
Auton Robot (2008) 25: 71–83
DOI 10.1007/s10514-007-9070-7

Reaching with multi-referential dynamical systems

Micha Hersch · Aude G. Billard

Received: 27 October 2006 / Accepted: 3 December 2007 / Published online: 12 January 2008
© Springer Science+Business Media, LLC 2008

Abstract We study a reaching movement controller for a
redundant serial arm manipulator, based on two principles
believed to be central to biological motion control: multi-
referential control and dynamical system control. The result-
ing controller is based on two concurrent dynamical systems
acting on different, yet redundant variables. The first dynam-
ical system acts on the end-effector location variables and
the second one acts on the joint angle variables. Coherence
constraints are enforced between those two redundant rep-
resentations of the movement and can be used to modulate
the relative influence of each dynamical system. We illus-
trate the advantages of such a redundant representation of
the movement regarding singularities and joint angle avoid-
ance.

Keywords Bio-inspired reaching · Dynamical system
control · Multi-referential control · DLS inverse ·
Redundant manipulator control · Joint limit avoidance ·
Singularity avoidance

1 Introduction

After many decades of progress and significant achieve-
ments in the field of robot control, biological movement con-
trol remains a model of efficient and adaptive control which
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we cannot compete with. The mechanisms underlying bio-
logical control and accounting for its extraordinary proper-
ties are still largely unknown, although many attempts have
been made to uncover them. In this paper, we focus on two
principles that have been suggested to be at the core of bio-
logical motion control, and apply them to control the reach-
ing motions of a robotic arm. The first principle is multi-
referential control, i.e., the idea that movements are repre-
sented and controlled in multiple frames of reference. The
second principle is dynamical system control, the idea that
control policies are best represented in terms of a dynamical
system active in a given state space.

Taking those two principles drawn from the study of bi-
ological systems, we design a reaching controller composed
of two dynamical systems simultaneously active in differ-
ent yet redundant frames of reference. This enables the sys-
tem to take advantage of the properties of each representa-
tion. The resulting system offers interesting characteristics
in terms of robustness to perturbations and singularities.

Dynamical systems have been used successfully to con-
trol mobile robots (Schöner et al. 1995), robotic arms (Ios-
sifidis and Schöner 2004), humanoid arms (Ijspeert et al.
2002) and walking movements (Righetti and Ijspeert 2006).
This paradigm has been recognized as a powerful tool for
robust and adaptive control. The novelty of our work lies in
the combination of multiple and redundant dynamical sys-
tems for the control of reaching movements.

2 Human reaching movements

2.1 Multi-referential control

In the eighties, a lot of work has been devoted to de-
termining the frame of reference in which human reach-
ing movements are planned. Some studies (Morasso 1981;
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Abend et al. 1982; Flash and Hogan 1985) suggested that
movements were planned according to constraints expressed
in a Cartesian body-centered frame of reference, while oth-
ers (Atkeson and Hollerbach 1985; Lacquaniti et al. 1986)
suggested that movements are planned according to in-
trinsic constraints expressed in joint angle coordinates. In
all cases, invariant trajectory characteristics (in particular
straight lines) in a given space were taken as evidence for
that space being the planning space.

After a careful review of the experimental settings of pre-
vious experiments, Desmurget et al. (1997) showed that con-
strained settings, where subjects were forced by a manip-
ulandum to move in an horizontal plane induced straight
spatial trajectories, whereas free settings induced straight
joint angle trajectories. This work, along with other evidence
(see Desmurget et al. 1998b), made it quite convincing that
movements were not planned in a single frame of reference,
but that many different frames of reference were involved
in the planning and control of reaching motions (Paillard
1991). In particular, a hybrid visuo-kinesthetic frame of ref-
erence was hypothesized in Carrozzo and Lacquaniti (1994).

2.2 Dynamical system control

Traditionally, reaching has been (explicitly or implicitly)
considered as a two-stage process (Shadmehr and Wise
2005). The first stage is the planning stage, which is fol-
lowed by an execution stage. According to this view, a
reaching trajectory is computed during the planning stage,
and this trajectory is actually tracked during the execution
stage. This is in line with the usual robotics applications,
where the planner and the controller are two separate com-
ponents.

This traditional view has been challenged by the dynami-
cal system approach to movement control (Bizzi et al. 1984;
Kelso 1995; Todorov and Jordan 2002). According to this
approach, there is no explicit trajectory planning, but rather
an implicit set of trajectories made possible by a dynamical
system. So there is no planned “preferred” trajectory that
the system tries to match during execution, but a set of dy-
namic laws that move the system from one point to another,
eventually leading it to the goal. In this framework, the tar-
get acts as an attractor for the arm. This view was supported
by experimental evidence on frogs showing that an attractor
could be created at a leg position by micro-stimulation of
the spinal cord (Giszter et al. 1993).

