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Abstract Immunosenescence is the term commonly
used to describe the multifaceted phenomenon encom-
passing all changes occurring in the immune system
during aging. It contributes to render older adults more
prone to develop infectious disease and main age-
related diseases. While age clearly imposes drastic
changes in immune physiology, older adults have het-
erogeneous health and immune phenotypes. This con-
fronts scientists and researcher to develop more age-
specific interventions rather than simply adopting in-
tervention regimes used in younger people and this in
order to maintain immune protection in older adults.
Thus, this review provides evidences of the central
role played by cell-mediated immunity in the immu-
nosenescence process and explores the means by
which senescent state of the cell-mediated immune
function could be identified and predicted using bio-
markers. Furthermore considerations are given to recent
advances made in the field of age-specific immune

interventions that could contribute to maintain immune
protection, to improve quality of life, and/or to promote
healthy aging of the growing part of the population.
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Introduction

Over the last 50 years, the number of individual older
than 65 years has tripled. By 2025–2030, projections
indicate that the population aged over 65 will be
growing 3.5 times as rapidly as the total population
(Lutz et al. 1997; Oeppen and Vaupel 2002). The
optimism created by the ever increasing life expectan-
cy and the expectation of many individuals that they
will live longer and healthier should be balanced by
the reality of health care burden placed on medical and
social welfare services by the increased number of
older individuals (Lang and Aspinall 2012).

Indeed, the age-related changes of the immune
system, commonly termed immunosenescence
(Weiskopf et al. 2009; Ongrádi and Kövesdi 2010),
contribute to the increased susceptibility of older
adults to develop not only infectious diseases, but
cancer, Alzheimer’s diseases, osteoporosis, and auto-
immunity (Ginaldi et al. 2005; 2008; Lang et al.
2010b; Fulop et al. 2011).

Although individuals’ age is a major contributor,
there is no single cause of immunosenescence, which
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is the consequence of a compilation of events (Govind
et al. 2012) including thymic involution (Aspinall
et al. 2010), the continuous reshaping of the immune
repertoire by persistent antigenic challenges (Virgin
et al. 2009), the dysregulation of Toll-like receptor
functions (Shaw et al. 2011), the reduced production of
naïve B cells and the intrinsic defects arising in resident
B cells (Frasca et al. 2011), and the impact of nutritional
status and dysregulation of hormonal pathways (Kelley
et al. 2007; Lang et al. 2012; Lang and Samaras 2012).
Moreover, human aging is also inextricably linked with
an ever increasing incidence of chronic-comorbid health
conditions (e.g., diabetes and heart failure) which con-
tribute to increase the age-related chronic low-grade
inflammation and therefore further impinge the immune
system (Fulop et al. 2010; Franceschi et al. 2007).

Therefore, while age clearly imposes drastic
changes in immune physiology, older adults have het-
erogeneous health and immune phenotypes. This
poses new challenges to scientists and researchers as
well because research on the immunology of aging
needs to go beyond the characterization of age-
related immune deficiencies. Thus, after demonstrating
the central role played by cell-mediated immunity in the
immunosenescence process, this review will explore the
means by which immunosenescent state could be iden-
tify through the interesting question whether cell-
mediated immune competences could be predicted us-
ing biomarkers. Furthermore, considerations will be
given to recent advances made in the field of age-
specific immune interventions that could contribute to
maintain immune protection, to improve quality of life,
and/or to promote healthy aging of the growing part of
the population.

What are the main features of the T cell-mediated
immunity senescence?

Quantification of T cell numbers throughout the life
span shows that they are maintained in human beings
(Aspinall et al. 2010) even in their tenth decades at
levels which are comparable to those found in younger
individuals (Mitchell et al. 2010). This would imply
that there is no decline in the homeostatic mechanisms
which preserve the size of the peripheral T cell pool
within defined boundaries (Lang et al. 2011b). As
showed in Fig. 1, the age-related changes in cell-
mediated immunity are characterized by two major

patterns: the reduction in thymic output (i.e., naïve
T cells) and the increase in the number of antigen-
experienced memory and in particular effector cells
(i.e., senescent cells) (Weiskopf et al. 2009). In
addition, but not further detailed thereafter, thymic
involution also leads to a decreased output of regula-
tory T cells (i.e., Tregs) which has been reported to
decline after the age of 50 and might contribute to age-
related phenomena such as autoimmunity and increased
inflammation as well (Tsaknaridis et al. 2003; Weiskopf
et al. 2009; Franceschi et al. 2007).

