper is organized as follows: in Sect. 2, we study the continu-
ous problem for the Magnetic induction equations with Hall effect and show energy
estimates. Stable numerical schemes that satisfy a discrete version of the energy in-
equality are presented in Sect. 3 and we present numerical experiments in Sect. 4.

2 The continuous problem

The main aim of this section is to derive energy estimates for the continuous problem
corresponding to the Magnetic induction equations with Hall effect (1.12). It turns
out that the advection terms in (1.12) are not symmetric and impair the derivation of
an energy estimate. We will symmetrize this term (see [3, 8, 9]) by using a the vector
identity

∇ × (u × B) = (B · ∇)u − B(∇ · u) + u(∇ · B) − (u · ∇)B. (2.1)

We use the divergence constraint (1.7) and subtract u(∇ · B) from (1.12) to obtain
the symmetric form of the Magnetic induction equations with Hall effect:

∂

∂t

[
B +

(
δe

L0

)2 1

ρ
∇ × (∇ × B)

]

= (B · ∇)u − B(∇ · u) − (u · ∇)B − η∇ × (∇ × B)

−
(

δe

L0

)2 1

ρ
∇ × ((u · ∇)(∇ × B)

)− δi

L0

1

ρ
∇ × ((∇ × B) × B

)
. (2.2)

We show the following energy estimate for the symmetric form of the Magnetic in-
duction equations with Hall effect,

Theorem 2.1 Let the velocity field u ∈ C2(R3). Furthermore, assume that the solu-
tion B of (2.2) decays to zero at infinity, then following apriori estimate holds:

d

dt

(
‖B‖2

L2(R3)
+
(

δe

L0

)2 1

ρ
‖∇ × B‖2

L2(R3)

)

≤ C

(
‖B‖2

L2(R3)
+
(

δe

L0

)2 1

ρ
‖∇ × B‖2

L2(R3)

)
(2.3)

with C being a constant that depend on u and its derivatives only.
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Proof To simplify the notation and emphasize the symmetry of the equation, we
rewrite the term (B · ∇)u in the matrix form obtaining:

∂ B
∂t

+
(

δe

L0

)2 1

ρ
∇ ×

(
∇ × ∂ B

∂t

)

= CB − (∇ · u)B − (u · ∇)B − η∇ × (∇ × B)

−
(

δe

L0

)2 1

ρ
∇ × ((u · ∇)(∇ × B)

)− δi

L0

1

ρ
∇ × ((∇ × B) × B

)

where

C =
⎛
⎝∂xu

1 ∂yu
1 ∂zu

1

∂xu
2 ∂yu

2 ∂zu
2

∂xu
3 ∂yu

3 ∂zu
3

⎞
⎠ . (2.4)

To obtain the L2 estimate, we multiply the equation with B and then we integrate
over R

3 resulting in

∫
R3

1

2

∂ B2

∂t
+
(

δe

L0

)2 1

ρ
B∇ ×

(
∇ × ∂ B

∂t

)
dx

=
∫

R3

[
B�CB − (∇ · u)B2 − 1

2
(u · ∇)B2 − ηB∇ × (∇ × B)

−
(

δe

L0

)2 1

ρ
B∇ × ((u · ∇)(∇ × B)

)− δi

L0

1

ρ
B∇ × ((∇ × B) × B

)]
dx.

Partial integration yields

1

2

d

dt

(
‖B‖2

L2(R3)
+
(

δe

L0

)2 1

ρ
‖∇ × B‖2

L2(R3)

)

=
∫

R3

[
B�CB − 1

2
(∇ · u)B2

− η(∇ × B)2 + 1

2

(
δe

L0

)2 1

ρ
(∇ · u)(∇ × B)2

− δi

L0

1

ρ
(∇ × B)

(
(∇ × B) × B

)
︸ ︷︷ ︸

=0

]
dx

=
∫

R3

[
B�CB − 1

2
(∇ · u)B2 − η(∇ × B)2 + 1

2

(
δe

L0

)2 1

ρ
(∇ · u)(∇ × B)2

]
dx.

We did not consider the boundary terms because they vanish since the solution B is
decaying to zero at infinity. Using Cauchy-Schwartz we obtain

1

2

d

dt

(
‖B‖2

L2(R3)
+
(

δe

L0

)2

‖∇ × B‖2
L2(R3)

)
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≤ 1

2

(
CA‖B‖2

L2R3 + CB

(
δe

L0

)2 1

ρ
‖∇ × B‖2

L2R3

)

where CA maxk,i(‖ ∂ui

∂xk
‖L∞(R3)) and CB = ‖∇ · u‖L∞(R3). �

We have shown that the Magnetic induction equation with Hall effect in symmetric
form possesses an energy estimate. However, the divergence of the solution of (2.2)
is not preserved exactly. Nevertheless, we have the following estimate:

Theorem 2.2 Let u ∈ C2(R3) Furthermore, assume that the divergence of the so-
lution of (2.2), ∇ · B, decays to zero at infinity, then the following apriori estimate
holds:

d

dt
‖∇ · B‖L2(R3) ≤ C‖∇ · B‖L2(R3) (2.5)

with C being a constant that depend on u and its derivatives only.

Proof Applying the divergence operator on (2.2) we obtain

∂ ∇ · B
∂t

= −∇ · (u(∇ · B)
)

(2.6)

using vector identity we can rewrite the right hand side of the equation

∂ ∇ · B
∂t

= −u · ∇(∇ · B) − (∇ · B)(∇ · u).

Multiplying this equation by ∇ · B and integrating it over R
3 we obtain

1

2

d

dt
‖∇ · B‖L2(R3) = −1

2

∫
R3

u · (∇(∇ · B)2)dx −
∫

R3
(∇ · u)(∇ · B)2dx,

with partial integration we obtain

1

2

d

dt
‖∇ · B‖L2(R3) = 1

2

∫
R3

(∇ · u)(∇ · B)2dx − 1

2

∫
R3

(u · n)(∇ · B)2ds

≤ 1

2
‖∇ · u‖L∞(R3)‖∇ · B)‖2

L2(R3)
. �

Corollary 2.1 If the conditions for Theorems 2.1 and 2.2 hold and the initial data
B ∈ H 1(R3), then the estimates imply that B ∈ L∞((0, T ),H 1(R3)).

