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Abstract Based on the shearlet transform we present a general construction of
continuous tight frames for L2(R?) from any sufficiently smooth function with
anisotropic moments. This includes for example compactly supported systems, piece-
wise polynomial systems, or both. From our earlier results in Grohs (Technical report,
KAUST, 2009) it follows that these systems enjoy the same desirable approximation
properties for directional data as the previous bandlimited and very specific construc-
tions due to Kutyniok and Labate (Trans. Am. Math. Soc. 361:2719-2754, 2009). We
also show that the representation formulas we derive are in a sense optimal for the
shearlet transform.
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1 Introduction

The purpose of this short paper is to give a construction of a system of bivariate
functions which has the following desirable properties:

Directionality. The geometry of the set of singularities of a tempered distribution f
can be accurately described in terms of the interaction between f and the elements
of the system.

Tightness. The system forms a tight frame of L?(R?).

Locality. The representation is local. By this we mean that the representation can
also be interpreted as a representation with respect to a non tight frame and its dual
frame such that both of these frames only consist of compactly supported functions.
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The importance of these criteria is obvious: First, it is widely agreed upon the fact that
a large part of the information that a function carries lies in its singularities (just think
of the edges in an image). Secondly, any transform should possess a stable analysis
and reconstruction operation. This is encoded in the tight frame property. And finally,
in many cases it is much easier to work with a local transform than with a non-local
one. This is especially true when working with functions over bounded domains like
in image processing or numerical PDE theory.

For univariate functions the wavelet transform addresses all these three points per-
fectly, but as the dimension grows, the geometry of potential singularities becomes
too complicated for the wavelet transform to capture.

For this reason a number of new (continuous and discrete) transforms have been
introduced in the last years.

The focus of this paper is on the shearlet transform which has been introduced in
[7, 10] and has become popular in Computational Harmonic Analysis for its ability to
sparsely represent bivariate functions. More specifically, we will concentrate on the
continuous shearlet transform.

An important result is that the magnitude of the coefficients of the continuous
shearlet transform of a general tempered distribution characterizes the Wavefront Set
(see e.g. [8] for the definition) of this distribution [9]. In the same paper it is shown
that one can construct a continuous tight frame formula for L%(R?).

While the results in [9] address the directionality and tightness properties, they are
based on bandlimited generators and therefore they are not local.

It is the purpose of this paper to find a local substitute for the just mentioned
results. Our main findings are a new representation formula for the shearlet transform
which is purely local. This is the content of our main Theorem 3.4. Furthermore,
we show that in a sense (to be specified below) this new representation formula is
optimal, see Theorem 3.6.

Notation We shall use the symbol | - | indiscriminately for the absolute value on
R, R2, C and C2. We usually denote vectors in R? by x, 1, &, w and their elements by
X1, X2,11, 12, .... In general it should always be clear to which space a variable be-
longs. The symbol || - || is reserved for various function space and operator norms. For
two vectors s, r € R? we denote by st their Euclidean inner product. We use the sym-
bol f < g for two functions f, g if there exists a constant C such that f(x) < Cg(x)
for large values of x. We will often speak of frames. By this we mean continuous
frames as defined in [1]. We define f (w) = f f(x)exp(2riwx)dx to be the Fourier
transform for a function f € L' N L? and continuously extend this notion to tempered
distributions.

2 Shearlets

We start by defining what a shearlet is and what the shearlet transform is:
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Definition 2.1 A function ¢ € L?(R?) is called shearlet if it possesses M > 1 van-
ishing moments in x;-direction, meaning that

/ |1/?<w>|2dw e
rR2 |21

Let f € L?(R?). The shearlet transform of f with respect to a shearlet y maps f to

SHy fla,s,t) :=(f, Yast),

where

x1—t —s(x—1n) xz—t2>

Vase (X) :=1//< a *ql/2
The following reproduction formula holds [4]:

Theorem 2.2 Forall f € L%(R?) and Y a shearlet

f(x):/ // SHy (a,s, D)Wast (x)a>dadsdt,
R2 JR JR,

where equality is understood in a weak sense.

The shearlet transform captures local, scale- and directional information via the
parameters ¢, a, s respectively. A significant drawback of this representation is the
fact that the directional parameter runs over the non-compact set R. Also it is easy to
see that the distribution of directions becomes infinitely dense as s grows, and there-
fore there is a strong dependence on the coordinate directions in this representation.