The decreased number of naïve T cells

Production and maintenance of the diverse peripheral
naïve T cell repertoire are critical to the normal func-
tion of the immune system (Weiskopf et al. 2009;
Ongrádi and Kövesdi 2010). In the older adults, there
is a decrease both in the diversity and functional
integrity of the CD4+ and CD8+ T cells subsets which
contribute to a decreased ability to respond adequately
to reinfection (Naylor et al. 2005) and a poorer vaccine
effectiveness (Lang et al. 2011a). Age-associated
changes in cell-mediated immunity strongly depend
on thymic function (Aspinall et al. 2010). Thymic
involution is one of the major feature of human immu-
nosenescence because it is the single preceding event
in all cases (Ostan et al. 2008; Aspinall et al. 2010). It
is characterized by a progressive, reduction in size,
due to profound changes in its anatomy with reducing
the active areas of thymopoiesis related to fat accumu-
lation throughout life.

Thymic atrophy and decreased thymopoiesis are
active processes mediated by the upregulation of thy-
mosupressive cytokines (i.e., interleukin—IL-6, leu-
kemia inhibitory factor—LIF, and oncostatin M—
OSM) in aged human being and mice thymus tissue
(Sempowski et al. 2000; Ongrádi and Kövesdi 2010),
while IL-7 production by stromal cell is significantly
decreased (Andrew and Aspinall 2002; Ortman et al.
2002). IL-7 is necessary for thymopoiesis, promoting
cell survival by maintaining the anti-apoptotic protein
Bcl-2 and inducing V-DJ recombination (see Fig. 2)
(Kim et al. 1998; Aspinall and Andrew 2000; Jiang et al.
2005). The above changes result in decreased thymic
output, in diminished number of circulating naïve Tcells
(i.e., CD45RA+CD28+ and CD45RA+CD28+CD26L)
in the blood stream and lymph nodes (Aspinall et al.
2010; Ongrádi and Kövesdi 2010). Naïve T cells from
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aged individuals exhibit numerous functional defects,
including shorter telomeres, a restricted TCR repertoire,
reduced cytokine production, and impaired expansion
and differentiation into effector cells following antigen
stimulation (Weiskopf et al. 2009; Ferrando-Martinez
et al. 2011).

The age-related expansion of dysfunctional terminally
differentiated T cells

Consequently to decreasing thymopoiesis, a shift in
the ratio of naïve to memory T cells in order to main-
tain peripheral T cell homeostasis is observed with
advancing age. Repeated exposure to antigens directly
shapes the T cell pool, and certain pathogens directly
contribute to immunosenescence (Virgin et al. 2009;

Ongrádi and Kövesdi 2010). While some reports sug-
gest that localized, niche limited, latent herpes virus
(HHV1) may not have any impact, evidence impli-
cates chronic cytomegalovirus (CMVor HHV5) infec-
tion in the age-dependent expansion of dysfunctional
terminally differentiated Tcells (CD8+CD28−) (Pawelec
et al. 2009; Lang et al. 2010a; Brunner et al. 2011). In
older adults with CMV seropositivity, up to 25% of the
total CD8+ Tcells pool is specific for CMV immunodo-
minant epitopes (Pawelec et al. 2009; Virgin et al.
2009). This expansion of CMV-specific CD8+ is asso-
ciated with the loss of the costimulatory molecule CD28
which has been reported as key predictor of immune
incompetence in older individuals (Vallejo 2005; Frasca
et al. 2011). CD28 marker is expressed constitutively
on >99% of human T cells at birth. With advancing age,

Fig. 1 Schematic representation of the main features observed
within the T cell-mediated immune system with advancing age.
Thymic atrophy is characterized by a progressive, age-related
reduction in the size of the thymus due to profound changes in
its anatomy (i.e., progressive loss of thymic mass and replace-
ment of thymocytes with adipocytes). This is a key contributory
factor in the reduced ability of the immune system to respond to

