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Abstract. We introduce a ring of the so-called Fermat reals, which is an extension of the
real field containing nilpotent infinitesimals. The construction is inspired by Smooth Infini-
tesimal Analysis (SIA) and provides a powerful theory of actual infinitesimals without any
background in mathematical logic. In particular, in contrast to SIA, which admits models
in intuitionistic logic only, the theory of Fermat reals is consistent with the classical logic.
We face the problem of deciding whether or not a product of powers of nilpotent infinitesimals
vanishes, study the identity principle for polynomials, and discuss the definition and proper-
ties of the total order relation. The construction is highly constructive, and every Fermat real
admits a clear and order-preserving geometrical representation. Using nilpotent infinitesimals,
every smooth function becomes a polynomial because the remainder in Taylor’s formulas is
now zero. Finally, we present several applications to informal classical calculations used in
physics, and all these calculations now become rigorous, and at the same time, formally equal
to the informal ones. In particular, an interesting rigorous deduction of the wave equation is
given, which clarifies how to formalize the approximations tied with Hooke’s law using the
language of nilpotent infinitesimals.
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1. INTRODUCTION AND GENERAL PROBLEM

Frequently, in works of physicists, it is possible to find informal calculations of the form

1/
√

1− v2/c2 = 1 + v2/(2c2),
√

1− h44(x) = 1− 1
2h44(x), (1)

with an explicit use of infinitesimals v/c � 1 or h44(x) � 1 such that, e.g., h44(x)
2 = 0. For

example, Einstein [13] wrote the formula (using the equality sign rather than the approximate
equality sign �)

f(x, t+ τ) = f(x, t) + τ · ∂f/∂t(x, t), (2)

justifying it with the words “since τ is very small;” formulas (1) are a particular case of the general
formula (2). Dirac [10] wrote an analogous equality when studying the Newtonian approximation
in general relativity.

Using this type of infinitesimals, we can write out an equality, in some infinitesimal neighborhood,
between a smooth function and its tangent straight line, or, in other words, a Taylor formula without
remainder.

Obviously, there are many possibilities to formalize this kind of intuitive reasonings, obtaining
a more or less good dialectic between informal and formal thinking, and indeed there are several
theories of actual infinitesimals (from now on, for simplicity, we will say “infinitesimals” instead of
“actual infinitesimals” as opposed to “potential infinitesimals”). Starting from these theories, we
can distinguish between two types of definitions of infinitesimals. First, there can be (at least) a
ring R containing the real field R, and infinitesimals are elements ε ∈ R such that −r < ε < r for
every positive standard real r ∈ R>0. The second type of infinitesimals is defined by using some
algebraic property of nilpotency, i.e., εn = 0 for some natural number n ∈ N. For some ring R,
these definitions can coincide; however, anyway, they certainly lead only to the trivial infinitesimal
ε = 0 if R = R.

However, these definitions of infinitesimals correspond to theories which are completely different
in nature and in the underlying ideas. Indeed, these theories can be seen in a more interesting way to
belong to two different classes. To the first one, we can refer the theories that need a certain amount
of nontrivial results of mathematical logic, whereas in the other class, we have attempts to define
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sufficiently strong theories of infinitesimals without using nontrivial results of mathematical logic. In
the first class, we have the Non-Standard Analysis (NSA) and the Synthetic Differential Geometry
(SDG, which is also referred to as the Smooth Infinitesimal Analysis, see, e.g., Bell [3], Kock [20],
Lavendhomme [22], and Moerdijk and Reyes [23]), whereas in the second one, we have, e.g., the
Weil functors (see Kriegl and Michor [21]), Levi-Civita fields (see Shamseddine [25] and Berz [7]),
the surreal numbers (see Conway [9] and Ehresmann [12]), and geometries over rings containing
infinitesimals (see Bertram [6]). More precisely, we can say that, to work in NSA and SDG, one
needs a formal control deeply stronger than the one used in “standard mathematics.” Indeed, to
use NSA, one has to be able to formally write the sentences one needs to use the transfer theorem.
Moreover, SDG admits no models in classical logic, but in intuitionistic logic only, and hence we
must be sure that our proofs make no use of the law of the excluded middle, or, e.g., of the classical
part of De Morgan’s law, of some form of the axiom of choice, of the implication of double negation
toward affirmation, or any other logical principle which is not valid in intuitionistic logic. Physicists,
engineers, and also the majority of mathematicians are not used to have this strong formal control
in their work, and, for this reason, there are attempts to present both NSA and SDG reducing the
necessary formal control as much as possible, even if this is technically impossible at some level (see,
e.g., Henson [19], and Benci and Di Nasso [4, 5] for NSA and Bell [3] and Lavendhomme [22] for
SDG, where, using an axiomatic approach, the authors try to postpone a very difficult construction
of an intuitionistic model of a whole set theory using topos).

On the other hand, NSA is essentially the only theory of infinitesimals with discrete diffusion
and sufficiently great community of working mathematicians and published results in several areas
of mathematics and its applications, see, e.g., [1], and SDG is the only theory of infinitesimals
with nontrivial, new, and published results in differential geometry concerning infinite-dimensional
spaces like the space of all diffeomorphisms of a generic (e.g., noncompact) smooth manifold.
In NSA, we have only few results concerning differential geometry. Other theories of infinitesimals,
at least up to now, have less formal strength than NSA or SDG or even less potentiality to be
applied in several areas of mathematics.

Our main aim, for which the present work represents a first step, is to find a theory of in-
finitesimals within the “standard mathematics” (in the precise sense explained above of a formal
control more “standard” and not so strong as the one needed, e.g., in NSA or SDG) with results
comparable with those of SDG, without forcing the reader to learn a strong formal control of the
mathematics he/she is doing. Because it has to be considered inside “standard mathematics,” our
theory of infinitesimals must be compatible with classical logic.

Concretely, the idea of the present work is to by-pass the impossibility theorem about the
incompatibility of SDG with the classical logic that forces SDG to find models within intuitionistic
logic.

Another point of view concerning current theories of infinitesimals is that, despite the fact that
thay are frequently presented using opposed motivations, they lack the intuitive interpretation of
what the powerful formalism permits to do. For a concrete example in this direction, see Gior-
dano [16]. Another aim of the present work is to construct a new theory of infinitesimals always
preserving a very good dialectic between formal properties and intuitive interpretation.