Remark 2.1 The divergence transport equation (2.6) implies that the divergence re-
mains zero if the initial data has zero divergence. If we assume that the initial data
is divergence free, the solutions of the symmetric form (2.2) have zero divergence
are also weak solutions of the non-symmetric form (1.12) of the Magnetic induction
equations with Hall effect.
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3 Numerical schemes

In this section, we design numerical schemes that satisfy a discrete version of the
energy estimates of the last section. The computational domain is Ω = [0,Lx] ×
[0,Ly]× [0,Lz] and we define a uniform mesh of Nx times Ny times Nz points with
coordinates xi = iΔx, yj = jΔy and zk = kΔz. In this case Δx = Lx/(Nx − 1),
Δy = Ly/(Ny − 1) and Δz = Lz/(Nz − 1) are mesh widths.

The point values of the magnetic and velocity fields are

B̃i,j,k ∼ B(xi, yj , zk), ũi,j,k ∼ u(xi, yj , zk).

We will provide a very general discrete formulation and specify the necessary require-
ment that the discrete derivative should posses. As in [8, 9, 13], the key requirement
for the discrete derivative is to satisfy a summation by parts (SBP) condition. The
exact form of operators satisfying the requirements are presented in Appendix.

We start with one dimensional discrete derivatives using grid functions in vector
form, i.e., w = (w0, . . .wNx−1)

�. An approximation of the x spatial derivative, Dx

possesses the summation by parts property (see [2, 10, 12, 16, 17]) if it can be written
as Dx = P −1

x Qx , where Px is a diagonal Nx × Nx positive definite matrix and Qx

an Nx × Nx matrix satisfying:

Qx + Q�
x = RNx − LNx (3.1)

where RNx and LNx are Nx × Nx matrices: diag(0, . . . ,0,1) and diag(1,0, . . . ,0).
The operator P defines an inner product

(v,w)Px = v�Pxw (3.2)

with the associated norm ‖w‖P = (w,w)
1/2
Px

that is equivalent to the norm ‖w‖ =
(Δx

∑
k w2

k)
1/2.

Next, we define averaging operators such that we can obtain an approximate form
of the chain rule.

We define symmetric averaging operators as

(Axw)i =
q∑

k=−q

αkwi+k (3.3)

with
∑q

k=−q αk = 1 and α−i = αi .
In [13], the following discrete chain rule was shown,

Lemma 3.1 Given any smooth function u(x), we denote its restriction on the grid as
ū and let be w a grid function. Then we can define an averaging operator Āx coupled
to Dx such that

Dx(ū ◦ w) = ū ◦ Dx(w) + Dx(ū) ◦ Āx(w) + w̃, (3.4)

where (u◦w)i,j,k = ui,j,kwi,j,k , Āx(w) =∑q
k=−q kβkwi+k and ‖w̃‖P ≤ CΔx‖w‖P .
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Proof The discrete differential operator acting on a grid function wi can also be
written through sums:

(Dxw)i = 1

Δx

q∑
k=−q

βkwi+k,

with
∑q

k=−q βk = 0 and
∑q

k=−q kβk = 1. Then the residual w̃ is given by

w̃i = Dx(ū ◦ w)i − (ū ◦ Dxw)i − (Dx(ū) ◦ Āx(w)
)
i

= 1

Δx

q∑
k=−q

βkūi+kwi+k − ūi

Δx

q∑
k=−q

βkwi+k − 1

Δx

(
q∑

l=−q

βlūi+l

)
q∑

k=−q

kβkwi+k.

We expand ū with Taylor-expansion

ūi+k = ūi + Δxkū′
i + 1

2
Δx2k2

c
i
k,

where cik = ū′′
i (ξk) obtaining

w̃i = ūi

Δx
ūi

q∑
k=−q

βkwi+k + ū′
i

q∑
k=−q

kβkwi+k + Δx

q∑
k=−q

k2βkc
i
kwi+k

− ūi

Δx
ūi

q∑
k=−q

βkwi+k

−
(

ū′
i + Δx

q∑
l=−q

l2βlc
i
l

)
q∑

k=−q

kβkwi+k

= Δx

q∑
k=−q

γ i
kwi+k.

Here γ i
k = kβk

kck−∑q
l=−q l2βlc

i
l

2 . Since the γ i
k are bounded, we have that

‖w̃‖Px ≤ ΔxC‖w‖Px ,

where C depends only on the maximum of γ i
k and on the norm Px . �

We show the following lemma claiming that differential operators commute with
averaging operators,

Lemma 3.2 The discrete differential operator Dx and the averaging operator Ax

commute.
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Proof We write the discrete differential operator acting on a grid function wi through
sums:

(Dxw)i = 1

Δx

q ′∑
k′=−q ′

βk′ .wi+k′ .

Then applying the two operators consecutively we obtain

(
Dx(Axw)

)
i
= 1

Δx

q ′∑
k′=−q ′

βk′(Axw)i+k′ = 1

Δx

q ′∑
k′=−q ′

βk′
q∑

k=−q

αkwi+k′+k

= 1

Δx

q ′∑
k′=−q ′

q∑
k=−q

βk′αkwi+k′+k = 1

Δx

q∑
k=−q

q ′∑
k′=−q ′

βk′αkwi+k′+k

= 1

Δx

q∑
k=−q

αk

q ′∑
k′=−q ′

βk′wi+k′+k

=
q∑

k=−q

αk(Dxw)i+k = (Ax(Dxw)
)
i
.

�

We use the above one dimensional operators to build the multidimensional oper-
ators i.e., mappings of three dimensional grid functions w(xi, yj , zk) = wi,j.k to a
column vector

w = (w0,0,0,w0,0,1, . . . ,w0,0,Nz ,w0,1,0, . . . ,wNx,Ny,Nz)
�. (3.5)

We define the discrete differential operators and averages

dx = Dx ⊗ Ay ⊗ Az,

dy = Ax ⊗ Dy ⊗ Az,

dz = Ax ⊗ Ay ⊗ Dz,

Ax = Āx ⊗ Ay ⊗ Az,

Ay = Ax ⊗ Āy ⊗ Az,

Az = Ax ⊗ Ay ⊗ Āz.