The exact nature of such a dynamical system is still con-
troversial, although some suggestions have been made, such
as the equilibrium-point hypothesis (Bizzi et al. 1984), the
λ model (Feldman and Levin 1995), the stochastic optimal
feedback control law (Todorov and Jordan 2002) or the Vec-
tor Integration To Endpoint (VITE) (Bullock and Grossberg
1988). This model is described in the next paragraph.

2.2.1 The VITE model

The VITE model (Bullock and Grossberg 1988) describes
the neural signals commanding a pair of agonist-antagonist
muscles. The target limb position T is assumed to be known.
The actual limb position is given by a signal P(t). The
model hypothesizes the existence of a “difference vector
population” of neurons with activity V and a “go signal”
G(t), which gates the execution of the movement. The VITE
model for a single muscle is then described by the following
equations:

V̇ = α(−V + T − P), (1)

Ṗ = G · [V]+, (2)

where α is a positive constant and [·]+ indicates the positive
value function (i.e. 0 if the argument is negative).

Applying this model on a pair of muscles, agonist and
antagonist, and taking a step-like go function yields

r̈ = α(−ṙ + β(rT − r)). (3)

In this equation, r represents the limb position under the in-
fluence of both agonist and antagonist muscles, rT the tar-
get position and α,β ∈ [0 1] are constant scalars. This is
the equation of the spring-and-damper system. It is straight-
forward to show that this dynamical system has a stable at-
tractor on rT . So, from any starting point, the system will
be brought smoothly to the target and remain there. More-
over, for α > 4β , there is no trajectory overshoot. A criti-
cally damped solution is obtained if α = 4β . Trajectories for
various values of α and β are illustrated in Fig. 1. The evo-
lution of the position r given by this equation is illustrated
in Fig. 1 for different parameters α and β .

Fig. 1 The dynamics of the VITE model for various values of the pa-
rameters. Throughout this document the values α = 0.08 and β = 0.03
were used. Refer to (3) for variable definitions
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3 A multi-referential dynamical system

3.1 Overview

The idea driving the design of the robot arm controller de-
scribed here is to unite a VITE-like dynamical system con-
trol with a multi-referential control. This is achieved by
considering two VITE-like sub-controllers active in differ-
ent spaces. The first sub-controller is active in the joint an-
gle space (or arm configuration space) and the second sub-
controller is active in the end-effector location space (or
Cartesian space). Each sub-controller is specified by the
VITE-like dynamical system described by (3). Those two
dynamical systems concurrently act on two distinct sets of
variables, robot joint angles for the first one, and robot end-
effector location for the second one.

However, those sets of variables are not independent, as
the end-effector location is uniquely determined by the ro-
bot arm configuration. Thus coherence constraints are en-
forced so that the joint angles specified by the first dynami-
cal system correspond to the end-effector location specified
by the second dynamical system. In other words, there are
two redundant representations of the movement, each one
with its own dynamics. Those two dynamics are coupled
by coherence constraints (described in Sect. 3.3) that ensure
that no contradiction between the two representations occur.
The structure of this controller is shown in Fig. 2.

This coupling can then be modulated in order to adapt
to the relative influence of the sub-controllers, thus allowing
a smooth transition from one controller to the other. This
amounts to adapting the control strategy to the situation at
hand. In Sect. 3.6 this feature is exploited in order to obtain a
very simple and effective joint limit avoidance mechanism.

In summary, our controller can be viewed as two linear
dynamical systems coupled through non-linear coherence
constraints. As such, the resulting global dynamical system
is non-linear.

3.2 Setting and notations

We consider a robotic arm with n degrees of freedom (DOF)
manipulating objects in a m-dimensional space. The arm
configuration and the end-effector location are given by vec-
tors θ ∈ R

n and x ∈ R
m respectively. (Here and throughout

this paper, vectors are represented with bold lower case sym-
bols.) Those vectors may be indexed by the time t , indicat-
ing that at that moment in time the manipulator is in config-
uration θt and the end-effector in location xt . The fact that
a particular arm configuration θt corresponds to a particular
end-effector location xt is expressed by the following rela-
tionship.

xt = K(θt ), (4)

Fig. 2 A schematic representation of the system. A VITE-like dy-
namical system is applied to the joint angle variables θ and to the
end-effector variables x. Coherence constraints are enforced between
the two sets of variables

where K is the kinematic function. Due to the redundancy
of the manipulator, different values of θ may yield the same
value K(θ).

The aim of the controller is to smoothly bring the manip-
ulator end-effector to a target location xT . To this location
corresponds a set �T of the manipulator’s joint configura-
tions:

�T = {θ |K(θ) = xT }. (5)

In the case of redundant manipulators, this set usually con-
tains an infinite number of elements. However, one specific
configuration θT must be given to the VITE-like dynamical
system. We describe below (in Sect. 3.4) how this redun-
dancy is handled.