More technically, we want to show that the real field can be extended by adding nilpotent
infinitesimals, arriving at an enlarged real line •

R, by means of a very simple construction completely
within “standard mathematics.” Indeed, to define the extension •

R ⊃ R, we use elementary analysis
only. To avoid any misunderstanding, is it important to clarify that the purpose of the present
work is to obtain a theory of nilpotent infinitesimals as a first step for the foundation of a smooth
(C∞) differential geometry rather than to give an alternative foundation of differential and integral
calculus (like NSA). For some preliminary results in this direction, see Giordano [16].

2. MOTIVATIONS FOR THE TITLE “FERMAT REALS”

As is well known, historically, two possible reductionist constructions of the real field starting
from the rationals have been made. The first is Dedekind’s order completion using sections of
rationals, and the other one is Cauchy’s metric space completion. Certainly, there are no historical
reasons to attribute our extension •

R ⊃ R of the real field (to be described below) to Fermat, but
there are motivations to say that the underlying spirit and some properties of our theory could
possibly please him. Here are some arguments.
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INFINITESIMALS WITHOUT LOGIC 161

(1) A formalization of Fermat’s infinitesimal method to derive functions is provable in our
theory. We recall that Fermat’s idea was, roughly speaking and not on the basis of an
accurate historical analysis which goes beyond the scope of the present work (see, e.g.,
Edwards [11] and Eves [14]), to suppose first that h �= 0, to construct the incremental
ratio (f(x+ h)− f(x))/h and, after suitable simplifications (sometimes using infinitesimal
properties), to set h = 0 in the final result.

(2) Fermat’s method to find the maximum or minimum of a given function f(x) at x = a was
to take e to be extremely small so that the value of f(x + h) was approximately equal to
that of f(x). In modern, algebraic language, it can be said that f(x + h) = f(x) only if
h2 = 0, i.e., if e is a first-order infinitesimal. Fermat was aware that this is not a “true”
equality but some kind of approximation (ibidem). We follow a similar idea to define •

R by
introducing a suitable equivalence relation to represent the above equality.

(3) Fermat has been described by Bell [2] as “the king of amateurs” of mathematics, and hence
we can suppose that in its mathematical work the informal/intuitive part was stronger with
respect to the formal one. For this reason, we can think that he could be possibly pleased
by our idea to obtain a theory of infinitesimals by preserving the intuitive meaning and
without forcing the working mathematician to be much too formal.

For these reason, we chose the title “Fermat reals” for our ring •
R (note that the possessive case

is not used, to stress that we are not attributing our construction of •
R to Fermat).

3. DEFINITION AND ALGEBRAIC PROPERTIES OF FERMAT REALS: THE BASIC IDEA

We start from the idea that a smooth (C∞) function f : •
R −→ •

R is actually equal to its tangent
straight line in the first-order neighborhood, e.g., of the point x = 0, i.e.,

∀h ∈ D : f(h) = f(0) + h · f ′(0), (3)

where D is a subset of •
R defining the above neighborhood of x = 0. Relation (3) can be viewed

as a first-order Taylor’s formula without remainder, because, intuitively, we think that h2 = 0 for
any h ∈ D (indeed, the property h2 = 0 defines the first-order neighborhood of x = 0 in •

R). These
almost trivial considerations help us to understand many things. First, •

R must necessarily be a
ring rather than a field, because, in a field, the equation h2 = 0 implies h = 0; moreover, we will
surely have some limitation in the extension of some function from R to •

R, e.g., for the square root,
because, when using this function with the standard properties, once again the equation h2 = 0
would imply |h| = 0. On the other hand, we are also forced to ask whether or not formula (3)
uniquely determines the derivative f ′(0) (because, even if it is true that we cannot simplify by h,
we know that the polynomial coefficients of a Taylor’s formula are unique in classical analysis). In
fact, we shall prove that

∃!m ∈ R ∀h ∈ D : f(h) = f(0) + h ·m, (4)

i.e., the slope of the tangent is uniquely determined if it is an ordinary real number. We refer to
formulas of the form (4) as derivation formulas.

When trying to construct a model for (3), a natural idea is to regard our new numbers in •
R as

equivalence classes [h] of ordinary functions h : R −→ R. In this way, we may hope both to include
the real field by using classes generated by constant functions and to have the class generated
by the function h(t) = t as a first-order infinitesimal number. To understand how to define this
equivalence relation, we are to treat (3.1) as follows:

f(h(t)) ∼ f(0) + h(t) · f ′(0), (5)

where the idea is that we are going to define ∼. If we assume that h(t) is “sufficiently similar to t,”
then we can define ∼ in such a way that (5) is equivalent to

lim
t→0+

(f(h(t)) − f(0)− h(t) · f ′(0))/t = 0,

i.e.,
x ∼ y : ⇐⇒ lim

t→0+
(xt − yt)/t = 0. (6)
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In this way, formula (5) is very near to the definition of differentiability of f at 0.
It is important to note that, because of de L’Hôpital’s theorem, we have an isomorphism

C1(R,R)/∼� R[x]/(x2),

where the left-hand side is (isomorphic to) the usual tangent bundle of R, and thus we obtain
nothing new. It is not easy to understand what set of functions we have to choose for x, y in (6)
to obtain a nontrivial structure. The first idea is to take continuous functions at t = 0, instead of
more regular ones like C1-functions, in such a way that, e.g., hk(t) = |t|1/k becomes a kth order
nilpotent infinitesimal (hk+1 ∼ 0); indeed, for almost all results presented in this paper, continuous
functions at t = 0 work well. However, only when proving the nontrivial property

(∀x ∈ •
R : x · f(x) = 0) =⇒ ∀x ∈ •

R : f(x) = 0, (7)

we can see that it is insufficient to take continuous functions at t = 0. To prove (7), the following
objects turn out to be useful.

Definition 1. If x : R�0 −→ R, then we say that x is nilpotent if and only if |x(t)−x(0)|k = o(t)
as t → 0+ for some k ∈ N. Denote by N the set of all nilpotent functions.

For example, any Hölder function (|x(t)−x(s)| � c · |t−s|α for some constant α > 0) is nilpotent.
The choice of nilpotent functions instead of more regular ones establishes a great difference of our
approach from the classical definition of jets (see, e.g., Bröcker [8], Golubitsky and Guillemin [17])
which can be recalled by (6).

Another problem necessarily related to the basic idea (3) is that the use of nilpotent infinitesimals

frequently leads to the consideration of terms like hi1
1 · · · hin

n . For this type of products, the first

problem is to know whether or not hi1
1 · · · hin

n �= 0 and what is the order k of this new infinitesimal,

i.e., what is a k for which (hi1
1 · · · hin

n )k �= 0 and (hi1
1 · · · hin

n )k+1 = 0. We shall have a good frame if
we shall be able to solve these problems starting from the order of each infinitesimal hj and from
the values of the powers ij ∈ N. On the other hand, almost all examples of nilpotent infinitesimals
are of the form h(t) = tα, with 0 < α < 1, and their sums; these functions also have important
properties in the treatment of products of powers. For these reasons, we shall focus our attention
on the following family of functions x : R�0 −→ R in the definition (6) of ∼.