new antigen. While the quantification of T cell numbers shows
that they are maintained throughout the life span, with the age-
associated reduction in thymic output (i.e., naïve T cells), the
constituent of the T cell pool progress towards their replicative
limit (i.e., senescent cells). Potential beneficial impacts of the
3Rs of Rejuvenation are also represented
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a progressive increase in the proportion of CD28− T
cells is observed and particularly within the CD8+ T cell
subset (Lang et al. 2010a). CD28-mediated costimula-
tion is needed for effective primary Tcell expansion and
for the generation and activation of regulatory T cells
(Hünig et al. 2010). CD28 signal transduction results in
IL-2 gene transcription, expression of IL-2 receptor, and
the stabilization of a variety of cytokines messenger
RNAs. Consequently, memory CD8+CD28− T cells
generated from aged naïve cells, compared to memory
cell produced from young naïve cells produced much
less cytokine as well (Th1 IL-2 and Th2 IL-4 and IL-5)
(Ongrádi and Kövesdi 2010). Aged CD4+CD28− pro-
duced from aged naïve cells also expressed decreased
CD40L (CD154) maker. The CD154 ligand has been
shown to induce cytokine production, costimulate pro-
liferation of activated T cells and this accompanied by
production of IFN-γ, TNF-α, and IL-2. Hence the
capacity of these cells to help in B cell proliferation and
antibody production is considerably reduced contributing
to the impairment of humoral response in the aged
(Haynes 2005; Lang et al. 2010b; Frasca et al. 2011).

Globally, the proliferative capacity of CD28− T cells
is also limited; these cells have shortened telomeres and
show increased resistance to apoptosis and restricted T

cell diversity and are named senescent cells (Vallejo
2005). These cells are also able to secrete proinflamma-
tory cytokines with a switch from Th1- to Th2-like
cytokines response that contributes to the ongoing age-
related inflammatory process termed inflammaging
(Franceschi 2007; Franceschi et al. 2007). Senescent
cells also exert regulatory roles in vivo that further
impinge the immune system capacities such as poorer
immune responses to influenza vaccination (Goronzy et
al. 2001; Saurwein-Teissl et al. 2002) and higher auto-
reactive immunologic memory (Weiskopf et al. 2009).

Is T cell-mediated immunity senescence
a quantifiable disorder?

Predicting individual immune responsiveness using
biological markers that easily distinguish between
healthy and immunosenescent states is a desirable
challenge. Since the single preceding event in all cases
of immunosenescence is thymic involution (Aspinall
et al. 2010), can we identify a specific T cell-mediated
immunity makers which are linked to a state of immu-
nosenescence? The pioneering OCTO and NONA
studies have resulted in the emerging concept of an

Fig. 2 Schematic representation of the somatic rearrangement
process undergoing in every immature T cell TCR loci during
the development from hematopoietic stem cell to mature naïve T
cells. During the rearrangement process, the intervening DNA

sequences, both for α- and β-chain, are deleted and circularized
into episomal DNA molecules, called TCR excision circles
(TRECs) (Adapted from Lang et al. (2011b))
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immune risk profile (IRP) (Wikby et al. 2005; Strindhall
et al. 2007; Wikby et al. 2008). This immune condition
consists of (1) a depleted number of naïve T cells; (2) a
high CD8+, low CD4+ numbers characterized by an
inverted CD4+/CD8+ ratio; (3) a poor mitogen response
to concavanavalin (ConA) stimulation; and (4) the
expansion of dysfunctional terminally differentiated
CD8+CD28− T cells (i.e., senescent cells) (Pawelec et
al. 2009; Brunner et al. 2011). This IRP identified from
healthy octogenarians and nonagenarians when 2-, 4-,
and 6-year mortality was predicted. Hirokawa et al. have
thus proposed a T cell immune score expressing the
immune status as a simple score combining five T cell-
related parameters (Hirokawa et al. 2009): total number
of T cells, CD4+/CD8+ ratio, number of naïve T cells
(CD4+CD45RA+), ratio of naïve to memory
(CD4+CDRO+) T cells, and T cell proliferative index.
In patients with colorectal cancer compared to healthy
age-matched controls, this T cell immune score of
patients in stages I–IV was significantly decreased. Fur-
thermore, the complex remodeling of immune system
observed during aging also includes profound modifi-
cations within the cytokine network (Larbi et al. 2011).
The typical feature of this phenomenon is a general
increase in plasma cytokines levels and cell capability
to produce proinflammatory cytokines, including a
chronic, low-grade, proinflammatory condition usually
termed inflammaging (Franceschi 2007; Macaulay et al.
2012). This results from a shift from a CD4+ T helper
cells, Th1-like cytokine response to a Th2-like response,
and furthermore an increase in levels of proinflammatory
cytokines (i.e., IL-6, tumor necrosis factor (TNF-α), as
well as IL-1β, IL-18, and IL-12). While a wide range of
factors has been claimed to contribute to this state (i.e.,
increased amount of adiposity, decreased production of
sex steroid, and chronic health comorbid disorders)
(Ostan et al. 2008; Fulop et al. 2010), this altered inflam-
matory response has also been attributed to the continu-
ous exposure to CMVantigen stimulation and/or reactive
oxygen species (Pawelec et al. 2009; Brunner et al. 2011;
Larbi et al. 2011). However, whether these parameters
could provide a robust set of criteria for the determination
of an individual’s immunological status in the older old
adults, further studies are still required in order to identify
biomarkers that are identifiable earlier in life so that
intervention strategies can be administered sooner rather
than later (Govind et al. 2012).