In the remaining of this paper, the integration constant of
the dynamical system is denoted by τ .

3.3 Coherence enforcement

It is clear that if one formally applies the dynamical system
described in (3) to both the robot joint angles and the end-
effector location, the result will bear no sense. This is due
to the fact that both sets of variables (joint angles and end-
effector location) will be brought to values where they do
not correspond to each other. In order to avoid this, coher-
ence constraints are enforced, which will force the joint an-
gles and the end-effector location to be consistent with each
other at all times. This is achieved by finding the position
which is closest to the positions given by each of the dynam-
ical systems, while remaining coherent. In other words, at
every time step the two dynamical systems bring the manip-
ulator to a desired position (xd

t , θd
t ) which is not coherent.

Coherence is then enforced by finding the coherent veloc-
ities (ẋt , θ̇t ) that will bring the system closest to (xd

t , θd
t ).
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Similarly to what was done in Billard et al. (2006), those ve-
locities can be found by solving the following constrained
optimization problem:

min
θ̇t ,ẋt

1

2
((θ̇t − θ̇ d

t )T Wθ (θ̇t − θ̇ d
t )

+ (ẋt − ẋd
t )T Wx(ẋt − ẋd

t )) (6)

u.c. ẋt = Jt θ̇t , (7)

where Jt is the Jacobian of K at θt . Here the semi-definite
positive diagonal matrices Wθ ∈ R

n×n and Wx ∈ R
m×m

serve as coefficient indicating the respective weight that one
should give to the desired joint angles or end-effector loca-
tion, and account for the unit difference between x and θ .
Because it is a positive quadratic optimization problem sub-
ject to linear constraints, this problem has a single minimum.
It can be found using Lagrange multipliers. The quantity to
be minimized can be expressed as

L(θ̇d
t , θ̇t , ẋd

t , ẋt ) = 1

2

(
(θ̇t − θ̇ d

t )T Wθ (θ̇t − θ̇ d
t )

+ (ẋt − ẋd
t )T Wx(ẋt − ẋd

t )
)

− λT (ẋt − Jt θ̇t ), (8)

where λ is the vector of Lagrange multipliers. After differ-
entiating with respect to θ̇t and ẋt and setting to zero, one
gets

∂L

∂θ̇t

= Wθ (θ̇t − θ̇ d
t ) + JT

t λ = 0, (9)

∂L

∂ ẋt

= Wx(ẋt − ẋd
t ) − λ = 0 (10)

and thus

Wθ (θ̇t − θ̇ d
t ) + JT

t Wx(ẋt − ẋd
t ) = 0. (11)

After inserting (7) into this last equation, we can infer

Wθ (θ̇t − θ̇ d
t ) + JT

t Wx(Jt θ̇t − ẋd
t ) = 0 (12)

and hence

θ̇t = (
Wθ + JT

t WxJt

)−1(Wθ θ̇
d
t + JT

t Wxẋd
t

)
. (13)

We can notice that this expression is a generalization of
the Moore-Penrose pseudo-inverse and also of the Damped
Least Square (DLS) inverse. Indeed, by setting Wθ to zero
and Wx to identity, one gets the original resolved rate con-
trol method presented in Whitney (1969), which makes use
of the Moore-Penrose pseudo-inverse of the Jacobian to
compute the joint velocities that produce given end-effector
velocities. Moreover setting θ̇ d

t to zero and Wθ to identity,

Fig. 3 Coherence enforcement between the two dynamical sys-
tems. At time t , the system is in position (θt ,xt ) which is coherent
(xt = K(θt )). Each of the sub-controllers bring the system to an inco-
herent position (θd

t ,xd
t ), which is then projected on the closest coherent

position (θt+1,xt+1)

one gets the DLS inverse method (Chiaverini et al. 1994),
which avoids singularities.

The parameters Wθ and Wx control the influence of each
of the sub-controllers. By setting Wx to zero, one obtains
a pure joint angle controller and by setting Wθ to zero, the
result is a pure end-effector location controller.

An alternate representation of (13) can be formulated as
(see Appendix for the proof)

θ̇t = θ̇ d
t + W−1

θ JT
t (W−1

x + JtW
−1
θ JT

t )−1(ẋd
t − Jt θ̇

d
t ). (14)

Although maybe not as simple as (13), this formulation is
advantageous from an implementation perspective. Using
W−1

θ and W−1
x instead of Wθ and Wx allows to avoid in-

finity when dealing with a pure angular controller. It is in-
deed equivalent to have W−1

θ (respectively W−1
x ) or Wx (re-

spectively W−1
θ ) equal to zero. Moreover, this formulation

is faster to compute, because it requires a matrix inversion
of degree m, whereas (13) requires the inversion of a matrix
of degree n > m (for redundant manipulators).