Here ⊗ is the Kronecker product. We also extend the inner product by P = Px ⊗Py ⊗
Pz with the corresponding norm ‖w‖P = (w,w)

1/2
P .

We generalize the one dimensional operators to three dimensions using the averag-
ing operators Ax , Ay and Az. Setting the averaging operators to the identity mapping
allows us to recover the standard version of one dimensional discrete operators. How-
ever, we will use a more general form of the averaging operator that will allow us to
include a larger group of difference operators including the divergence preserving
operators of [18] and some of the divergence preserving operators proposed in [14].
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We can expand Lemma 3.1 in three dimensions:

Corollary 3.1 Given any smooth function ū(x) as above, then

∥∥dx(u ◦ w) − u ◦ dxw
∥∥

P ≤ C‖w‖P, (3.6)

where C a constant which depends on the first order derivative of u.

Proof The proof of this corollary is similar to the one done before only using a sub-
stitution with a Taylor expansion of degree one. �

The summation by parts property of the differential operators, coupled with the
inner product P will result in a discrete version on integration by parts:

Lemma 3.3 For any grids function v and w, we have

(v,dxw)P + (dxv,w)P = v�(R − L )w,

(v,dyw)P + (dyv,w)P = v�(U − D)w, (3.7)

(v,dzw)P + (dzv,w)P = v�(T − B)w,

where R = RNx ⊗ PyAy ⊗ PzAz, L = LNx ⊗ PyAy ⊗ PzAz, U = PxAx ⊗ RNy ⊗
PzAz, D = PxAy ⊗ LRy ⊗ PzAz, T = PxAy ⊗ PyAy ⊗ RNz and B = PxAy ⊗
PyAy ⊗ LNz .

Proof Since Ak’s are symmetric and Pk’s diagonal, we can calculate

(v,dxw)P + (dxv,w)P

= v�(Px ⊗ Py ⊗ Pz)
(
P −1

x Qx ⊗ Ay ⊗ Az

)
w

+ ((P −1
x Qx ⊗ Ay ⊗ Az

)
v
)�

(Px ⊗ Py ⊗ Pz)w

= v�(Qx ⊗ A�
y Py ⊗ A�

z Pz

)
w + v�(Q�

x ⊗ PyAy ⊗ PzAz

)
w

= v�((Q�
x + Qx

)⊗ PyAy ⊗ PzAz

)
w

= v�(RNx ⊗ PyAy ⊗ PzAz)w − v�(LNx ⊗ PyAy ⊗ PzAz)w.

The proof for the other space directions follow analogously. �

The right hand side of the above equation represents the evaluation of the grid
function on the boundary of Ω .

Until now all our analysis was for scalar operators, we extend it to vector-valued
discrete differential operators below.
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Corollary 3.2 We derive from the scalar summation by parts rules for scalar fields

(ṽ,D · w̃)P = −(Dṽ, w̃)P +
∑

i

v̂iSi ŵi ,

(ṽ,D × w̃)P = (D × ṽ, w̃)P +
∑
i,j,k

εi,j,kv̂iSj ŵk,
(3.8)

where D = (dx,dy,dz)
�, S1 = L − R, S2 = U − D , S3 = T − B and εi,j,k is

the Levi-Civita symbol.

Proof The proof of this corollary is given by the direct application of the previous
theorem on discrete vector fields. �

In the continuous case, the key property for the preservation of divergence is the
identity:

∇ · (∇ × w) = 0

for all w ∈ (C2(R3))3. From Lemma 3.2 and the definition of Kronecker product,
one observes that the difference operators dx,dy and dz commute, we can show that
is also the case for the discrete differential operator:

Corollary 3.3 Every grid function ŵi,j,k coupled with D = (dx,dy,dz)
� satisfies

D · (D × ŵ) = 0. (3.9)

The proof of this corollary is straightforward.
Generalizing Lemma 3.3 presented in [8] for the vector operator D:

Lemma 3.4 If ũ is a vector grid function

(
v, (ũ · D) ◦ ṽ

)
P = 1

2

(
ṽ, (ũD) ◦ ṽ −

∑
i

D
((

ũi
) ◦ ṽ

))
P

+ 1

2

∑
i

ṽ�Si

((
ũi
) ◦ ṽ

)
.

(3.10)

Proof See the proof in [9] and apply it on each component of ũ · D̃. �

Now we have all the ingredients to present two different classes of numerical
schemes. The first set of schemes termed as symmetric schemes will discretize the
symmetric version of the Hall magnetic induction equation (2.2). The second set of
schemes will discrete the non-symmetric version (1.12) of the Magnetic induction
equations with Hall effect and will preserve a discrete version of divergence. Hence,
we term it divergence preserving scheme.
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3.1 Symmetric scheme

We discretize the symmetric form (2.2) of the Magnetic induction equations with Hall
effect and define a semi-discrete numerical scheme as

d

dt

(
B̃i,j,k +

(
δe

L0

)2 1

ρ
(D × D × B̃)i,j,k

)

= A V (B̃, ũ) − (ũi,j,k · D)B̃i,j,k

− η
(
D × (D × B̃i,j,k)

)−
(

δe

L0

)2 1

ρ
D × ((ũi,j,k · D)(D × B̃i,j,k)

)
(3.11)

− δi

L0

1

ρ
D × ((D × B̃i,j,k) × B̃i,j,k

)
(3.12)

where

A V (B̃, ũ) = ( ¯A (B̃i,j,k) · D
)
ũi,j,k − ¯Ax(B̃i,j,k)dx

(
ũ1

i,j,k

)− ¯Ay(B̃i,j,k)dy

(
ũ2

i,j,k

)
− ¯Az(B̃i,j,k)dz

(
ũ3

i,j,k

)
, (3.13)

¯A (B̃i,j,k) = ( ¯Ax

(
B̃1

i,j,k

)
, ¯Ay

(
B̃2

i,j,k

)
, ¯Az

(
B̃3

i,j,k

))�
. (3.14)

The term A V represent the discretisation of (B · ∇)u − B(∇ · u). We estimate it
below,

Lemma 3.5 For B̃i,j,k grid function and ũi,j,k a bounded grid function, we have

(
B̃,A V (B̃, ũ)

)
P ≤ C‖B̃‖2

P, (3.15)

where C depends on ũ and its discrete derivative only.