These problems led to the construction of shearlets on the cone [7, 9]. The idea is to
restrict the shear parameter s to a compact interval. Since this only allows to caption
a certain subset of all possible directions, the function f is splitinto f = Pf + PV f,
where P is the frequency projection onto the cone with slope < 1 and only Pf is
analyzed with the shearlet ¢ while P" f is analyzed with ¥"(x1, x2) := ¥ (x2, x1).
The idea behind this splitting is that directional singularities with a direction of slope
> 1, (resp. < 1) manifest themselves as slow decay in the frequency cone with slope
<1, (resp. > 1). Therefore the splitting f = Pf + P f decomposes f in a part with
singularities of slope < 1 and a part with singularities of slope > 1. Both of these
parts can be analyzed with the parameter s ranging in the compact interval [—2, 2],
see below. Also the distribution of the directions becomes almost uniform if restricted
to this interval.

For very specific choices of ¢y Labate and Kutyniok proved a representation for-
mula

2 1
||f||§=/ I(f,T,W)|2dt+/ / / |SHy Pf(a,s,)|*a > dadsdt
R2 R2J-2J0
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2 1
+/ / / |SHyvP” f(a, s, 1)|*a >dadsdt, 1)
R2J-2Jo

T; denoting the translation operator by # and W being a smooth window function.

The main weakness of this decomposition is its lack of locality: indeed, first of
all the need to perform the frequency projection P to f destroys any locality. But
also the functions ¥ which have been considered in [9] are very specific bandlimited
functions which do not have compact support. As a matter of fact no useful local
representation via compactly supported functions which is able to capture directional
smoothness properties has been found to date. The present paper aims at providing
a step towards finding such a representation using two crucial observations: First,
in [5] we were able to show that the description of directional smoothness via the
decay rate of the shearlet coefficients for a — 0 essentially works for any function
which is sufficiently smooth and has sufficiently many vanishing moments in the first
direction, hence also for compactly supported functions. The second observation is
that actually a full frequency projection P is not necessary to arrive at a useful repre-
sentation similar to (1). Instead of the operator P we will use a ‘localized frequency
projection” which is given by Fourier multiplication with a function pg to be defined
later.

Our main result Theorem 3.4 will prove a representation formula similar to (1)
where 1 is allowed to be compactly supported and the frequency projection is re-
placed with a local variant. We also show that this local variant of the frequency
projection is the best we can do — without it, no useful continuous tight frames (or
continuous frames with a structured dual) can be constructed within the scope of the
shearlet transform. This is shown in Theorem 3.6.

3 The Construction

The goal of this section is to derive a representation formula

1 2 1
nfﬁ:27</‘/‘/uﬁ%*mmwwﬂwwm
v rR2J-2J0

2 1
+/ / / |(f. q1 % ¥),)Pa > dadsdt
r2J-2Jo

+Aﬂﬁﬂ@%0 @

for L*(R?)-functions f and with some localized frequency projections o, ¢; and a
window function ¢ to be defined later. In order to guarantee that the shearlet-part
contains the high-frequency part of f and the rest contains low frequencies, it is
necessary to ensure that the window function ¢ in this formula is sufficiently smooth.

3.1 Ingredients

Here we first state the definitions and assumptions that we use in the construction.
Then we collect some auxiliary results which we later combine to prove our main re-
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sults Theorems 3.4 and 3.6. The large part of the results will concern the construction
of a useful window function and to ensure its smoothness. We say that a bivariate
function f has Fourier decay of order L; in the i-th variable (i € {1, 2}) if

f& Slg b

We start with a shearlet ¢ which has M vanishing moments in x1-direction and
Fourier decay of order L in the first variable. It is clear from the definition of van-
ishing moments that ¢ = (%)M 6 with 6 € L?(R?). We assume that 6 has Fourier
decay of order L, in the second variable so that the following relation holds:

2M —1/2> Ly > M > 1. 3)

We also set
N :=2min(L, — M, Ly), “4)

[ W@
Cy = /Rz o do, 5)
and
2 el

A= [ 2 /0 a1, a"(& — s&)Padads. ©)

We define functions ¢q, ¢ via

1Q0(E)P =Cy — Ay (&) and [§1(E)]> =Cy — Ayr (&), (7
where

YV (x1, x2) 1= Y (x2, x1).