Definition 2. We say that x is a little-oh polynomial and write x ∈ Ro[t] if and only if
x : R�0 −→ R and

xt = r +

k∑

i=1

αi · tai + o(t) as t → 0+

for suitable k ∈ N, r, α1, . . . , αk ∈ R, and a1, . . . , ak ∈ R�0.

Hence a little-oh polynomial x ∈ Ro[t] is a polynomial function with real coefficients in the real
variable t � 0 with generic positive powers of t and up to a little-oh function as t → 0+.

Remark 3. Below, when writing xt = yt+o(t) as t → 0+, we mean that limt→0+(xt − yt)/t = 0
and x0 = y0. In other words, every little-oh function is treated as a continuous function as t → 0+.

Example. Simple examples of little-oh polynomials are (1) xt = 1 + t+ t1/2 + t1/3 + o(t) and
(2) xt = r ∀t. Note that, in Definition 2, we can take k = 0, and hence α and a are void sequences
of reals, i.e., α = a : ∅ −→ R if we think of an n-tuple x of reals as a function x : {1, . . . , n} −→ R.
Another example is (3) xt = r + o(t).
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4. FIRST PROPERTIES OF LITTLE-OH POLYNOMIALS

Little-Oh Polynomials Are Nilpotent

The first properties of little-oh polynomials are as follows: if xt = r +
∑k

i=1 αi · tai + o1(t) and

yt = s+
∑N

j=1 βj · tbj + o2(t) as t → 0+, then

(x+ y) = r + s+

k∑

i=1

αi · tai +

N∑

j=1

βj · tbj + o3(t)

and

(x · y)t = rs+
k∑

i=1

sαi · tai +
N∑

j=1

rβj · tbi +
k∑

i=1

N∑

j=1

αiβj · taitbj + o4(t),

and hence the set of little-oh polynomials is closed with respect to pointwise sum and product.
Moreover, little-oh polynomials are nilpotent functions (see Definition 1); to prove this fact, we
firstly prove that the set of nilpotent functions N is a subalgebra of the algebra R

R of real-valued
functions. Indeed, let x and y be two nilpotent functions such that we have |x − x(0)|k = o1(t)
and |y − y(0)|N = o2(t); then we can write x · y − x(0) · y(0) = x · [y − y(0)] + y(0) · [x − x(0)],
and thus we can consider |x · [y − y(0)]|k = |x|k · |y − y(0)|k = |x|k · o1(t) and |x|k · o1(t)/t → 0 as
t → 0+ because |x|k → |x(0)|k, and hence x · [y− y(0)] ∈ N . Analogously, y(0) · [x−x(0)] ∈ N , and
therefore, the closeness of N with respect to the product follows from the closeness with respect
to the sum. The case of sum results from the following relations (using the formulas xt := x(t),
u := x− x0, v := y − y0, |ut|k = o1(t), and |vt|N = o2(t) and the assumption k � N):

uk = o1(t), vk = o2(t), (u+ v)k =

k∑

i=0

(
k

i

)
ui · vk−i,

and

∀i = 0, . . . , k :
ui
t · vk−i

t

t
=

(
uk
t

) i
k ·

(
vkt

) k−i
k

t
i
k · t k−i

k

=

(
uk
t

t

) i
k

·
(
vkt
t

) k−i
k

.

We can now prove that Ro[t] is a subalgebra of N . Indeed, every constant r ∈ R and every power
tai are elements of N , and hence,

r +

k∑

i=1

αi · tai ∈ N ,

and thus, it remains to prove that, if y ∈ N and w = o(t), then y + w ∈ N . However, this holds
because every little-oh function is trivially nilpotent and follows from the closeness of N with
respect to the sum.

Closeness of Little-Oh Polynomials with respect to Smooth Functions

We claim that the class of little-oh polynomials is kept by the smooth functions, i.e., if x ∈ Ro[t]
and if f : R −→ R is smooth, then f ◦ x ∈ Ro[t]. Write

xt = r +

k∑

i=1

αi · tai + w(t) with w(t) = o(t), h(t) := x(t)− x(0) ∀t ∈ R�0;

hence, xt = x(0) + ht = r+ ht. The function t �→ h(t) =
∑k

i=1 αi · tai +w(t) belongs to Ro[t] ⊆ N ,
and thus, we can write |h|N = o(t) for some N ∈ N as t → 0+. It follows from Taylor’s formula
that

f(xt) = f(r + ht) = f(r) +

N∑

i=1

(f (i)(r)/i!) · hi
t + o(hN

t ). (8)
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However, |o(hN
t )|/|t| = (|o(hN

t )|/|hN
t |) · (|hN

t |/|t|) → 0, and hence,

o(hN
t ) = o(t) ∈ Ro[t]. (9)

Relation (9), formula (8), the property h ∈ Ro[t], and the closeness of the little-oh polynomials
with respect to the ring operations imply that f ◦ x ∈ Ro[t].

5. EQUALITY AND DECOMPOSITION OF FERMAT REALS

Definition 4. Let x, y ∈ Ro[t]. We say that x ∼ y or that x = y in •
R if and only if x(t) =

y(t) + o(t) as t → 0+. It is easy to prove that ∼ is an equivalence relation. Thus, we can set
•
R := Ro[t]/ ∼, i.e., •

R is the quotient set of Ro[t] with respect to the equivalence relation ∼.

The equivalence relation ∼ is a congruence with respect to pointwise operations, and hence •
R is

a commutative ring. To simplify the notation, we sometimes write “x = y in •
R” instead of x ∼ y,

and we speak of the elements of Ro[t] directly (instead of their equivalence classes); for example,
we can say that x = y in •

R and z = w in •
R imply x+ z = y + w in •

R.

The immersion of R in •
R is r �−→ r̂ defined by r̂(t) := r. Below we always identify R̂ with R,

which is thus a subring of •
R. Conversely, if x ∈ •

R, then the mapping ◦(−) : x ∈ •
R �→ ◦x =

x(0) ∈ R, which evaluates each extended real in 0, is well defined. We refer to ◦(−) as the standard
part mapping. We also note that dimR

•
R = ∞ (as a vector space over the field R), and this stresses

how different our approach is from the classical definition of jets. Instead, our idea is similar to
NSA, where standard sets can be extended by adding new infinitesimal points, and this differs from
the point of view of jet theory.