Proof We write (3.15) component-wise and using the triangle inequality, we obtain

(
B̃,A V (B̃, ũ)

)
P ≤

3∑
i=1

∣∣(Bi, ¯Ax

(
B̃1)

dx ũi
)

P

∣∣+ ∣∣(Bi, ¯Ay

(
B̃2)

dy ũi
)

P

∣∣

+ ∣∣(Bi, ¯Az

(
B̃3)

dzũi
)

P

∣∣+ ∣∣(Bi, ¯Ax

(
B̃i
)
dx ũ1)

P

∣∣
+ ∣∣(Bi, ¯Ay

(
B̃i
)
dy ũ2)

P

∣∣+ ∣∣(B̃i, ¯Az

(
B̃i
)
dzũ3)

P

∣∣.
Since the discrete derivative of ũ are bounded, we can extract its maximum from the
P norms and obtain

(
B̃,A V (B̃, ũ)

)
P ≤ C

3∑
i=1

∣∣(B̃i, ¯Ax

(
B̃1))

P

∣∣+ ∣∣(B̃i, ¯Ay

(
B̃2))

P

∣∣+ ∣∣(B̃i, ¯Az

(
B̃3))

P

∣∣

+ ∣∣(B̃i, ¯Ax

(
B̃i
))

P

∣∣+ ∣∣(B̃i, ¯Ay

(
B̃i
))

P

∣∣+ ∣∣(B̃i, ¯Az

(
B̃i
))

P

∣∣
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≤ C
(
2
(∣∣(B̃1, ¯Ax

(
B̃1))

P

∣∣+ ∣∣(B̃2, ¯Ay

(
B̃2))

P

∣∣+ ∣∣(B̃3, ¯Az

(
B̃3))

P

∣∣)
+ ∣∣(B̃2, ¯Ax

(
B̃1))

P

∣∣+ ∣∣(B̃3, ¯Ax

(
B̃1))

P

∣∣+ ∣∣(B̃1, ¯Ay

(
B̃2))

P

∣∣
+ ∣∣(B̃3, ¯Ay

(
B̃2))

P

∣∣+∣∣(B̃1, ¯Az

(
B̃3))

P| + |(B̃2, ¯Az

(
B̃3))

P

∣∣).
Take the first term and first use the equivalence of inner product, then write the aver-
aging operator through summation, and finally using the Cauchy inequality yields

∣∣(B̃1, ¯Ax

(
B̃1))

P

∣∣≤ C
∣∣(B̃1, ¯Ax

(
B̃1))∣∣= C

∣∣∣∣
∑

i,j,k,l

B̃1
i,j,kαlB̃1

i,j+l,k

∣∣∣∣

≤ C
maxl (αl)

2

∑
i,j,k,l

[(
B̃1

i,j,k

)2 + (B̃1
i,j+l,k

)2]≤ C‖B̃‖2.

Repeating this procedure for all the term of the sum, yields to

(
B̃,A V (B̃, ũ)

)
P ≤ C‖B̃‖2.

The use of the equivalence between Euclidean and P norms conclude the proof of
lemma. �

This lemma will allow us to is now prove the energy stability of the scheme. The
main theorem is:

Theorem 3.1 Let ũi,j,k = u(xi, yj , zk) be the point evaluation of a function u ∈ C2

and let the approximate solutions B̃ of (3.11) go to zero at infinity, then the following
estimates hold

d

dt

(
‖B̃‖2

P +
(

δe

L0

)2 1

ρ
‖D × B̃‖2

P

)
≤ C

(
‖B̃‖2

P +
(

δe

L0

)2 1

ρ
‖D × B̃‖2

P

)
(3.16)

with C a constant that depend on u and its derivative only.

Proof Multiplying both sides of the scheme (3.11) by B̃ yields

1

2

d

dt
‖B̃‖2

P +
(

δe

L0

)2 1

ρ

(
B̃,

(
D × D × d

dt
B̃
))

P

= (B̃,A V (B̃, ũ)
)

P − (B̃, (ũ · D) ◦ B̃
)

P

− η
(
B̃,D × (D × B̃)

)
P −

(
δe

L0

)2 1

ρ

(
B̃,D × ((ũ · D) ◦ (D × B̃)

)
P

)

− δi

L0

1

δ

(
B̃,D × ((D × B̃) × B̃

))
P.

Using summation by parts of Corollary 3.2 and Lemma 3.4
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d

dt

1

2

(
‖B̃‖2

P +
(

δe

L0

)2 1

ρ
‖D × B̃‖2

P

)

= (B̃,A V (B̃, ũ)
)

P − 1

2

(
B̃, (ũ · D) ◦ B̃

−
∑

i

D
(
ũi ◦ B̃

))
P

− η‖D × B̃‖2
P −

(
δe

L0

)2 1

ρ

(
D × B̃, (ũ · D) ◦ (D × B̃)

)
P

− δi

L0

1

δ

(
D × B̃, (D × B̃) × B̃

)
P︸ ︷︷ ︸

=0

= (B̃,A V (B̃, ũ)
)

P − 1

2

(
B̃, (ũ · D) ◦ B̃

−
∑

i

D
(
ũi ◦ B̃

))
P

− η‖D × B̃‖2
P −

(
δe

L0

)2 1

ρ

(
D × B̃, (ũ · D) ◦ (D × B̃)

−
∑

i

D
(
ũi ◦ (D × B̃)

))
P
.

All the boundary terms have been neglected since the data decay to 0 at infinity.
Using Lemma 3.4 and Lemma 3.5 we obtain

d

dt

1

2

(
‖B̃‖2

P +
(

δe

L0

)2 1

ρ
‖D × B̃‖2

P

)
≤ C1

(
‖B̃‖2

P +
(

δe

L0

)2 1

ρ
‖D × B̃‖2

P

)
. �

Since the divergence is not preserved by the symmetric scheme, we show that the
divergence generated by the symmetric scheme is bounded (a similar result for the
ideal magnetic induction equations was shown in [13]).