We write xc for the indicator function of the cone C = {€ = (£1,&) € R?: |&] <
|€1]}. Finally, we pick a smooth and compactly supported bump function & with
@ (0) =1 and define functions pg, pp via

po=dxxc and p1=1— po. 8)

Clearly, po and p; are both compactly supported tempered distributions.
We remark that for any shearlet , the constant Cy, can also be computed as

Cy = / / 1V (a&1, a'? (& — s&n)Pa> dads,
—00 J0

as a short computation reveals. This fact is related to the inherent group structure of
the shearlet transform [4].

The following two lemmas concern the Fourier decay properties of the functions
pi and g@; respectively (i =0, 1).
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Lemma 3.1 We have
1Po@EI S IEITN for |&11/182] > 3/2,
IPIENSIEITN  for&a1/1E] > 3/2.

©)

Proof Assume that £ = te with e a unit vector with |ej|/|ez] > 3/2 and ¢ > 0. There
exists a uniform § > 0 such that for all n with || < 8t we have & — n € C¢, and hence
xc (& —n) =0. It follows that we can write

o) = ‘f X & — mdndn
]RZ

< / G )ldn
|n|>dt

StV =g
if @ is sufficiently smooth. On the other hand, let & = re with e a unit vector with

lea|/le1] > 3/2 and t > 0. There exists a uniform § > 0 such that for all n with |n| <
8t we have &€ — n € C and hence xc (& — ) = 1. Now we can estimate

1P1&) =11 = po®)| = ‘/}RZ () (1 - xc(€ —ﬂ))dn‘

= 'f D (1 — xc(€ — n))dn' StV =g
|n|>ot

again for ® smooth. Note that in the first equality we have used that ®(0) = 1. This
proves the statement. O

Lemma 3.2 We have
190> SI1EITY for |&11/162] < 3/2,

(10)
G1@EN1 SIEITY forlgal/1E1] <3/2.

Proof This follows from [5, Lemma 4.7]. For the convenience of the reader we
present a proof here as well. We only prove the assertion for ¢q since the proof of
the corresponding statement for ¢ is the same. By definition we have

Bo(&)I* = (/ - 2|&(a§1,¢a(gz—ssl>)|2a—3/2dads

+f - 2|&(asl,ﬁ(§z—ssl))|2a—3/2dads).

We start by estimating the second integral using the Fourier decay in the first variable:

/ [ (a&1, Va(& — s&)Pa>*dads < 4 / (al&) a3 da
a>1, |s|<2

a>1

—2L —2L
SETT S g
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for all £ in the cone with slope 3/2. To estimate the other term we need the moment
condition and the decay in the second variable. We write ¥ (§) = gIM (&) and & =
(&1,r&1), |r] <3/2. We start with the high frequency part:

/ - 2|&(asl,ﬁ<sz—ssl>)|2a*3/2da
= / - 2|asl|2M|é(asl,ﬁ<sz—ssl>)|2a*3/2dads
< / a1 *M |Va(& — s 2a " dads
a<l, |s|>2

:/ aZM_L2_3/2|§]|2M_2L2|r—S|_2L2dads
a<l, |s|>2

we now use that |r — s| is always strictly away from zero. By assumption L, =
2M — 1/2 — ¢ for some ¢ > 0. Hence we can estimate further

o |$1|—2(L2—M)f a1 — 5|22 gads < |g| 2 LM,
a<l, |s|>2
The low-frequency part can simply be estimated as follows:

/ - 2“@(6151,\/5(52 —s&1))1*a**dads

Stel e [ by 2hdads
a>1, |s[>2
—2L
SIETT
Putting these estimates together proves the statement. |
We now show a locality result for the distributions (|@; %)V, i=0,]1.

Lemma 3.3 Assume that { is compactly supported with support in the ball B4 :=
{€ : |&] < A}. Then the tempered distributions (|(,?Jl~|2)v, i =0, 1 are both of compact

support with support in the ball 2v/3 + v/5B,.

Proof Since the inverse Fourier transform of the constant function Cy, is a Dirac, this
follows if we can establish that the functions Ay and Ayv are Fourier transforms
of distributions of compact support. We show this only for Ay, the other case being
similar. In what follows we will use the notation f~ (x) := f(—x) for a function f.