With this aim, genomic may help to identify factors
usable not only as a measure of biological aging but

that may also be useful as a tool for predicting immune
capabilities within the population (Ostan et al. 2008).
Studies that tracked the changes in thymic output have
attempted to establish the number of naïve cells and
thereby provide an assessment of immune status by
using an excisional by-product of T cell receptor
(TCR) genes rearrangement (Douek et al. 1998; 2000;
Hazenberg et al. 2002; 2003; Mitchell et al. 2010;
Govind et al. 2012). These products are termed TCR-
rearrangement excisions circles (TRECs) (Takeshita
et al. 1989; Livak and Schatz 1996; Kong et al. 1998).

Are TRECs a biomarker of effective aging?

TRECs: episomal DNA sequences generated
during the TCR genes rearrangement

The ability of T lymphocytes to recognize a specific
region of a particular antigen is driven by the presence
of antigen receptors on the surface of each cell. The
TCR is a heterodimer that consists in 95% of T cells of
an alpha (α) and beta (β) chain, whereas in 5% of T
cells this consists of gamma and delta (γ/δ) chains. In
order to create a border repertoire of TCR, an intricate
process of cutting and splicing undergoes during the
complex transition from hematopoietic stem cell to
mature naïve T lymphocyte that leads to random join-
ing of DNA segments from the TRC locus (Chain
et al. 2005). In T cells expressing TCR-αβ, rearrange-
ments of both TCR-α and TCR-β genes produce
TRECs, as depicted in Fig. 2, by VJ gene recombina-
tion and by V(D)J gene recombination, respectively
(Bogue and Roth 1996). Both involve a somewhat
random joining of gene segments to generate the com-
plete TCR chain, and the two rearrangement events
that occur during this process are identical in 70% of
αβ T cells (Verschuren et al. 1997). The α-chain
rearrangement produces a signal joint TREC
(sj-TREC) and the β-chain, a coding joint TREC
(Douek et al. 1998). Thus the TRECs generated are
common to most αβ T lymphocytes and are detectable
exclusively in phenotypically naïve T cells (i.e., unde-
tectable in memory/effector T cells, B cells, and other
peripheral mononuclear cells) (Aspinall et al. 2000;
Hazenberg et al. 2003; Kohler et al. 2005). Because of
the enormous diversity of TCR-α VJ and TCR-β VDJ
recombination events (Siu et al. 1984; Arden et al.
1985), and thus the number of TRECs produced, no

AGE (2013) 35:609–620 613



single TREC can be used as a marker to assess the
overall thymic function (Douek et al. 1998; Hazenberg
et al. 2003). While α- and β-TRECs possess an iden-
tical DNA sequences respectively and are both stable
(Livak and Schatz 1996), not duplicated during sub-
sequent mitosis (Takeshita et al. 1989), TRECs generated
during α-chain rearrangement are generally preferred
(Aspinall et al. 2000). Indeed they are generated after
β-TRECs and are therefore less diluted out with each
subsequent cellular division. Moreover, a common re-
quirement for productive rearrangement of the TCR-α
locus is the deletion of the TCR-δ locus (see Fig. 2). Sj-
TREC generated during the α-chain rearrangement can
be easily quantified in clinic samples (Aspinall et al.
2000; Douek et al. 2000; Hazenberg et al. 2000; Patel
et al. 2000; Hazenberg et al. 2002; 2003; Murray et al.
2003; Kohler et al. 2005; Zubakov et al. 2010; Lang et al.
2011b).

sj-TREC: a biomarker of the resting naïve T cell pool
rather than of thymic outputs