Theorem 3.2 Let ũi,j,k = u(xi, yj , zk) be the point evaluation of a function u ∈ C2

and let the solutions of (3.11) go to zero at infinity, then the following estimates hold

d

dt
‖D · B̃‖2

P ≤ C
(‖D · B̃‖2

P + ‖B̃‖2) (3.17)

with C a constant that depend on u and its derivative and on the regularity of the grid.

Proof We define the discrete divergence ω̂ = D · B̃ and using the numerical scheme
(3.11) with Corollary 3.3, we obtain an equation for its evolution

d

dt
ω̂ = D · (A V (B̃, ũ) − (ũ ◦ D)B̃

)
.

Now expanding each component of A V and using Lemma 3.1, we obtain, for exam-
ple for the first component:

(
A V (B̃, ũ)

)1 = ¯Ay

(
B̃2) ◦ dy ũ1 + ¯Az

(
B̃3) ◦ dzũ1

− ¯Ay

(
B̃1) ◦ dy ũ2 − ¯Az

(
B̃1) ◦ dzũ3
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= dy

(
B̃2û1 − B̃1û2)− ū1 ◦ ω + (ũ ◦ D)B̃1 + R

Δy
(
B̃1, B̃2)

+ R
Δz
(
B̃1, B̃3),

where the residual terms are

R
Δy
(
B̃1, B̃2)

i,j,k
= Δy

q∑
l=−q

(
γ

j
l

(
ũ2)B̃1

i,j+l,k − γ
j
l

(
ũ1)B̃2

i,j+l,k

)
,

R
Δz
(
B̃1, B̃3)

i,j,k
= Δz

q∑
l=−q

(
γ

j
l

(
ũ3)B̃1

i,j,k+l − γ
j
l

(
ũ1)B̃3

i,j,k+l

)
.

Here the γ i
k are defined in the proof of Lemma 3.1 and depend on the velocities u.

Applying the same technique on the two other components we obtain
(
A V (B̃, ũ) − (ũ ◦ D)B̃

)= (D × (ũ × B̃)
)− ũ ◦ ω̂ + R,

where

R =
⎛
⎝RΔy(B̃1, B̃2) + RΔz(B̃1, B̃3)

RΔx(B̃2, B̃1) + RΔz(B̃2, B̃3)

RΔx(B̃3, B̃1) + RΔy(B̃3, B̃2)

⎞
⎠ .

Here ‖R‖P ≤ C max(Δx,Δy,Δz)‖B̃‖P. Setting these results in the discrete evolu-
tion equation an using Corollary 3.3 we obtain

d

dt
ω̂ = −D · (ω̂ ◦ ũ) + DR.

The time evolution of the P norm of the divergence is

d

dt
‖ω̄‖2

P = 2

(
ω̄,

d

dt
ω̄

)
P

= −2
(
ω̄,D · (ω̄ ◦ ũ)

)
P + (ω̄,DR)P,

with summation by parts and Lemma 3.4 we obtain

d

dt
‖ω̄‖2

P = 2(Dω̄, ω̄ ◦ ũ)P + (ω̄,DR)P = 2(ũD ◦ ω̄, ω̄)P + (ω̄,DR)P

= (ũD ◦ ω̄, ω̄)P − (D · (ũ ◦ ω̄), ω̄
)

P + (ω̄,DR)P ≤ C‖ω̄‖2
P + ‖ω̄‖P‖DR‖P

≤ C‖ω̄‖2
P + C

min(Δx,Δy,Δz)
‖ω̄‖P‖R‖P

≤ C1‖ω̄‖2
P + C2

max(Δx,Δy,Δz)

min(Δx,Δy,Δz)
‖ω̄‖P‖B̃‖P, (3.18)

where the C’s depend on u and its derivative. To obtain this result the boundary terms
are neglected since B̃ decays to 0 at infinity. We have also used that

(x̂, ṽ ◦ ŷ)P = (ṽ ◦ x̂, ŷ)P,
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where x̂ and ŷ are scalar grid functions and ṽ a vector grid function. This is the case
since P is a diagonal matrix. We conclude the proof using Cauchy’s inequality. �

Although the symmetric scheme (3.11) is stable in H 1, it might generate bounded
divergence errors. Next, we design a scheme that preserves a discrete version of the
divergence operator.

3.2 Divergence preserving schemes

The symmetric scheme does not preserve a discrete version of the divergence con-
straint as it discretizes the symmetric version (2.2) of the Magnetic induction equa-
tions with Hall effect. We have to discretize the non-symmetric standard version
(1.12) of the Magnetic induction equations with Hall effect in order to design a di-
vergence preserving scheme. Such a scheme for is

d

dt

(
B̃i,j,k +

(
δe

L0

)2 1

ρ
(D × D × B̃)i,j,k

)

= D × (ũ × B̃i,j,k) − η
(
D × (D × B̃i,j,k)

)

−
(

δe

L0

)2 1

δ
D × ((ũi,j,k · D)(D × B̃i,j,k)

)

− δi

L0

1

δ
D × ((D × B̃i,j,k) × B̃i,j,k

)
. (3.19)

The application of Corollary 3.3 shows that the above scheme clearly preserve the
divergence:

d

dt
D · B̃ = 0. (3.20)

That means that if we have a initial data with zero discrete divergence the divergence
constraint will be satisfied.

The proof for the energy stability of this scheme is more complex since the equa-
tion is not symmetric. We introduce the following one-sided operators:

Ds
xwi = wi+s − wi

sΔx
. (3.21)

The operators Ds
y and Ds

z are defined analogously.