The following theorem introduces a decomposition of a Fermat real x ∈ •
R, which chooses a

unique notation for its standard part and all its infinitesimal parts.

Theorem 5. If x ∈ •
R, then there is one and only one sequence (k, r, α1, . . . , αk, a1, . . . , ak)

such that k ∈ N, r, α1, . . . , αk, a1, . . . , ak ∈ R and

(1) x = r +
∑k

i=1 αi · tai in •
R,

(2) 0 < a1 < a2 < · · · < ak � 1,
(3) αi �= 0 ∀i = 1, . . . , k.

In this statement, we have also to include the void case k = 0 and α = a : ∅ −→ R. Obviously,

as usual, we use the definition
∑0

i=1 bi = 0 for the sum of an empty set of numbers. As we shall
see, this is the case if x is a standard real, i.e., if x ∈ R.

In the following, we use the notation ta := dt1/a := [t ∈ R�0 �→ ta ∈ R]∼ ∈ •
R, and thus, e.g.,

dt2 = t1/2 is a second-order infinitesimal. In general, as we shall see from the definition of order for
a generic infinitesimal, dta is an infinitesimal of order a. In other words, these two predicates
for the same object enable us to stress the difference between an actual infinitesimal dta and a
potential infinitesimal t1/a, namely, an actual infinitesimal of order a � 1 corresponds to a potential
infinitesimal of order 1

a � 1 (with respect to the classical notion of the order of an infinitesimal
function in calculus, see, e.g., Prodi [24] and Silov [26]).

Remark 6. Note that dta · dtb = dt ab
a+b

. Moreover, dtαa := ( dta)
α = dt a

α
for every α � 1 and,

finally, dta = 0 for every a < 1. For example, dt
[a]+1
a = 0 for every a ∈ R>0, where [a] ∈ N is the

integer part of a, i.e., [a] � a < [a] + 1.

Existence. Since x ∈ Ro[t], we can write

xt = r +

k∑

i=1

αi · tai + o(t) as t → 0+, where r, αi ∈ R, ai ∈ R�0, k ∈ N.

Hence x = r +
∑k

i=1 αi · tai in •
R, and our purpose is to pass from this representation of x to

another representation satisfying conditions (1), (2), and (3) of the statement. If ai > 1, then
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αi · tai = 0 in •
R. Therefore, we can assume that ai � 1 for every i = 1, . . . , k. Moreover, we

can also assume that ai > 0 for every i (because otherwise, if ai = 0, we can replace r ∈ R by
r +

∑
{αi | ai = 0, i = 1, . . . , k}). Summing the terms tai with the same ai, we can consider the

sums
ᾱi :=

∑
{αj | aj = ai , j = 1, . . . , k}

as the coefficients in
x = r +

∑

i∈I

ᾱi · tai

in •
R, where I ⊆ {1, . . . , k} , {ai | i ∈ I} = {amin I , . . . , amax I}, and ai �= aj for any i, j ∈ I with

i �= j. Neglecting ᾱi if ᾱi = 0 and renumbering ai for i ∈ I in such a way that ai < aj if i, j ∈ I
with i < j, we prove the existence. Note that, if x = r ∈ R, then I = ∅ in the final step of this
proof. �

Uniqueness. Suppose that

x = r +

k∑

i=1

αi · tai = s+

N∑

j=1

βj · tbj (10)

in •
R, where αi, βj , ai, and bj satisfy the assumptions in Theorem 5. First of all, ◦x = x(0) = r = s

because ai, bj > 0. Hence α1t
a1 − β1t

b1 +
∑

i αi · tai −
∑

j βj · tbj = o(t). By contradiction, if the
inequality a1 < b1 were valid, then, collecting the terms ta1 , we would have

α1 − β1t
b1−a1 +

∑

i

αi · tai−a1 −
∑

j

βj · tbj−a1 =
o(t)

t
· t1−a1 . (11)

In (11), we have β1t
b1−a1 → 0 as t → 0+ because a1 < b1 by assumption;

∑
i αi · tai−a1 → 0

because a1 < ai for i = 2, . . . , k;
∑

j βj · tbj−a1 → 0 because a1 < b1 < bj for j = 2, . . . , N, and,

finally t1−a1 is bounded because a1 � 1. Hence, for t → 0+, we obtain α1 = 0, which contradicts
condition (3) of Theorem 5. We can argue in a similar way for b1 < a1, which gives a1 = b1. This
together with equation (11) yield

α1 − β1 +
∑

i

αi · tai−a1 −
∑

j

βj · tbj−a1 =
o(t)

t
· t1−a1 (12)

and hence α1 = β1 for t → 0+. We can now restart from (12) to prove that a2 = b2, α2 = β2, etc.,
in the same way. At the end, we must have k = N, because otherwise, if, say, k < N at the end

of the above recursion process, then we would have
∑N

j=k+1 βj · tbj = o(t). Collecting the terms

containing tbk+1 , we obtain

tbk+1−1 · [βk+1 + βk+2 · tbk+2−bk+1 + · · ·+ βN · tβN−βk+1 ] → 0. (13)

In this sum, βk+j · tbk+j−bk+1 → 0 as t → 0+, because bk+1 < bk+j for j > 1, and hence

βk+1 + βk+2 · tbk+2−bk+1 + · · ·+ βN · tβN−βk+1 → βk+1 �= 0.

Thus, it follows from (13) that tbk+1−1 → 0, i.e., bk+1 > 1, which contradicts the uniqueness
assumption bk+1 � 1.

Let us note explicitly that the uniqueness proof enables us also to claim that the decomposition
is well defined in •

R, i.e., if x = y in •
R, then the decompositions of x and y are equal. �

Using this theorem, we introduce two symbols. The first one stresses the potential nature of an
infinitesimal x ∈ •

R, and the other its actual nature.
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Definition 7. For x ∈ •
R, we say that

x = r +
k∑

i=1

αi · tai is the potential decomposition (of x) (14)

if and only if conditions (1), (2), and (3) of Theorem 5 hold. Certainly, it is implicitly assumed that
equality in (14) is the equality in •

R.

For example, x = 1 + t1/3 + t1/2 + t is a decomposition, because we face increasing powers of
t. The only decomposition of a standard real r ∈ R is the void one, i.e., that with k = 0 and
α = a : ∅ −→ R; to see that this is the case, it suffices to go along the existence proof again with
this case x = r ∈ R (or to prove it directly, e.g., by contradiction).