Another, perhaps more intuitive, way of understanding
the coherence constraints enforcement is to consider the
joint angles and the end-effector location in a joint space of
dimension n + m. In this space, (4) defines a n-dimensional
manifold of consistent positions. Thus the system can be
seen as a VITE-like dynamical system in this joint space,
whereby the position is constantly projected on the mani-
fold of consistent positions, as illustrated by Fig. 3. In this
view, the parameters Wθ and Wx determine the direction of
the projection.

3.4 Target configuration redundancy

As mentioned above, the joint angle dynamical system takes
a target arm configuration θT as input. In case of a redun-
dant manipulator, there can be an infinite number of such
θT ∈ �T corresponding to a desired target location. In order
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to decide which one to choose, we take (at each time step)
the one that is closest (in the standard Euclidean norm) to
the actual arm configuration. This way, the joint displace-
ment prescribed by the joint angle controller is minimized.
If we already have a θT ∈ �T , it is possible to update this
value by τ θ̇T , which will bring it closer to the actual arm
configuration θ .1 Note that the target itself may be moving
with velocity ẋT . The update value τ θ̇T can be found by
solving the following constrained optimization problem

min
θ̇T

1

2
(θT + τ θ̇T − θ)T (θT + τ θ̇T − θ) (15)

u.c. τJT θ̇T = τ ẋT + xT − K(θT ). (16)

Here, JT is the Jacobian of the kinematic function at θT .
The term xT − K(θT ) is there to avoid a numerical drift,
which would bring K(θT ) away from xT . Again, it is a posi-
tive quadratic optimization problem subjected to linear con-
straints and thus has a single minimum. Using the Lagrange
multipliers for solving this problem, we have

d

∂θ̇T

1

2
(θT + τ θ̇T − θ)T (θT + τ θ̇T − θ)

− λT
(
τJT θ̇T − τ ẋT − (

xT − K(θT )
)) = 0. (17)

Thus

0 = θT + τ θ̇T − θ − JT
T λ

⇒ τ θ̇T = JT
T λ − θT + θ

⇒ JT (JT
T λ − θT + θ) = τ ẋT + xT − K(θT )

⇒ λ = (JT JT
T )−1

(
τ ẋT + xT − K(θT ) + JT (θT − θ)

)

⇒ τ θ̇T = JT
T (JT JT

T )−1
(
τ ẋT + xT − K(θT )

+ JT (θT − θ)
) − θT + θ.

This results in

τ θ̇T = (
JT
T (JT JT

T )−1JT − In

)
(θT − θ)

+ JT
T (JT JT

T )−1(τ ẋT + xT − K(θT )
)
, (18)

where In denotes the identity matrix of size n × n.
This amounts to performing a gradient descent on the

squared Euclidean distance to the actual arm configuration
in angle space. As such, θT may end up in a local minimum
if �T is disjoint (see Burdick 1989) and if the initial θT is
too far from the optimal one. Thus, in order to find an ini-
tial value for θT we sample �T using a geometrical inverse
kinematics algorithm and take the value closest to θ . This
initialization is performed again when a sudden target dis-
placement occurs.

1Here we omit the time index t to lighten the notation.

3.5 Summary

Putting together the elements described above results in the
following dynamical system. At each time step inconsis-
tent velocities θ̇ d

t and ẋd
t are obtained by each of the sub-

controllers, using the Euler approximation of the VITE-like
system:

θ̈ d
t = α(−θ̇t + β(θT − θt )), (19)

θ̇ d
t = θ̇t + τ θ̈d

t , (20)

ẍd
t = α(−ẋt + β(xT − xt )), (21)

ẋd
t = ẋ + τ ẍd

t . (22)

Coherence constraints are then enforced using (14):

θ̇t+1 = θ̇ d
t + W−1

θ JT (W−1
x + JW−1

θ JT )−1(ẋd
t − Jθ̇ d

t ), (23)

ẋt+1 = Jθ̇t+1 (24)

θt+1 = θt + τ θ̇t+1, (25)

xt+1 = K(θt+1). (26)

Finally, the target arm configuration θT is updated us-
ing (18):

θT = θT + (
JT
T (JT JT

T )−1JT − In

)
(θT − θt+1)

+ JT
T (JT JT

T )−1(τ ẋT + xT − K(θT )
)
. (27)

Those three sets of equations are iterated until the target is
reached.

3.6 Joint limit avoidance

In this section we explore an application offered by an on-
line modulation of the sub-controller weights. We show how
interesting properties can be obtained by a judicious weight
modulation policy. In particular, we focus on joint limit
avoidance. When controlling a robotic arm, it is always im-
portant to avoid bumping into the joint boundaries. Indeed,
this is needed to avoid jerky movements and to avoid re-
straining the movements of the arm.