Lemma 3.6 For two grid functions u and w, the following identity holds,

Dx(u ◦ w) = u ◦ Dxw + Âx

((
Ds

xu
)
,w
)
, (3.22)

with Âx((D
s
xu),w)i =∑q

k=−q kβk(D
k
xui)wi+k is an average over discrete one sided

derivative of u multiplied with w.
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Proof We compute the difference

Dx(u ◦ w)i − u ◦ Dxw = 1

Δx

q∑
k=−q

βkui+kwi+k − ui

1

Δx

q∑
k=−q

βkwi+k

= 1

Δx

q∑
k=−q

βkk
ui+k − ui

kΔx
wi+k,

noting that it takes the form of the desired average. �

The energy bound for the divergence preserving scheme is given below:

Theorem 3.3 Let ũi,j,k = u(xi, yj , zk) be the point evaluation of a function u ∈ C2

and let the solutions of (3.19) with an initial data with D · B̃0 = 0. If the approximate
solution decays to zero at infinity, then the following estimates hold

d

dt

(
‖B̃‖2

P +
(

δe

L0

)2 1

ρ
‖D × B̃‖2

P

)
≤ C

(
‖B̃‖2

P +
(

δe

L0

)2 1

ρ
‖D × B̃‖2

P

)
(3.23)

with C a constant that depends on u and its derivative only.

Proof To prove the energy estimate, we have to symmetrize the advection terms in
the scheme. This is possible since the method preserve divergence; in this case we
can subtract form (3.19) ṽ(D · B̃) = 0.

Using Lemma 3.6, we cam reformulate the discrete advection part

D × (ũ × B̃) − ṽ(D · B̃) = −(ũ · D)B̃ + R(B̃, ũ),

with

R(B̃, ũ)i,j,k

=
⎛
⎜⎝

Ay [(ds
y(û1)B̂2)i,j,k − (ds

y(û2)B̂1)i,j,k] + Az[(ds
z(û1)B̂3)i,j,k − (ds

z(û3)B̂1)i,j,k]
Ax [(ds

y(û2)B̂1)i,j,k − (ds
x(û1)B̂2)i,j,k] + Az[(ds

z(û2)B̂3)i,j,k − (ds
z(û3)B̂2)i,j,k]

Ax [(ds
x(û3)B̂1)i,j,k − (ds

x(û1)B̂3)i,j,k] + Ay [(ds
y(û3)B̂2)i,j,k − (ds

y(û2)B̂3)i,j,k]

⎞
⎟⎠.

The resulting scheme is

d

dt

[
B̃i,j,k +

(
δe

L0

)2 1

ρ
(D × D × B̃)i,j,k

]

= −(ũ · D)B̃ − η
(
D × (D × B̃i,j,k)

)

−
(

δe

L0

)2 1

δ
D × ((ũi,j,k · D)(D × B̃i,j,k)

)

− δi

L0

1

δ
D × ((D × B̃i,j,k) × B̃i,j,k

)+ R(ũ, B̃).



922 P. Corti, S. Mishra

We see that this is very similar to result obtained for the symmetric case. The only
difference is that, instead the average term (B̃,A V (B̃,u))P we have a residual term
(B̃,R(B̃,u))P. Then showing that the residual term is bounded

(
B̃,R(B̃,u)

)
P ≤ C‖B̃‖2

P

will conclude the proof. We can follow the same procedure we used in the proof of
Lemma 3.5 to bound the advection term. �

The proof follows the theory presented in [14] where a generalized finite volume
scheme that preserve discrete divergence is presented. The method presented there is
more general in its formulation, and includes a large class of already known diver-
gence preserving methods.

3.3 Time stepping

Both the semi-discrete symmetric scheme and divergence preserving schemes can be
written as

d

dt
(B̂ + αD × D × B̂) = G (B̂, û), (3.24)

with α = ( δe

L0
)2 1

ρ
and the function G will depend on the scheme.

We use a standard Runge Kutta method to update the solution in time. Even though
we use explicit RK methods, we have to solve linear equations (corresponding to the
lhs of the above scheme) at each time step. As an example, we consider a second
order SSP method ([5]):

B̂� = B̂n + ΔtA−1G
(
B̂n, û

)
,

B̂�� = B̂� + ΔtA−1G
(
B̂�, û,

)
(3.25)

B̂n+1 = B̂n + B̂��

2
.

Here, A = I + αF , F is the matrix representation of D × D and I is the identity
matrix. In this paper, we are using a direct solver in each time sub-step.

Remark 3.1 The main aim of this paper is to present a robust spatial discretization.
The time stepping that we use is fairly standard. Moreover, any time-stepping pro-
cedure for equations involving mixed spatio-temporal derivatives requires a robust
implicit solver. In our case, the matrices F and A are of size 3 × Nx × Ny × Nz, and
are ill-conditioned. The key issue in designing efficient time stepping procedures for
the magnetic induction equations is to design a suitable preconditioner. This is com-
plicated due to the saddle point type structure of the Maxwell’s equations. Recently,
robust preconditioners have been developed for Maxwell type problems that use fi-
nite element type discretizations [7] and references therein. Our discretization, being
a finite difference discretization, does not satisfy the requirements of this theory. The
design of an efficient preconditioner for the magnetic induction equations with Hall
effect goes beyond the scope of this paper and is the subject of ongoing research.
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4 Numerical experiments

For simplicity, we consider the Magnetic induction equations with Hall effect in two
space dimensions and present numerical experiments comparing different schemes
proposed above. In two space dimensions, the symmetric version (2.2) reads as

∂

∂t

[
B̂ +

(
δe

L0

)2 1

ρ
∇̂ × ∇̂ × B̂

]

= Ĉ1B̂ − (û · ∇)B̂ − η∇̂ × ∇̂ × B̂

−
(

δe

L0

)2 1

ρ
∇̂ × ((û · ∇)(∇̂ × B̂)

)− δi

L0

1

ρ
∇̂ × (B̂ · ∇B3), (4.1a)

∂

∂t

[
B3 −

(
δe

L0

)2 1

ρ
ΔB3

]

= C2B − û∇B3 + ηΔB3 +
(

δe

L0

)2 1

ρ
∇ · ((û · ∇)∇B3

)

− δi

L0

1

ρ
∇ · (B̂ · (∇̂ × B̂)

)
. (4.1b)

Here, B̂ = (B1,B2)
� and û = (u1, u2)

�. We have also introduced a compact “curl”
operator ∇̂× in two dimensions:

∇̂ ×
(

v1
v2

)
:= ∂ v2

∂x
− ∂ v1

∂y
, (4.2a)

∇̂ × ψ :=
(

∂ ψ
∂y

− ∂ ψ
∂x

)
, (4.2b)

where v̂ : R
3 → R

2 and ψ : R
3 → R.