Definition 8. Considering tai = dt1/ai
, we can also use the following notation, stressing the

fact that x ∈ •
R is an actual infinitesimal:

x = ◦x+

k∑

i=1

◦xi · dtbi , (15)

where the notation ◦xi := αi and bi := 1/ai is used; thus, the condition uniquely identifying all
bi is b1 > b2 > · · · > bk � 1. We refer to (15) as the actual decomposition of x or simply the

decomposition of x. We also use the notation dix := ◦xi · dtbi (and simply dx := d1x) and refer to
◦xi as the ith standard part of x and to dix as the ith infinitesimal part of x or the ith differential
of x. We can also write x = ◦x+

∑
i d

ix; in this notation, the summands are uniquely determined
(and the number of summands as well). Finally, if k � 1 (i.e., if x ∈ •

R\R), then we set ω(x) := b1
and ωi(x) := bi. The real number ω(x) = b1 is the greatest order in the actual decomposition (15)
corresponding to the smallest order in the potential decomposition (14), and it is called the order
of the Fermat real x ∈ •

R. The number ωi(x) = bi is referred to as the ith order of x. If x ∈ R,

we set ω(x) := 0 and dix := 0. Note that ω(x) = ω(dx), d(dx) = dx in general and, using the
notation of (14), we have ω(x) = 1/a1.

Example. If x = 1 + t1/3 + t1/2 + t, then ◦x = 1 and dx = dt3, and hence x is a third-order
infinitesimal, i.e., ω(x) = 3, d2x = dt2, and d3x = dt; finally, the standard parts are ◦xi = 1.

6. THE IDEALS Dk

In this section, we introduce the set of nilpotent infinitesimals corresponding to a kth-order
neighborhood of 0. The restriction of every smooth function to this neighborhood is a polynomial
of order k given by its kth-order Taylor formula (without any remainder). We begin with a theorem
characterizing infinitesimals whose order is less than k.

Theorem 9. If x ∈ •
R and k ∈ N>1, then xk = 0 in •

R if and only if ◦x = 0 and ω(x) < k.

Proof. If xk = 0, then applying the standard part mapping gives ◦(xk) = (◦x)k = 0, and

hence ◦x = 0. Moreover, xk = 0 yields xk
t = o(t), and hence

(
xt/t

1/k
)k → 0 and xt/t

1/k → 0.
Representing this condition by using the potential decomposition

x =
k∑

i=1

αi · tai

of x (this yields ω(x) = 1/a1) gives

lim
t→0+

∑

i

αi · tai− 1
k = 0 = lim

t→0+
ta1− 1

k ·
[
α1 + α2 · ta2−a1 + · · ·+ αk · tak−a1

]
.
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However,
α1 + α2 · ta2−a1 + · · ·+ αk · tak−a1 → α1 �= 0,

and hence ta1− 1
k → 0 and a1 > 1

k , i.e., ω(x) < k.

Vice versa, if ◦x = 0 and ω(x) < k, then

x =

k∑

i=1

αi · tai + o(t) and lim
t→0+

xt/t
1/k = lim

t→0+

∑

i

αi · tai−1/k + lim
t→0+

o(t)/t · t1−1/k.

On the other hand, t1−1/k → 0 because k > 1 and tai−1/k → 0+ because 1/ai � 1/a1 = ω(x) < k,
and hence, xk = 0 in •

R. �
If we want a smooth function to be equal to its kth Taylor formula in a kth-order infinitesimal

neighborhood, we are to use infinitesimals which can delete the remainder, i.e., such that hk+1 = 0.
The previous theorem enables us to extend the definition of the ideal Dk to real-number subscripts
rather than positive integers k only.

Definition 10. If a ∈ R>0 ∪ {∞} , then Da := {x ∈ •
R | ◦x = 0, ω(x) < a+ 1}. Moreover, we

simply denote D1 by D.

(1) If x = dt3, then ω(x) = 3 and x ∈ D3. In general, dtk ∈ Da if and only if ω( dtk) = k < a+1.
For example, dtk ∈ D if and only if 1 � k < 2.

(2) D∞ =
⋃

a Da = {x ∈ •
R | ◦x = 0} is the set of all infinitesimals of •

R.
(3) D0 = {0} because the only infinitesimal whose order is strictly less than 1 is x = 0 by the

definition of order (see Definition 8).

The following theorem gathers several expected properties of the sets Da and of the order of an
infinitesimal ω(x).

Theorem 11. Let a, b ∈ R>0 and x, y ∈ D∞. Then the following assertions hold.

(1) a � b =⇒ Da ⊆ Db.
(2) x ∈ Dω(x).

(3) a ∈ N =⇒ Da = {x ∈ •
R |xa+1 = 0}.

(4) x ∈ Da =⇒ x�a	+1 = 0.
(5) x ∈ D∞ \ {0} and k = [ω(x)] =⇒ x ∈ Dk \Dk−1.
(6) d(x · y) = dx · dy.
(7) x · y �= 0 =⇒ 1/ω(x · y) = 1/ω(x) + 1/ω(y).
(8) x+ y �= 0 =⇒ ω(x+ y) = ω(x) ∨ ω(y).
(9) Da is an ideal.

In this statement, if r ∈ R, then �r� is the ceiling of the real r, i.e., the unique integer �r� ∈ Z

such that �r� − 1 < r � �r�. Moreover, if r, s ∈ R, then r ∨ s := max(r, s).

Property (4) in Theorem 11 cannot be proved by substituting the ceiling �a� with the integer
part [a]. In fact, if a = 1.2 and x = dt2.1, then ω(x) = 2.1 and [a] + 1 = 2, and therefore,
x[a]+1 = x2 = dt 2.1

2
�= 0 in •

R, whereas �a�+ 1 = 3 and x3 = dt 2.1
3

= 0.

Finally, note the following increasing sequence of ideals/neighborhoods of zero:

{0} = D0 ⊂ D = D1 ⊂ D2 ⊂ · · · ⊂ Dk ⊂ · · · ⊂ D∞. (16)

By (16) and by the property dta = 0 for a < 1, dt is the smallest infinitesimal and dt2, dt3, etc.,
are greater infinitesimals. We shall see that this agrees with order properties of these infinitesimals.

7. PRODUCTS OF POWERS OF NILPOTENT INFINITESIMALS

In this section, we introduce instruments used to decide whether or not a product of the form
hi1
1 · · · hin

n , hk ∈ D∞ \ {0}, vanishes or belongs to some Dk. Generally speaking, this problem is
nontrivial in a ring (e.g., in SDG, there is no effective procedure to solve this problem; see, e.g.,
Lavendhomme [22]), and its solution is very useful in proofs of infinitesimal Taylor formulas.
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Theorem 12. Let h1, . . . , hn ∈ D∞\{0} and i1, . . . , in ∈ N. Then the following assertions hold.