The solution presented here can be applied when the joint
angle workspace is convex. This is the case when the joint
angle workspace is specified by a fixed upper and lower
bound for each of the joint angles. The hyper-volume de-
fined in this way is a parallelepiped, and is hence convex.
This implies that when reaching a target from a starting
position, the joint angle sub-controller will never bring the
system to a joint angle boundary because there is no trajec-
tory overshoot. This property can be exploited to effectively
avoid the joint boundaries, by switching to the joint angle
sub-controller when approaching the joint limit. So joint
angle limits can be easily avoided by making the weights
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Fig. 4 The behavior of the function described in (28)

Wθ and Wx dependent on the robotic arm configuration.
As the arm gets closer to one of the joint limits, say θi ,
the corresponding element wθ,i of the matrix Wθ gets big-
ger to eventually have a ratio wx/wθ,i equal to zero, which
amounts to have a pure joint angle controller and thus avoid
the joint limit. This can be achieved by making the weight
ratio wx

t /w
θ,i
t depend on the joint angle position θi

t as fol-
lows.

wx
t

w
θ,i
t

= 1

2
γ

(
− cos

(
2π · θi

t − θi
min

θ i
max − θi

min

)
+ 1

)
, (28)

where θi
min and θi

max are the joint angle boundaries and γ

is a constant setting the maximum value for wx/wθ,i . The
right-hand side of this equation is plotted in Fig. 4. By ap-
plying this equation, the control is purely angular (wx = 0)
when the system is approaching the joint boundary, thus
avoiding it.

For the implementation of this modulation, it is again
simpler to use (14) instead of (13). In fact, working with
the inverse of the weight matrices, one can set the W−1

x to
identity and the diagonal elements of W−1

θ can be computed
according to the right-hand side of (28).

This method is quite different from other joint limit
avoidance methods such as in Liégeois (1977), Fung Chan
and Dubey (1995) or Chaumette and Marchand (2001).
Those authors typically consider a main task, given by a end-
effector trajectory and use the redundant degrees of freedom
to optimize a secondary task, in this case joint limit avoid-
ance. This secondary task is only performed if it does not
disrupt the main task. Because we use the dynamical system
approach, we do not have such a constraint. In fact, our joint
angle avoidance method does influence the end-effector tra-
jectory, but this is of no concern to us, as the target will
nevertheless be reached, thanks to the attractor attached to
the target.

3.7 Robustness to singularities

We have mentioned before that our controller can be seen
as a generalization of the Damped Least-Squares (DLS) in-
verse method (Chiaverini et al. 1994). The DLS inverse J∗

of the Jacobian matrix J is defined by

J∗ = (εIn + JT J)−1J = JT (εIm + JJT )−1, (29)

where ε > 0, In and Im are the identity matrices of di-
mension n and m respectively. This inverse was introduced
by Wampler (1986) and Nakamura and Hanafusa (1986) as
an alternative to the Moore-Penrose pseudo-inverse solution
(Whitney 1969). The advantage of this method is that it ef-
fectively avoids singularities because J∗ is always defined.
This comes at the cost of precision in the tracking of a de-
sired end-effector velocity.

Equations (13) and (14) make essentially use of this DLS
inverse (up to a diagonal matrix multiplication) and there-
fore our controller also avoids singularities. Because the ma-
trices

J#
n = Wθ + JT WxJ, (30)

J#
m = W−1

x + JW−1
θ JT (31)

are positive definite (as long as Wθ and W−1
x are positive

definite), they are never singular. Moreover, an upper bound
on the condition number of J#

m is given by:

cond(J#
m) ≤ 1 + γ · max

θ
(σ 2

1 (θ)), (32)

where σ1(θ) is the biggest singular value of J(θ). This for-
mula can give a maximal value for the variable γ for a given
kinematic function K, over which computational problems
may arise. This is an additional advantage of using (14) and
the corresponding weight parametrization.

3.8 Convergence

As mentioned in Sect. 2.2.1, each of the sub-controllers has
one single fixed point. This fixed point is the target location
and acts as an attractor. This, however, does not ensure that
the controller as a whole, i.e. the combination of the two
sub-controllers, also has a unique fixed point. In fact, the
nonlinear interaction between the two sub-controllers may
give rise to the appearance of spurious fixed points. Those
appear when the two controllers exactly cancel each other.
As can be seen in (13), this is the case when

Wθ θ̇
d
t + JT

t Wxẋd
t = 0, (33)

θ̇t = 0, (34)

ẋt = 0 (35)

which means that

θT − θt = −W−1
θ JtWx

(
K(θT ) − K(θt )

)
. (36)

The existence of configurations θt and θT satisfying this
equation depends on the function K and on the weights Wx
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and Wθ . For Wx = 0, there are no such points apart those for
which θ = θT , i.e., the only fixed point is the target. But for
other values of the weights, those spurious fixed points may
well appear. Hence the parameter γ of (28) is a bifurcation
parameter of the system. Section 5.1 presents simulation re-
sults confirming this hypothesis.