4.1 Smooth problems

4.1.1 Pure magnetic advection

First, we test the proposed numerical schemes for the magnetic induction equations
without Hall, electron inertia and resistivity terms. We take the velocity field

u = (−y, x)�

in the following. Then, (4.1a), (4.1b) with η = δi = δe = 0 has an exact solution
(see [3]) given by

B̂(x, y, y) = R(t)B̂0
(
R(−t)(x.y)

)
, (4.3)

with R(t) a rotation matrix with angle t .
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Fig. 1 Convergence plots for the advection problem for the different schemes analyzed

Table 1 Convergence rates for
the magnetic advection problem
for different schemes

2nd ord 4 ord

Preserving 1.89 3.98

Symmetric 1.89 3.98

The initial data is

B̂0(x, y) = 4

( −y

x − 1
2

)
e−20((x−1/2)2+y2) (4.4)

in the computational domain Ω = [−2.5,2.5] × [−2.5,2.5]. We consider Neumann
type non-reflecting boundary conditions. The exact solution represents the rotation
of the initial hump around the domain with the hump completing one rotation in the
period T = 2π .

We will test the following four schemes: the second- and fourth-order versions of
the symmetric scheme (3.11) with difference operators given in appendix A, second-
and fourth-order version of the divergence preserving scheme (3.19). The conver-
gence plots in L2 are shown in Fig. 1.

For time integration we have used a second order SSP and a standard fourth or-
der Runge-Kutta method. The results are obtained using different mesh sizes, form
60 to 200 points. The experimental convergence orders are shown in Table 1 and
demonstrate that the expected orders of accuracy are obtained in practice.

4.1.2 Forced solutions

In order to test the convergence rates for various schemes for the full Magnetic in-
duction equations with Hall effect, we add a forcing term such that the rotating hump
(4.3) remains a solution of the forced equations. The Hall induction equations with
the forcing term are

∂

∂t

[
B̂ +

(
δe

L0

)2 1

ρ
∇̂ × ∇̂ × B̂

]
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Fig. 2 Convergence plots for the Forced Problem with η = 0.01, δi = 0.01 and δe = 4.5 × 10−2

Table 2 Convergence rates for
the Forced Problem with
η = 0.01, δi = 0.01 and
δe = 4.5 × 10−2

2nd ord 4 ord

Preserving 2.05 3.97

Symmetric 2.05 3.98

= Ĉ1B̂ − (û · ∇)B̂ − η∇̂ × ∇̂ × B̂

−
(

δe

L0

)2 1

ρ
∇̂ × ((û · ∇)(∇̂ × B̂)

)
(4.5)

− δi

L0

1

ρ
∇̂ × (B̂ · ∇B3) + Ŝ(x, y, t),

∂

∂t

[
B3 −

(
δe

L0

)2 1

ρ
ΔB3

]
= C2B − û∇B3 + ηΔB3

+
(

δe

L0

)2 1

ρ
∇ · ((û · ∇)∇B3

)− δi

L0

1

ρ
∇ · (B̂ · (∇̂ × B̂)

)+ S3(x, y, t).

The forcing term Ŝ is

Ŝ(x, y, t) = 160P(x, y, t) η e−20((x cos(t)+y sin(t)−1/2)2+(y cos(t)−x sin(t))2

×
(

sin(t) − 2y

2x − cos(t)

)
,

S3(x, y, t) = 0.

Here P(x, y, t) = 20x cos(t) + 20y sin(t) − 20x2 − 20y2 − 3.
The convergence results for four different schemes are presented in Fig. 2. The

obtained orders of convergence are shown in Table 2. Again, the expected orders of
convergence are obtained.
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Table 3 Discrete divergence
for the Hall problem Symmetric Preserving

25 4.6e-2 6.4e-17

50 2.4e-5 8.6e-17

75 6.2e-7 9.1e-17

100 2.5e-7 1.1e-16

125 1.4e-7 1.2e-16

4.2 Hall effect solutions

Next, we test the full Magnetic induction equations with Hall effect(without any forc-
ing) for the rotating hump problem. We set η = 0.01, δi = 0.1 and δe = 4.5 × 10−2

and compute the solutions on a mesh 160 × 160 points.
We compare the results with those obtained for the pure advection of the hump.
The results are shown in Fig. 3 and demonstrate the robustness of the second-

order symmetric scheme. Similar results were obtained with the divergence preserv-
ing scheme. The results show that the addition of resistivity, electron inertia and Hall
effect leads to diffusion of the original hump and the creation of a non-zero B3 com-
ponent even if the initial B3 is set to zero.

We conclude by tabulating the discrete divergence generated by the schemes for
this problem in Table 3. As expected, the divergence preserving scheme preserves
divergence to machine precision. On the other hand, the symmetric scheme does gen-
erate some spurious divergence.

The divergence errors converge quite rapidly to zero as the mesh is refined. Fur-
thermore, there was no noticeable difference in the quality of the results for the pri-
mary solution variables between the symmetric and divergence preserving schemes.

Remark 4.1 An interesting issue that appears in the context of numerical approxima-
tion of evolution equations like the magnetic induction equations with Hall effect is
the issue of long time behavior of the numerical scheme. In order to test this behavior
for our proposed schemes, we simulate three full rotations (T = 6π ) with the above
set up (no forcing) and present the results in Fig. 4. As shown in the figure, the initial
hump is dissipated to some extent, by the time it completes three full rotations. Most
of this dissipation is physical and is caused by the magnetic resistivity term in the
magnetic induction equations with Hall effect. However, some of the dissipation will
be on account of the implicit numerical dissipation introduced by the scheme. The
loss of magnetic energy (on account of magnetic resistivity as well as some numeri-
cal diffusion) is best shown in the energy plot of Fig. 4 (Bottom Left) and documents
that a considerable amount of energy is lost by the time the initial hump completes
about five full rotations. Hence, the long time behavior of the solution (as well as the
scheme) may not be of much interest for these equations as the magnetic resistivity
will lead to considerable energy loss and decay of the solutions. In any case, using
high-order schemes, high-order time integration routines and suitable implementa-
tion of boundary conditions will minimize the numerical dissipation and improve the
long time asymptotic properties of the proposed numerical schemes.
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Fig. 3 On the right plots for solution with η = 0.01, δi = 0.1 and δe = 4.5 × 10−2 after T = π and on
the left the advected solution after the same time
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Fig. 4 Solution on the domain Ω = [−5,5]2 with η = 0.01, δi = 0.01 and δe = 4.5×10−2 after T = 6π .
On the bottom right corner we have the evolution of discrete energy ‖B̃‖P + (δe/L0)2 /ρ‖D × B̃‖P over
five rotations