(1) hi1
1 · · · hin

n = 0 ⇐⇒
∑n

k=1 ik/ω(hk) > 1.

(2) hi1
1 · · · hin

n �= 0 =⇒ 1/ω(hi1
1 · · · hin

n ) =
∑n

k=1 ik/ω(hk).

Proof. Let

hk =

Nk∑

r=1

αkrt
akr (17)

be the potential decomposition of hk for k = 1, . . . , n. Then, by Definitions 7 (of potential de-
composition) and 8 (of order), 0 < ak1 < ak2 < · · · < akNk

� 1 and jk := ω(hk) = 1/ak1. Hence
1/jk � akr for every r = 1, . . . , Nk. Therefore, it follows from (17) by collecting the terms containing
t1/jk that

hk = t1/jk ·
(
αk1 + αk2t

ak2−1/jk + · · ·+ αkNk
takNk−1/jk

)
,

and hence

hi1
1 · · · hin

n = ti1/j1+···+in/jn ·
(
α11 + α12t

a12−1/j1 + · · ·+ α1N1
ta1N1

−1/j1
)i1

· · ·
(
αn1 + αn2t

an2−1/jn + · · ·+ αnNn
tanNn−1/jn

)in
.

(18)

Hence, if
∑

k ik/jk > 1, then t
i1
j1

+···+ in
jn = 0 in •

R, and thus hi1
1 · · · hin

n = 0 as well. Vice versa, if

hi1
1 · · · hin

n = 0, then the right-hand side of (18) is an o(t) as t → 0+, i.e.,

t
i1
j1

+···+ in
jn

−1 ·
(
α11 + α12t

a12− 1
j1 + · · ·+ α1N1

ta1N1
− 1

j1

)i1

· · ·
(
αn1 + αn2t

an2− 1
jn + · · · + αnNn

tanNn− 1
jn

)in
→ 0.

However, (
αk1 + αk2t

ak2−1/jk + · · ·+ αkNk
takNk

−1/jk
)ik → αik

k �= 0,

and thus we must have i1/j1 + · · · + in/jn − 1 > 0. This completes the proof of part 1.
To prove part 2, it suffices to apply recursively property 7 of Theorem 11. �

Example 13. The following equality holds:

ω( dti1a1
· · · dtinan

)−1 =
∑

k

ik/ω( dtak
) =

∑

k

ik/ak

and dti1a1
· · · dtinan

= 0 if and only if
∑

k ik/ak > 1, and thus, e.g., dt · h = 0 for every h ∈ D∞.

The following corollary gives a necessary and sufficient condition for hi1
1 · · · hin

n ∈ Dp \ {0}.

Corollary 14. Under the assumptions of Theorem 12, suppose that p ∈ R>0. Then

hi1
1 · · · hin

n ∈ Dp \ {0} ⇐⇒ 1/(p + 1) <

n∑

k=1

ik/ω(hk) � 1.

Let h, k ∈ D; in this case,
∑

k ik/(jk + 1) = 1/2 + 1/2 = 1, and thus,

h · k = 0. (19)

This is a great conceptual difference between Fermat reals and the ring of SDG, where the
product of two first-order infinitesimal is not necessarily zero. The consequences of this property of
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Fermat reals arrive very deeply in the development of the theory of Fermat reals, forcing us, e.g.,
to develop several new concepts if we want to generalize the derivation formula (4) to functions
defined on infinitesimal domains, like f : D −→ •

R (see Giordano [16]). We only mention here that,
looking at the simple Definition 4, formula (19) has an intuitively clear meaning, and, to preserve
this intuition, we keep this relation instead of changing the theory completely toward a less intuitive
one.

Let us note explicitly that the possibility to prove these results about products of powers of
nilpotent infinitesimals is essentially tied with the choice of little-oh polynomials in the definition
of the equivalence relation ∼ in Definition 2. Equally effective and useful results cannot be proved
for a more general family of nilpotent functions (see, e.g., Giordano [15]).

8. IDENTITY PRINCIPLE FOR POLYNOMIALS AND INVERTIBLE FERMAT REALS

In this section, we prove that, if a polynomial a0 + a1x+ a2x
2 + · · ·+ anx

n of •
R is identically

zero, then ak = 0 for all k = 0, . . . , n. To prove this conclusion, it suffices to mean “identically
zero” as “equal to zero for every x belonging to an extension of an open subset of R.” Therefore,
we first define the extension.

Definition 15. If U is an open subset of Rn, then •U := {x ∈ •
R

n | ◦x ∈ U}. Here the symbol
•
R

n stands for •
R

n := •
R× n. . . . . . ×•

R.

The identity principle for polynomials can now be stated as follows (and proved in the standard
way by using Vandermonde matrices).

Theorem 16. Let a0, . . . , an ∈ •
R and U be an open neighborhood of 0 in R such that

a0 + a1x+ a2x
2 + · · ·+ anx

n = 0 in •
R ∀x ∈ •U. (20)

Then a0 = a1 = · · · = an = 0 in •
R.

Let us now see more formally that, to prove (3), we must embed the reals R in a ring containing
nilpotent elements rather than in a field. In fact, applying (3) to the function f(h) = h2 for h ∈ D,
where D ⊆ •

R is a given subset of •
R, we obtain f(h) = h2 = f(0) + h · f ′(0) = 0 for any h ∈ D.

It is assumed here that the relation f ′(0) = 0 is preserved when passing from R to •
R. In other

words, if D and f(h) = h2 verify (3), then each element h ∈ D of this kind is a type of a number
whose square is zero.

Since property (3) cannot thus hold for a field, we need a sufficiently good family of cancellation
laws as substitutes. The simplest law of this kind is also useful to prove the uniqueness of (4).

Theorem 17. If x ∈ •
R is a Fermat real and r, s ∈ R are standard real numbers, then x·r = x·s

in •
R and x �= 0 imply r = s.

Proof. It follows from Definition 4 of the equality relation in •
R and from the assumption x·r =

x · s that limt→0+ xt · (r − s)/t = 0. However, for r �= s, this would imply that limt→0+ xt/t = 0,
i.e., x = 0 in •

R, and this contradicts the assumption x �= 0. �

The last result of this section takes its ideas from similar situations of formal power series and
also gives a formula for the inverse of an invertible Fermat real.