The presence or absence of cycles in the system is harder
to prove, especially considering the weight dynamics. Sim-
ulation results seem to indicate that there are no such cycles.

Both spurious attractors and cycles can be avoided by
making γ decay slowly. This way, the system will necessar-
ily cross the bifurcation threshold at some point and reach
the target.

3.9 Stability

The VITE-like dynamical system is a linear system with
a single attractor. As such it is asymptotically stable. Be-
cause the system has no singularity, the velocities remain
bounded. The joint angles also remain bounded by the joint
limit avoidance mechanism. The whole system thus remains
bounded, as long as the input, i.e., the target location is
bounded. Since the system needs an input, it must be pro-
vided with a default input in case the target is not tracked. It
can be for example the last target position, the current ma-
nipulator configuration or a “rest” position.

4 Implementation

This controller was implemented for the control of the arms
of the Hoap2 humanoid robot of Fujitsu (see Fig. 5). Those
arms have four DOFs assembled in a kinematic chain de-
picted in Fig. 6. We describe the end-effector location by its
three spatial coordinates and discard its orientation. We thus
have n = 4 and m = 3, which means that we are dealing with
a redundant manipulator.

The experimental setting comprises a stereo-vision sys-
tem composed of two cameras, the robot and two personal
computers running Linux. The stereo-vision system and the
controller run on the first computer, while the second com-
puter is used as an interface with the robot. Using color
recognition, the stereo-vision system gives the controller the
target location. The controller updates the simulated joint
angle trajectories and gives it to the second computer at a
fixed rate of 20 Hz. The second computer, which runs Real-
Time Linux, performs a linear interpolation and sends the
robot the positions at a rate of 1 kHz. The robot has an on-
board high-gain feedback controller, i.e. we control the robot
in position and the on-board controller computes the corre-
sponding torques.

Fig. 5 The robot reaching for a target tracked by a stereo-vision sys-
tem

Fig. 6 A schematic representation of the robotic arm. It has four
DOFs: SFE, SAA, SHR, EB

5 Results

5.1 Convergence properties

In order to see when and where spurious attractors appear,
we performed a simulative analysis of the system. We sim-
ulated two millions trajectories given by randomly and uni-
formly sampled starting configurations and target locations.
Each trajectory was simulated for various values of γ . The
ratio of trajectories that did not reach the target is plotted
in Fig. 7. One can see that for small γ , there are no spuri-
ous attractors and all trajectories reach their target. But when
γ gets bigger, spurious attractors appear and some trajecto-
ries cannot reach their goal. Figure 8 shows the location of
the targets that could not be reached. They almost all lie in
the vicinity of lower boundary of the workspace. The region
of unreachable targets is centered around a fully downward
stretched vertical arm position. As illustrated in Fig. 8, this
region grows with γ . It must be noted that the points shown
by this figure are not always unreachable, they are unreach-
able by a non-empty set of starting configurations. Figure 9
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Fig. 7 The ratio of reaching failure for increasing values of γ . For a
very small γ all reaching tasks could be successfully performed. But
when γ = 0.035, spurious attractors appear

Fig. 8 The set of unreachable targets, in Cartesian space for different
values of γ . The origin lies on the shoulder

Fig. 9 The attractor location depending on the joint angle target. This
graph represents an eight-dimensional space, because there are two di-
mensions for each angle (the target and the attractor value). SFE, SAA,
SHR and EB correspond to the four DOFs of the arm. Here, γ = 0.05

shows the location of the unreachable target and the spurious
attractor where the trajectory is trapped in joint angle space.
One sees that for particular locations of the target joint an-

gle (x-axis), the trajectory might be brought to a spurious
attractor (y-axis).

5.2 Point-to-point reaching trajectories

Our controller can perform accurate point-to-point reaching
motions. An example is shown in Fig. 10 which shows a
reaching movement in three dimensions, performed in sim-
ulation and with the real robot. One sees that the robot
matches well the simulated trajectory. Thanks to this close
match between the simulated and the real trajectory, one can
assume that the results obtained through simulations carry
over to the real robot trajectories. Consequently, unless spec-
ified otherwise, the experiments presented in the rest of this
paper are done in simulations.

Figure 11 shows additional properties of the movement
displayed in Fig. 10. On the right, one sees the bell-shaped
end-effector velocity profile and the joint angle velocity pro-
files. On the left, one sees how the system handles the tar-
get arm configuration redundancy. In joint space, the system
aims at the closest joint angle configuration that corresponds
to the target in Cartesian space.