Since v has M anisotropic moments we can write { = (%)MG for some 6 € L*(R?)

with the same support as . Consider the function ®(§) := |é (£)]%. Tt is easy to see
that this is the Fourier transform of the so-called Autocorrellation function 6 * 6~ of
6 which is compactly supported with support in By4. Therefore, by the theorem of
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Paley-Wiener, the function ® possesses an analytic extension to C> which we will
henceforth call F. Furthermore, by the same theorem F is of exponential type:

IFOIS (1 +12D" expAIz]), (1)

where ¢ € C? and K € N. We now consider the analytic extension I" of the function
Ay which is given by

2 1
re) = f / (@)™ F(ag1,a" (& — sq1))a>*dads, ¢ eC?.
-2 J0

Since M > 1 by (3) the above integral is locally integrable which implies that I" is
actually an entire function. It is also of exponential type: Writing M, := ( _SZ] P a.o/z)
a short computation reveals that

2 2
s s 12
1Masll 1202y 202y < @/ (1 + 5+ (s> + 2)1/2) 2 = a2 (s).

Now we estimate

2 1
1Ay (©)] = ‘ / / (@e)™ F(My0)a—>dads
-2J0

121PM (1 + | Masg D" exp(|MysS2 )

sup (14 ¢ K expAC(5)I3¢])
se[—2,2]

S A+ 1) MK exp(2AC(Q2)I3¢)).

/AR YA

By the Theorem of Paley-Wiener-Schwartz [8] it follows that Ay is of compact sup-
port with support in B oW R d

3.2 Main Result

We are now ready to prove our main result, the local representation formula in The-
orem 3.4 which is similar to (1) only with local frequency projections (given by con-
volution with pg, p1) and with possibly compactly supported shearlets. In addition,
in Theorem 3.6 we show that in a way this is the simplest representation that one
can achieve with shearlets — the local frequency projections are necessary in order to
wind up with useful systems.

From now on we shall assume that 0 < &D(S )y<l1forall & e R2 and define

4i (&) = pi (&)
Furthermore, we define

G(&) 1= (po®) o E)* + p1(E) |1 (E)H/2.

Observe that by the positivity assumption above the radicands in the previous defini-
tions are nonnegative and real.
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Theorem 3.4 We have the representation formulas

1 2 1
||f||%=c—<f f f I(f, g0 * Yase)|Pa > dadsdt
v R2J-2J0

2 1
+/ / / |(f,l11*1ﬂ;g,)|2a_3dadsdt
Rr2J-2Jo

+ / I(f, T,¢>|2dr) (12)
]RZ

and

) 2 1
f= fhlgh + flow — C]_I/j</1‘{2/2/0 (f, Wast) Po * wm,a%dadsdt

2 1
+/ / / (fs w;ﬂ)pl * Wasta_3dadsdt>
R2J-2J0
1

+ —(/ (fs Treo) po * Ty podt +/ (fs Trp1) p1 * Tzwldt). (13)
Cv/ R2 R2

The function f'°% satisfies
(f @ s gy (14)

for any f. We have the following locality property: If  is compactly supported in
Ba and ® has support in Bg, then f°Y(t) only depends on f restricted to t +

B 24/3++/54+B"

Proof We first prove (13). Taking the Fourier transform of the right hand side
yields

1 A A
C—w(ﬁo(é)(&p(é) +180E)) + PrEN Ay (§) +[91E)) f (&) = f(©).

The proof of (12) is similar. We prove (14): Again taking the Fourier transform of
flov gives

| R R 2 R N 2
C—W(Po(é)kﬁo(é)l + P1E)N91E)7) £ (5).

Now, the desired estimate follows from Lemmas 3.1 and 3.2. The last statement
follows from the observation that f'° can be written as

1 R o
o= o (o (180 + p1+ (1611)")
together with Lemma 3.3. O
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Remark 3.5 While we could show that the functions ¢;” * ¢; and p;, i = 1,2 are
compactly supported, it would be desirable to show that also the functions ¢;, ¢;, i =
1,2 have compact support. We currently do not know how to do this. By a result
of Boas and Kac [2], in the univariate case there always exists for any compactly
supported function g with positive Fourier transform a compactly supported function
f with fx f~ = g. However, in dimensions > 2 this holds no longer true and things
become considerably more difficult.

The previous theorem for the first time gives a completely local representation for
square integrable functions which also allows to handle directional phenomena effi-
ciently: by the results of [5] it follows that the decay rate of the coefficients ( f, V)
for a — 0 accurately describes the microlocal smoothness of f at ¢ in the direction
with slope s.