Theorem 18. Let x = ◦x+
∑n

i=1
◦xi · dtai

be the decomposition of a Fermat real x ∈ •
R. Then

x is invertible if and only if ◦x �= 0. In this case,

1/x = 1/◦x ·
+∞∑

j=0

(−1)j ·
( n∑

i=1

◦xi/
◦x · dtai

)j

. (21)

In formula (21), the series is actually a finite sum, because any dtai
is nilpotent, for instance,

we have (1 + dt2)
−1 = 1− dt2 + dt22 − dt32 + · · · = 1− dt2 + dt because dt32 = 0.
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Proof. If x · y = 1 for some y ∈ •
R, then, taking the standard parts of each side, we have

◦x · ◦y = 1, and hence ◦x �= 0. Vice versa, let

y := ◦x−1·
+∞∑

j=0

(−1)j ·
(∑

i

◦xi/
◦xdtai

)j

and h := x− ◦x =
∑

i

◦xi dtai
∈ D∞.

Then we can also write

y = ◦x−1·
+∞∑

j=0

(−1)j ·hj/◦xj .

However, since h ∈ •
R is a little-oh polynomial with h(0) = 0, it is also continuous, and hence, for

any t ∈ (−δ, δ), we have |ht/
◦x| < 1 for a sufficiently small δ > 0. Therefore,

∀t ∈ (−δ, δ) : yt =
1
◦x

·
(
1 +

ht

◦x

)−1

=
1

◦x+ ht
=

1

xt
.

This relation and Definition 4 yield x · y = 1 in •
R. �

9. DERIVATION FORMULA

In this section, we give a proof of (4), which was the principal motivation for the construction
of the ring of Fermat reals •

R. In any case, before proving the derivation formula, we must extend
a given smooth function f : R −→ R to a certain function •f : •

R −→ •
R.

Definition 19. Let A be an open subset of Rn, let f : A −→ R be a smooth function, and let
x ∈ •A. Then we write •f(x) := f ◦ x.

This definition is correct, because little-oh polynomials are preserved by smooth functions and
f is locally Lipschitzian. Therefore,

∣∣
∣∣
f(xt)− f(yt)

t

∣∣
∣∣ � K ·

∣∣
∣∣
xt − yt

t

∣∣
∣∣ ∀t ∈ (−δ, δ)

for a sufficiently small δ and for some constant K, and hence, if x = y in •
R, then also •f(x) = •f(y)

in •
R.
The function •f is an extension of f, i.e., •f(r) = f(r) in •

R for any r ∈ R, which follows
directly from the definition of equality in •

R (in Definition 4). Thus, we can still use the symbol
f(x) both for x ∈ •

R and x ∈ R without confusion. After the introduction of the extension of
smooth functions, we can also state the following useful elementary transfer theorem for equalities,
whose proof follows directly from the above definitions.

Theorem 20. Let A be an open subset of Rn, and τ, σ : A −→ R be smooth functions. Then
: •τ(x) = •σ(x) for any x ∈ •A if and only if : τ(r) = σ(r) for any r ∈ A.

Let us now prove the derivation formula (4).

Theorem 21. Let A be an open set in R, x ∈ A and f : A −→ R a smooth function, then

∃!m ∈ R ∀h ∈ D : f(x+ h) = f(x) + h ·m. (22)

In this case, m = f ′(x), where f ′(x) stands for the ordinary derivative of f at x.

Proof. The uniqueness follows from the previous cancellation law theorem, Theorem 17. Indeed,
if m1 ∈ R and m2 ∈ R verify (22), then h ·m1 = h ·m2 for every h ∈ D. However, there is a nonzero
first-order infinitesimal, e.g., dt ∈ D, and thus, Theorem 17 implies that m1 = m2.
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To prove the existence part, take h ∈ D. Then h2 = 0 in •
R, i.e., h2

t = o(t) as t → 0+. However,
f is smooth, and hence it follows from the second-order Taylor’s formula that

f(x+ ht) = f(x) + ht · f ′(x) + (h2
t /2) · f

′′
(x) + o(h2

t ).

Moreover,
o(h2

t )

t
= (o(h2

t )/h
2
t ) · (h2

t/t) → 0 as t → 0+,

and thus (h2
t/2) ·f

′′
(x)+o(h2

t ) = o1(t) as t → 0+, which gives f(x+ht) = f(x)+ht ·f ′(x)+o1(t) as
t → 0+, i.e., f(x+h) = f(x)+h ·f ′(x) in •

R. This proves the existence part, because f ′(x) ∈ R. �

For example, eh = 1 + h, sin(h) = h, and cos(h) = 1 for every h ∈ D.
Analogously, we can prove the following infinitesimal Taylor’s formula.

Lemma 22. Let A be an open set in R
d, x ∈ A, n ∈ N>0, and f : A −→ R a smooth function.

Then ∀h ∈ Dd
n : f(x+ h) =

∑
j∈N

d

|j|�n

(hj/j!)· ∂|j|f/∂xj(x).

For example, sin(h) = h− h3/6 if h ∈ D3, and thus, h4 = 0.
It is possible to generalize several results of the present work to functions of class Cn only, instead

of smooth ones. However, it is an explicit purpose of this work to simplify statements of results,
definitions, and notations, even if, as a result of this searching for simplicity, its applicability holds
only for a more restricted class of functions. Some more general results stated for Cn functions
(but less simple) can be found in Giordano [15].

Note that m = f ′(x) ∈ R, i.e., the slope is a standard real number, and we can use the previous
formula with standard real numbers x only rather than with a generic x ∈ •

R. We shall remove
this limitation in subsequent works (see also Giordano [16]).

Applying this theorem to the smooth function p(r) :=
∫ x+r

x
f(t) dt (where f is assumed to be

smooth), we immediately obtain the following result, which is frequently used in informal calcula-
tions.

Corollary 23. Let A be open in R, let x ∈ A, and let f : A −→ R be smooth. Then

∀h ∈ D :

∫ x+h

x

f(t) dt = h · f(x).

Moreover, f(x) ∈ R is uniquely determined by this relation.

10. NILPOTENT INFINITESIMALS AND ORDER PROPERTIES

In mathematics, like in other disciplines, the layout of a work reflects the personal philosophical
ideas of the authors. In particular, the present work is based on the idea that a good mathematical
theory is able to construct a good dialectic between formal properties proved in the theory and their
informal interpretations. The dialectic has to be, as far as possible, in both directions: theorems
proved in the theory should have a clear and useful intuitive interpretation and, on the other hand,
the intuition corresponding to the theory has to be able to suggest true sentences, i.e., conjectures
or sketches of proofs that can then be converted into rigorous proofs.