Quasi-horizontal movements in front of the robot are de-
picted in Fig. 12. The controller produces quasi-straight tra-
jectories, when the reaching is performed in the workspace
center. This is clearly because the controller produces trajec-
tories which are some sort of compromise between straight
lines in end-effector location space (produced by the end-
effector location sub-controller) and straight lines in joint
angle space (produced by the joint angle sub-controller).
Moreover, the velocity profiles are bell-shaped and smooth,
due to the use of the VITE-like dynamical system. Bell-
shaped velocity profiles and quasi-straight hand paths are
typical of human reaching movements (Morasso 1981).
Moreover, it has been suggested that human movements
are the result of “a compromise between a straight line in
workspace and a straight line in joint space” (Cruse and
Brüwer 1987).

5.3 Singularity avoidance

As explained in Sect. 3.7, the controller presented here
avoids singularities. By this, we do not merely mean that
the controller avoids singular configurations (as in Baillieul
1985), but that there are no singularities for our controller,
whatever the configuration. This fact is illustrated here on
a task involving reaching to and from points liable to pro-
duce a singularity in traditional controllers. This happens
when the Jacobian matrix of the kinematic function is de-
generate, i.e when its rank is smaller than m. The start-
ing position is set as the arm fully stretched downward and
the target position is with the arm fully and horizontally
stretched to the side. For those two positions, the Moore-
Penrose pseudo-inverse of the Jacobian matrix cannot be
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Fig. 10 Comparison between simulated movement and real move-
ments. Left: a 3D reaching trajectory, in simulation (dashed line) and
on the robot (solid line). Right: the corresponding joint angle trajec-
tories in simulation (dashed) and as measured on the robot sensors

(solid). Angles are given in degrees. The delay was removed to ease
the comparison. One simulation time step corresponds to roughly 7
milliseconds in real time

Fig. 11 Left: the redundancy
resolution for the movement
depicted in Fig. 10. The target
manifold �T is represented by
the dotted line and one can see
that the joint angle trajectory
(solid line) aims at the closest
point of �T . This point (shown
with the dot) moves on �T

according to (18). Right: the
end-effector velocity (above)
and the joint angle velocities
(below) for the same movement

computed and hence the task cannot be accomplished using
that method. This limitation, however, does not apply to the
hybrid controller presented here, as can be seen in Fig. 13.
This figure shows the hand path trajectory obtained when
performing this task and the condition number of the matrix
which is inverted at every time step. One sees that this con-
dition number remains in the first order of magnitude, which
means that the inversion can be reliably performed without
numerical instability.

5.4 Joint limit avoidance

The joint limit avoidance method described above prevents
that the robotic arm reaches its joint angle boundaries. An
example is given in Fig. 14, which shows the end-effector
and joint angle trajectories, with and without the joint limit
avoidance mechanism. In this example the robot is asked to
reach from behind his neck to the front. One sees that the
weight modulation forces the system to remain within the



80 Auton Robot (2008) 25: 71–83

Fig. 12 Left: reaching trajectories for various weight configurations. The trajectories lie in the center of the workspace. Right: the joint angle
trajectories (measured on the robot sensors) for the rightmost movement

Fig. 13 Left: the trajectory for reaching to a potentially singular point. There is no singularity. Right: the evolution of matrix condition number
corresponding to this trajectory. The inverted matrices remain well-conditioned throughout the movement

Table 1 Joint limit avoidance results

Joint SFE SAA SHR EB

Lower boundary −90 −180 −90 −115

Without avoidance −90 −180 −90 −115

With avoidance −83.5 −164.1 −89.9 −107.2

joint boundaries. Without the joint limit avoidance mech-
anism, the boundaries are reached for all four joint an-
gles. Table 1 shows how close the trajectories get from the
workspace boundaries.

For the kind of tasks displayed in Fig. 14, the joint limit
avoidance mechanism has a significant influence on the end-
effector trajectories. This may be a disadvantage in some

cases, but if there is no particular constraint on the end-
effector it seems adequate to take advantage of this freedom.

5.5 Robustness to perturbations

The controller described here can essentially be understood
as a dynamical system having the target as an attractor. It
therefore comes as no surprise that the system is robust to
perturbations. Here, two kinds of perturbations are consid-
ered: a sudden target displacement and a transient external
force applied on the manipulator. The target displacement
example is illustrated in Fig. 15. One sees that by moving
the target, one simply moves the attractor of the dynamical
system. Hence, the system reaches the target while retaining
a continuous velocity, because it is a second-order system.
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Fig. 14 A reaching trajectory,
with and without the joint limit
avoidance mechanism. Left:
end-effector trajectories. Right:
Joint angle trajectories. Without
the joint limit avoidance
mechanism (thin line) the
system bumps into the joint
limits (shown with dashed
lines). This does not occur with
the joint limit avoidance
mechanism (thick lines). The
weight ratio (and γ

respectively) is 0.05. SFE, SAA,
SHR and EB refer to the four
DOFs, as displayed in Fig. 6

Fig. 15 The end-effector trajectory altered by sudden target displace-
ments. Left: end-effector trajectory. The system is at the location indi-
cated by the circles when the target suddenly moves to square with the

corresponding number. Right: the corresponding joint angle velocities.
The vertical bars indicate the occurrences of a target displacement

The effect of an external perturbation acting on the ma-
nipulator is depicted in Fig. 16. Again, due the attractor na-
ture of the system, this perturbation is handled on-line in an
appropriate manner. The system smoothly adapts its trajec-
tory to reach the target.