4.3 Discontinous problems

The above results showed that both the symmetric as well as divergence preserving
schemes worked very well for smooth problems. There was little to distinguish them.
As commented before, the full MHD equations with Hall effect will contain discon-
tinuities in the form of shock waves. We mimic this effect at the level of the magnetic
induction equations with Hall effect by considering a discontinuous velocity field
(note that the plasma velocities in MHD can be discontinuous):

û(x, y) =
⎧⎨
⎩
(1

1

)
for − 6

5 ≤ x ≤ 6
5 ,

( 1
1/2

)
elsewhere.

(4.6)
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We take an smooth initial magnetic fields with compact support

B̂(x, y) = 100

(
y

−x

){
e
− 2

1−x2−y2 for x2 + y2 ≤ 0,

0 elsewhere,
(4.7a)

B3(x, y) = 0.0 (4.7b)

over a domain Ω = [−2.5,2.5] × [−2.5,2.5] with double periodic boundary condi-
tion. We choose η = 0.5, δi = 0.2 and δe = 0.3162 for a mesh of 200 × 200 cells and
run a simulations until T = 0.4. We will use both schemes, the divergence preserving
and the symmetric one. In the absence of analytical solutions, we will compare the
two schemes on a fixed mesh.

Comparing the two schemes in Fig. 5, we note that the symmetric scheme is more
oscillatory than the divergence preserving scheme. These oscillations are small and
can be seen only in the third component of the solution.

It is essential to point out that our theoretical stability results required that the
underlying velocity field be smooth, at least C2. Although the velocity field in this
experiment is discontinuous, the divergence preserving scheme resolves the solution
quite well, indicating its robustness on a challenging test problem. The symmetric
scheme is more oscillatory on this test case, indicating that the divergence preserving
scheme adds a greater amount of diffusion than the symmetric scheme.

5 Conclusion

The MHD equations with Hall effect have been considered as a suitable model for
many interesting phenomena in plasma physics, particularly fast magnetic reconnec-
tion. These equations are very complicated to approximate numerically as they are
multi-dimensional, highly nonlinear, contain possibly discontinuous solutions and
involve third order spatial and mixed spatio-temporal derivatives.

Our strategy to numerically approximate these equations involves two steps: in
the first step (considered in this paper), we study a relevant sub-model: the magnetic
induction equations with Hall effect. These equations contain all the relevant physics
in terms of electromagnetics, namely magnetic induction, the presence of resistivity
and the inclusion of the nonlinear hall term and high order electron inertia term. In
particular, this sub-model serves as a test bed to design efficient discretizations of
the magnetic resistivity and of the Hall and electron inertia terms. Here, we have
proposed two efficient numerical schemes to approximate the magnetic induction
equations with Hall effect. One of the schemes is based on the symmetric formulation
of the problem and shown to be energy stable. However, it may not respect a discrete
version of the divergence constraint. The second scheme that we propose is designed
to preserve a discrete version of the divergence constraint. We were also able to show
that this scheme satisfies the relevant energy estimates. Both schemes were tested on
series of numerical experiments are shown to perform satisfactorily. For problems
with discontinuous velocity fields, the divergence preserving was shown to slightly
superior.
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Fig. 5 Comparison of solution with η = 0,5, δi = 0.2 and δe = 0.3162 after T = 0.4. On the left we have
the result of the symmetric scheme, and on the right of the divergence preserving schemes
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The second step of our strategy is to approximate the full MHD equations with
Hall effect. The stable discretizations of the resistivity, electron inertia and Hall term
will have to couple a suitable Riemann solver based finite volume method, for in-
stance the approximate Riemann solvers proposed in [4]. As the divergence preserv-
ing scheme was able to handle discontinuous velocities, we believe that this coupling
will be robust and will enable us to design an efficient numerical scheme for the
full MHD equations with Hall effect. This coupling is a part of current research and
results will presented in forthcoming papers.

There are a couple of open issues with the proposed schemes—the first (as re-
marked before) is to design preconditioners to solve the linear equations that result in
every sub-step of our time stepping routine. The second is the issue of robust bound-
ary conditions. Both are subject to ongoing research.

Appendix: Finite difference operators

The different operators used in our numerical experiment, are based on one dimen-
sional operators coupled together with Kronecker product. The one dimensional op-
erators are given for q = x, y, z in matrix form:

– Second order central difference

D(2)
q = P −1

q Q = 1

2Δq

⎛
⎜⎜⎜⎜⎜⎝

−2 2
−1 0 1

. . .
. . .

. . .

−1 0 1
−2 2

⎞
⎟⎟⎟⎟⎟⎠

, Pq = Δq

⎛
⎜⎜⎜⎜⎜⎝

1
2

1
. . .

1
1
2

⎞
⎟⎟⎟⎟⎟⎠

.

– Fourth order central difference

D(4)
q = P −1

q Q = 1

Δq

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1
− 1

2 0 1
2

1
12 − 2

3 0 2
3 − 1

12
. . .

. . .
. . .

. . .
. . .

1
12 − 2

3 0 2
3 − 1

12
− 1

2 0 1
2−1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Pq = Δq

⎛
⎜⎜⎜⎜⎜⎝

1
2

1
. . .

1
1
2

⎞
⎟⎟⎟⎟⎟⎠

.

Combining this operators we obtain the two spatial discretisation used in the numer-
ical experiments.
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We give the discrete derivative for the x direction, the ones for the other spatial
directions are defined analogously.

Standard second and fourth order operator are

dx = D(k)
x ⊗ Iy ⊗ Iz, k = 2,4

where Iq are the identity matrices.
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