Phenotypic analyses have confirmed that the exhaus-
tion of thymic output with advancing age was the basis
of the deficient replacement of naïve T cells lost in the
periphery (i.e., by death or conversion to memory/
effector cells) (Kohler et al. 2005; Ostan et al. 2008;
Haines et al. 2009; Weiskopf et al. 2009). Whether this
contributes to the inability of maintaining the T cell
repertoire breadth in older adults, TREC values could
not be immediately interpreted to reflect continuous
thymic output of naïve T cells (Hazenberg et al. 2003).
While, as shown in Fig. 3, some reports have shown
age-associated decline in the sj-TREC values (Mitchell
et al. 2010; Zubakov et al. 2010), Chen et al has dem-
onstrated that TREC were still readily detectable in
healthy nonagenarians (Chen et al. 2010). This suggests,
as demonstrated by Hazenberg, that TREC T cells con-
tent should be finally more considered as a biomarker of
the resting naïve T cell pools rather than a record of
thymic output (Hazenberg et al. 2003). This is well
illustrated by findings from studies performed in indi-
viduals suffering from different health conditions
(Douek et al. 1998; Markert et al. 1999; Douek et al.
2000; Patel et al. 2000). Two major biological parame-
ters that complicate the interpretation of TREC data
explain this assertion: longevity of naïve T cells and
TREC dilution within the two daughter cells after each

round of cell division (Hazenberg et al. 2003). Indeed,
estimating that healthy adult has a steady state of 1011

naïve T cells and a thymic output of 107–108 naïve cells
per day, it was estimated that naïve T cells have a life
span of 1,000–10,000 days (Sprent and Tough 1994).
Consistently, thymectomy should not lead to rapid
decline in naïve T cell numbers, and in a group of adults
thymectomized 3 to 39 years prior to analysis, TRECs
were still clearly present (Douek et al. 1998). It was thus
assumed that naïve T cell division would be too low to
significantly affect the TREC content (Douek et al.
1998). Whether that is true in healthy adults, it is not
the case in HIV-infected individuals or in lymphopenic
cancer adults (Hazenberg et al. 2000; 2002). In these
two populations, TREC values are significantly lower
compared to healthy age-matched control, but TREC
increased rapidly with highly active antiretroviral thera-
py and during T cell reconstitution with stem cell trans-
plantation, respectively, and even TREC values reached
supranormal levels (Hazenberg et al. 2000; 2002). In
individuals with severe combined immunodeficiency or
in congenitally athymic patients (i.e., DiGeorge syn-
drome), TRECs became detectable after either hemato-
poietic stem cell transplantation or transplantation of
cultured postnatal thymic tissue (Markert et al. 1999;
Patel et al. 2000). Finally, in any case, in clinical con-
ditions involving or influencing the cell-mediated im-
mune system or with advancing age, the number of
TREC and the T cell TREC content are not only deter-
mined by thymic output but also by peripheral events
such as homeostatic proliferation of existing naïve T
cells which replace those cells lost by death or conver-
sion to memory/effector cells (Hazenberg et al. 2003).
Thus, analyzing TREC numbers in healthy individ-
uals, Murray et al. found a marked change in the
source of naive T cells before and after 20 years
of age (Murray et al. 2003). The bulk of the naive
T cell pool was sustained primarily from thymic
output for individuals younger than 20 years of
age whereas proliferation within the naïve pheno-
type was dominant for older individuals. Over
90% of phenotypically naïve T cells in middle
age were not of direct thymic origin. Similarly,
but as regard to humoral immunosenescence, develop-
ing B cell receptor excision circles assay could be prob-
ably of high interest in order to study the age-related
changes occurring within the naïve B lymphocyte pool
(Jasper et al. 2003).

614 AGE (2013) 35:609–620



Could we identify different trends of aging
when analyzing sj-TREC values?