3.3 On the Optimality of the Representation

It is interesting to ask if the frequency projections given by convolution with pg, p1
are really necessary, or in other words if it is possible to construct tight frame sys-

2 (T2
tems (T7¢);er2 U (Vast)aeqo,11,se1-2.2.1eR? Y Was)aeqo,11.se[-2.21.er2 for L2(R7).
We show that this is actually impossible, meaning that in a sense Theorem 3.4 is the
best we can do.

Theorem 3.6 Assume that = (%)MG is a shearlet with M > 1 vanishing mo-

ments in x1-direction such that either M > 1 or M =1 and 6 e LOO(RZ). Further-
more we assume and Ly > 0, Lo > M with Ly, L, defined as in Lemma 3.2. Then
there does not exist a window function ¢ such that

lim ¢(§)=0

E—o00
and such that the system

(T19)rer2 Y Wast) aeio, 1), se1—2.21,reR2 Y Wase)ael0,11,5€[-2,2],1€R?

constitutes a tight frame for L*(R2), which means that a representation formula

1 2 1
||f||%= E(/Rz /_2/0 [{f, was;)lza_3dadsdt

2 1
+ / / / f ) Pa~ dadsds + / |<f,n¢>|2dr) (15)
r2J2Jo R2

holds for all f € L*>(R?) and some constant C.

Proof In terms of the Fourier transform, (15) translates to
Ay &)+ Ayr(E) +19E) =C.
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If we assume that ¢ has Fourier decay lim¢|—, o ¢(§) = 0 this would imply that

Jim (Ay(©)+ Ay (©) =C.

Lemma 3.2 implies that limg|— o0 Ay (§) = limjg|— 00 Ayv (§) = Cy for % < % <
%. It follows that C = 2Cy,. On the other hand, using the moment condition I/A/ = élM 0
for M =1 and § € L™ (R?), we have the following estimate for Ay and & in the strip

Ss:={§: 1611 <o}

2 1
Ay (&) < 8 / / a?|0|lcoa™*dads < 8]0 8>
-2J0

If we assume that M > 1, we can write I/AI(S) = §1M*] (&) where p is still a shearlet.
We get a similar estimate as above:

|Ay (&) < 8>MD /22/01 \A(akr, a' (& — s&)Pa=Pdads < C,8*™M .
At any rate, by choosing § appropriately small, this implies that for £ € S5 we have
C= lim (Ay@®)+ Ay (©)<C,
which gives a contradiction. g

It is easy to extend this argument to show that there do not exist shearlet frames
such that there exists a dual frame which also has the structure of a shearlet system.
By this we mean the existence of functions ¢, ¢, ¥, ¥ such that

1 2 1 B -
”f”% = E (/ / / (fa Wast><1//ast» f)a 3dadsdt
R2J-2J0
2 pl y
+/ / / (b VW, fla 3dadsdt
rR2J-2Jo
+/Rz(f,Tzﬁ0>(Tz¢,f)dl> (16)
holds for all f € Lz(Rz) and some constant C. Indeed, this would lead to the equality

Ay s ®+ A, 0 E) +PEFE =C,

where

2 1 ~
Ay g©= [ [ iaga 6 = seiag, a6 — sty dads.
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Now the same arguments as in the proof of Theorem 3.6, with Cy, replaced by

) o

VT e Jen?

= / /0 J(ag1, a2 (& — se)) (a1, a2 (6 — s&y))a~>2dads,

and Ay by A v lead to the following result:

Theorem 3.7 Assume that W = (%)MG, 1} = (aixl)Mé are shearlets with M > 1

vanishing moments in xi-direction such that either M > 1 or M =1 and é, 6 e
Loo(Rz). Furthermore we assume and L1 > 0, Ly > M with L1, Ly defined as in
Lemma 3.2. Then there do not exist window functions ¢, ¢ such that

lim ¢(£) =0, lim ¢(£) =0
E—>o00 E—o00

and such that (16) holds.

4 Concluding Remarks

In future work we would like to address the problem of constructing continuous tight
frames for the so-called ‘Hart Smith Transform’ [3, 12] where the shear operation is
replaced with a rotation. We think that in this case the results might become simpler.
One reason for this is that in this case no (smoothed) projection onto a frequency
cone is needed. In view of constructing discrete tight frames we think that a simple
discretization of a continuous tight frame will not work for non-bandlimited shearlets.
The approach that we are currently pursuing in this direction is to construct so-called
Shearlet MRA’s via specific scaling functions and to try to generalize the ‘unitary
extension principle’ of Ron and Shen [11] to the shearlet setting [6].
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