6 Discussion

In the preceding sections, we described a robotic manipu-
lator controller based on two basic principles drawn from
the studies of human reaching movements, multi-referential
movement representation and dynamical system control.
The controller comprises two VITE dynamical systems,
one acting on the end-effector described in a body-centered
Cartesian frame of reference and the other acting on the joint
angle arm configuration. The controller is interesting both
for robotics and for biological control modeling.

6.1 Strengths of the controller

From a pure roboticist perspective, the multi-referential con-
troller presented here has several advantages over classi-
cal controllers. First, it does not have any singularity be-
cause it uses a generalized version of the DLS inverse which
has been shown to avoid the singularity problem (Wampler
1986). The inverse in (13) can always be computed as long
as Wθ is positive definite because JT

t WxJt is positive semi-
definite. Another advantage of the controller is that it al-
lows a simple and elegant solution to the joint limit avoid-
ance problem. Our results show that this method is effec-
tive and yields smooth and short end-effector trajectories.
Note that this method makes the assumption that the joint
angle workspace is convex, which is generally the case in
the absence of obstacles. If there are obstacles, or in order
to prevent self collisions, a classical potential field method
(Khatib 1985) can easily be (and has been) integrated into
our dynamical system framework.
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Fig. 16 Robustness to external perturbations. The end-effector trajec-
tory is depicted on the left and the joint angle trajectories appear on
the right. The location and time of the perturbation are indicated by a
circle and a vertical bar respectively

Finally, the controller is robust to unexpected changes in
the target location and smoothly adapts its trajectory accord-
ingly. This is due to the robustness of the dynamical system
underlying the controller.

6.2 Biological inspiration

This robotic controller draws its inspiration from two prin-
ciples purportedly underlying biological arm control. Those
principles are on one hand a dynamical system control and
on the other hand a multi-referential control. They have been
argued to lie at the core of human movement control (Kelso
1995; Paillard 1991). The particular choice of dynamical
system (the VITE-like system) and of frames-of-reference
(joint angles and end-effector locations) do have some bio-
logical plausibility and have also been suggested to under-
lie human reaching control (Bullock and Grossberg 1988;
Cruse and Brüwer 1987; Carrozzo and Lacquaniti 1994).
The resulting movements share some of their properties
with human reaching movements, either due to the VITE
model such as the speed-accuracy trade-off and the speed-
to-distance proportionality, or due to the multi-referential
control, such as the quasi-straight paths. The way the tar-
get redundancy is handled (see Sect. 3.4) results in a depen-
dence between final and initial postures, which can also be
found in human reaching motions (Soechting et al. 1995;
Desmurget et al. 1998a).

The controller presented here is kinematic only and does
not take the dynamical properties of the robot limbs into ac-
count. This is why in the present implementation the speci-
fied position is fed into a PID-like controller. The exact na-
ture of the relationship between the controller and the actual
limbs in biological systems is still unclear, but the use of
forward models to account for the limb dynamics has been
hypothesized (Wolpert et al. 1995; Ariff et al. 2002). This
could be a further extension of our system.

7 Conclusion

The idea of concurrent dynamical systems (or controllers)
interacting with each other and leading to the emergence of
a global behavior, is interesting for robot control as it pro-
vides robustness to failures of the individual controller and
allows a smooth switching from one controller to the other,
thus allowing multiple behaviors. It is also an appealing par-
adigm under which to study and model biological movement
control, as it well suits the distributed computing performed
in biological systems.

The controller presented here hints at the possibilities of-
fered by multi-referential dynamical system control, but it
also highlights the challenges related to the design of such
controllers. Indeed it remains to be further investigated un-
der what conditions dynamical systems can be combined so
that a global coherent behavior emerges and how spurious
attractors or limit cycles can be avoided.
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Appendix: Proof of (14)

Starting from (9), we have

θ̇t = θ̇ d
t + W−1

θ JT
t λ, (37)

ẋt = ẋd
t − W−1

x λ. (38)

Inserting those equations into (7) yields

Jt

(
θ̇ d
t + W−1

θ JT
t λ

) = ẋd
t − W−1

x λ, (39)

λ = (
W−1

x + JtW
−1
θ JT

t

)−1
(ẋd

t − Jt θ̇
d
t ). (40)

This equation is then used to replace λ in (37).

θ̇t = θ̇ d
t + W−1

θ JT
t

(
W−1

x + JtW
−1
θ JT

t

)−1
(ẋd

t − Jt θ̇
d
t ). (41)
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