In a possibly clearer picture, the TREC decline in the
oldest old was recently shown in a study analyzing
blood samples from 215 healthy individuals ranging in
age from 60 to 104 years (Mitchell et al. 2010). The
number of donors aged ≥70 years were 66% and
≥80 years, 27%. Changes in thymic output were quan-
tified using TREC/105 T cells ratio. TREC measure-
ments were obtained by quantitative polymerase chain
reaction, and the number of T cells was determined
using a fluorescence activated cell sorter analysis.
Thus, while the absolute number of leucocytes and T
lymphocytes did not change significantly across the
age range studied, the authors demonstrated a slowly
accelerated curvilinear decline of the TREC ratio be-
tween sixth and ninth decade of life. As showed with
Fig. 4, the most pronounced decline was seen in those
individuals more than 90 years of age. Moreover,
samples from earlier decades showed a wide range of
TREC values with a convergence of the sample het-
erogeneity observed in the TREC levels with increas-
ing age (see Fig. 4a). These findings contribute to
speculate for a number of interesting hypotheses pre-
sented in Fig. 4b. First, are low TREC measurements
reflective of an individual’s immunosenescence status;
if so, are the individuals in the lower left quadrant (low
TREC level at younger age) at a more advanced stage
of immunosenescence? The converse argument could
also be inferred for individuals with the highest TREC
levels (upper left quadrant). These individuals may
therefore be more likely to progress to become the

long-lived healthy individuals observed in the low
right quadrant. This concept lends itself to the argu-
ment that immunosenescence is not merely a measure-
ment of chronological age but points towards immune
exhaustion arising at different ages (i.e., physiological
age) (Lang et al. 2010b; Mitchell et al. 2010). The
downward trajectory of an individual’s thymic output
profile over time has been demonstrated previously by
Kilpatrick et al. (2008) and could be considered as part
of longitudinal studies similar to the OCTA and
NONA studies to investigate further the potential role
of sj-TREC as predictive marker of aging (Wikby et al.
2005; Strindhall et al. 2007; Wikby et al. 2008). Thus,
whether predicting human phenotypes from genotypes
is relevant both for personalized medicine and applying
preventive strategies (Janssens and van Duijn 2008),
additional clinical and translational studies at popula-
tion, clinical, cellular, and molecular levels are still
needed in order to elucidate the exact implications of
the TREC values on the age-related senescence of the
cell-mediated immune response (Lang et al. 2011a).

How to rejuvenate the T cell-mediated immune
system?

Different ways have been already explored regarding
how best to rejuvenate the peripheral T cell pool (Govind
et al. 2012; Lang and Aspinall 2012). The different
approaches can be categorized in to the 3Rs of rejuvena-
tion as presented in Fig. 1. Two of three approaches (i.
e., restoration and reversion) have recently demon-
strated their effectiveness in reversing age-related

Fig. 3 Schematic representation
of the age-related changes in
TREC values across the life span
based on Zubakov et al. (2010)
and Mitchell et al. (2010) study
results. The red line depicts the
decline in TREC value in healthy
individuals, and the two dashed
lines on either side are the upper
and lower TREC values for a
given age observed within this
population. The whole figure
shows the age-related decrease in
TREC values but also demon-
strates the convergence of the
overall spread of the TREC values
with advancing age

AGE (2013) 35:609–620 615



changes of the B cell population (Keren et al.
2011a; 2011b).

The 3Rs of rejuvenation

Replacement strategies aim to restore immune func-
tions lost by several techniques including the transfu-
sion of autologous blood derived from an individual
during their early life and transfused when they are
much older and adoptive transfer procedures (Oelke
et al. 2003; Cobbold et al. 2005). Alternatively it also
involves transferring ex vivo generated naïve T cells
(Hare et al. 1999; de Pooter et al. 2003) or to physically
remove senescent cells from the circulation with the aim
of inducing the homeostatic expansion of more func-
tional population of memory T cells (Trzonkowski et al.
2003; Hadrup et al. 2006; Lang et al. 2011b). Reprog-
ramming strategy is probably the most “revolutionary”
one. To date, there is general consensus regarding the
idea that telomeres represent an inherent biological
clock (Mera 1998; Westin et al. 2007). Thus, pharma-
cologic approaches have been developed in order to
enhance telomerase activity and restore telomere length
as possible means for the prevention or retardation of
replicative senescent cells or to significantly extend cel-
lular lifespan (McElhaney and Effros 2011; Govind et al.
2012). Interestingly, some authors have demonstrated

that the idea of rejuvenating a self-tolerant immune
system (i.e., cell-mediated and humoral immune system)
is also clinically feasible and safe (de Kleer et al. 2006;
Alexander et al. 2009). Indeed, clinical trials have indi-
cated that immunoablation followed by autologous
hematopoietic stem cell transplantation (ASCT) had the
potential to induce remission in subjects suffering from
refractory autoimmune diseases (Rosen et al. 2000; Burt
et al. 2006). Indeed, with ASCT, it induced not only
depletion of autoreactive immunologic memory cells
but also immunologic self-tolerance by reprogramming
autoreactive Tcells and profoundly resetting the adaptive
immune system and this by restoring the CD4+CD25+

immune regulatory network (de Kleer et al. 2006;
Alexander et al. 2009). Finally, restoration strategies
aim to maintain a normal thymic environment by using
growth hormone, sex steroids, growth factors, nutrients,
and cytokines. While some reports that IL-7 introduced
into the thymus is unable to reverse thymic involution
(Phillips et al. 2004), animal studies provide prom-
ising results. These findings suggest that IL-7
could have significant potential in the clinic for
assisting in the treatment of viral infections (Aspinall
et al. 2007; Levy et al. 2009), boosting immune
recovery after bone marrow transplantation, or to
improve the immune system (Rosenberg et al.
2006; Sportes et al. 2008; 2010).

Fig. 4 Graphic representation of the age-related changes in
TREC/105 T cells ratio. a Demonstrates (1) the slow decline in
the ratio values between the sixth and ninth decades of life with
a more pronounced decline seen in individuals more than
90 years of age and (2) a convergence of the sample heteroge-
neity observed in the TREC levels with increasing age. b Shows
an annotated diagram of the age-related changes observed in

TREC measurement. The dashed horizontal line indicates the
median TREC/105 T cell ratio in the sample population and the
dashed vertical line is the average life expectancy across the
study population (79.0 years). Upper left (UL), lower left (LL),
upper right (UR), and lower left (LR) quadrants refer to different
quadrants formed by the bisection of the data horizontal and
vertical lines (Adapted from Mitchell WA 2010)
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Interleukin-7: a promising treatment to improve the
cell-mediated immune system

IL-7 is a γ-chain cytokine produced by stromal cells
and the thymus. As previously mentioned, it plays a
pivotal role in supporting thymocytes development, as
well as peripheral T cells survival and proliferation
(Kim et al. 1998; Aspinall et al. 2000; Jiang et al.
2005). Some studies carried out in old animals have
reported that IL-7 reversed thymic atrophy, increased
thymopoiesis improved thymic output, and boosting
immune function (Aspinall and Andrew 2001; Henson
et al. 2005; Pellegrini et al. 2011). Thus, old female
rhesus macaques injected with recombinant IL-7 sub-
cutaneously (60 g/kg) for a 14-day period, compared
to animals receiving saline vehicle alone, showed an
increase not only in the number of CD4+CD3+ and
CD8+CD3+ T cells and in the number of naïve T cells
(CD45RA+) for both CD4+ and CD8+ subsets, but also
in TREC levels (Aspinall et al. 2007). Moreover, these
same old female rhesus macaques vaccinated with
inactivated influenza vaccine (strain A/PR/8/34) eli-
cited increase in specific hemagglutination inhibition
(HAI) titer. In addition, treated animals showed higher
numbers of influenza-specific memory CD8+ T cells
compared to pretreatment levels with numbers greater
than in saline-treated group. Animals with the higher
HAI titers and the best proliferation against influenza
antigen were among those with the highest TREC ratio
levels. In addition, it has been recently demonstrated
in old C57BL/6 female mice that intratracheal instil-
lation provided an effective route for delivering IL-7
into the blood stream and from there into the lymphoid
tissues when compared with injected IL-7 subcutane-
ously (Mitchell et al. 2012). In functional assessment
studies, pulmonary administration demonstrated to
significantly improve intrathymic T cell development
when compared with controls receiving saline vehicle
by instillation or animals receiving IL-7 by subcuta-
neous injection.

Conclusion

Immunosenescence contributes to render aging and
older adults more prone to develop infectious diseases
and unable to mediate immune response against new
antigens. This review demonstrates the central role
played by T cell-mediated immunity both related to

intrinsic defects and its reduced capacity to help in B
cells proliferation and specific antibodies production.
However, immunosenescence also affects B cell and
innate immunity as well. While research is already
very active and more and more growing regarding
how to best rejuvenate the peripheral T and B cell
pool, robust methods for identifying and measuring
immunosenescence and strong biological makers that
distinguish between healthy and immunosenescent
states are still lacking. With these perspectives and
based on recent animal and human studies, the sj-
TREC measurement appears as an interesting bio-
marker of the resting naïve T cell pool. However,
complementary clinical and translational studies at
clinical and population levels are still needed in order
to demonstrate that the TREC ratio could be used as a
predictive maker of optimal cell-mediated immune
response to new antigens.
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