In a theory of new numbers, like the present one (concerning Fermat reals), the introduction of
an order relation can be a hard test of the excellence of this dialectic between formal properties and
their informal interpretations. Indeed, if we introduce a new ring of numbers (like •

R) by extending
the real field R, we want the new order relation, defined on the new ring, to extend the standard
one on R. This extension naturally leads to the desire to find a geometrical representation of the
new numbers, according to the above principle of having a good formal/informal dialectic.

We begin this section by showing that, in our setting, there is a strong relationship between
order properties and algebraic properties. In particular, we claim that it is impossible to have
simultaneously good order properties and uniqueness without limitations in the derivation formula.
In the following theorem, we see that the property h · k = 0 is a general consequence of the
assumption that there is a total order on D.
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Theorem 24. Let (R,�) be a generic ordered ring, and let D ⊆ R be such that

(1) 0 ∈ D,
(2) ∀h ∈ D : h2 = 0 and −h ∈ D,
(3) (D,�) is a total order,

then h · k = 0 for every h, k ∈ D.

This theorem implies that, if a total order in our theory of infinitesimal numbers is desired and
if D = {h |h2 = 0}, then we must accept that the product of any two elements of D vanishes.
For example, if we think that a geometric representation of infinitesimals is impossible without the
trichotomy law, then the product of two first-order infinitesimals in this theory must be zero.

Proof. Let h, k ∈ D be two elements of D. By assumption, we have 0, −h, −k ∈ D, and hence
all these elements are comparable with respect to the order relation � , because, by assumption,
this relation is total on D. For example, h � k or k � h. Consider the case h � k only, because the
case k � h can be studied in a similar way by transposing h with k.

First sub-case: k � 0. Multiplying the relation h � k by k � 0, we obtain

hk � k2. (23)

If h � 0, then multiplying by k � 0 gives 0 � hk, and thus it follows from (23) that 0 � hk � k2 = 0,
and hence hk = 0.

If h � 0, then multiplying by k � 0 gives

hk � 0, (24)

Furthermore, if h � −k, then multiplying by k � 0 gives hk � −k2 and 0 � hk � −k2 = 0
by (24), and hence hk = 0.

Otherwise, if h � −k, then multiplying by −h � 0 gives −h2 = 0 � hk � 0 by (24), and hence
hk = 0. This completes the discussion of the case k � 0.

Second sub-case: k � 0. In this case, h � k � 0. Multiplying by h � 0 gives h2 = 0 � hk � 0,
and hence hk = 0. �

Thus, the trichotomy law and uniqueness in a possible derivation formula of the form

∃!m ∈ R : ∀h ∈ D : f(h) = f(0) + h ·m (25)

framed in the ring R of Theorem 24 are incompatible. In fact, if a, b ∈ D are elements of D ⊆ R,
then both a and b can play the role ofm ∈ R in (25) for the linear function f : h ∈ D �→ h·a = 0 ∈ R.
Thus, if the derivation formula (25) is applied to linear functions (or even to constant functions),
then the uniqueness property for this formula cannot hold in the ring R.

In the next section, we introduce a natural and meaningful total order relation on •
R. Therefore,

the previous theorem, Theorem 24, strongly motivates the rule that the product of two first-order
infinitesimals must be zero for the ring of Fermat reals •

R, and hence, for the derivation formula in
•
R, the uniqueness cannot hold in its strongest form. Since we shall also see that the order relation
enables us to have a geometric representation of Fermat reals, we can summarize the conclusions of
this section by saying that the uniqueness in the derivation formula is incompatible with a natural
geometric interpretation of Fermat reals, and hence, with a good dialectic between formal properties
and informal interpretations of this theory.

11. ORDER RELATION

By the above sections, one can draw the conclusion that the ring of Fermat reals •
R is essentially

“the little-oh” calculus. On the other hand, the Fermat reals give us more flexibility than this
calculus. Namely, when working with •

R, we need no remainders made of “little-oh,” and we
can neglect them and use the powerful algebraic calculus with nilpotent infinitesimals. However,
thinking of the elements of •

R as new numbers (rather than simply as “little-oh functions”) permits
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us to treat them in a different and new way, for example, to define an order relation on these numbers
with a clear geometrical interpretation.

First of all, introduce the useful notation ∀0t � 0 : P(t). Let us read the quantifier ∀0t � 0 by
saying “for every t � 0 (sufficiently) small,” to indicate that the property P(t) is true for all t in
some right neighborhood of t = 0 (recall that, by Definition 2, our little-oh polynomials are always
defined on R�0), i.e., ∃δ > 0 : ∀t ∈ [0, δ) : P(t).

The first heuristic idea to define an order relation is x � y ⇐⇒ x− y � 0 ⇐⇒ ∃z : z = 0 in
•
R and x− y � z. More formally,

Definition 25. Let x, y ∈ •
R. Then we say that x � y if and only if there is a z ∈ •

R such
that z = 0 in •

R and ∀0t � 0 : xt � yt + zt.

Recall that the condition z = 0 in •
R is equivalent to the condition zt = o(t) as t → 0+. It is

immediate that, equivalently, x � y if and only if there are x′ = x and y′ = y in •
R such that

xt � yt for every t sufficiently small. This also implies that the relation � is well defined on •
R,

i.e., if x′ = x and y′ = y in •
R and x � y, then x′ � y′ (recall that, to simplify the notation, we

use little-oh polynomials directly as elements of •
R rather than equivalence classes). As usual, we

use the notation x < y for x � y and x �= y.

Theorem 26. The relation � is an order, i.e., it is reflexive, transitive, and antisymmetric; it
extends the order relation of R, and (•R,�) is an ordered ring. Finally, the following assertions
are equivalent :

(1) h ∈ D∞, i.e., h is an infinitesimal,
(2) ∀r ∈ R>0 : −r < h < r.

Hence an infinitesimal can be thought of as a number with zero standard part or as a number
smaller than every standard positive real number and greater than every standard negative real
number.

Proof. Let us prove that x � y and w � 0 imply x · w � y · w only (the other ones are simple
consequences of Definition 25). Suppose that

xt � yt + zt ∀0t � 0, wt � z′t ∀0t � 0; (26)

then wt−z′t � 0 for every t small, and hence xt ·(wt−z′t) � yt ·(wt−z′t)+zt ·(wt−z′t) ∀0t � 0 by (26),
which yields xt ·wt � yt ·wt+(−xtz

′
t−ytz

′
t+ztwt−ztz

′
t) ∀0t � 0. However, −xz′−yz′+zw−zz′ = 0

in •
R, because z = 0 and z′ = 0, and hence the conclusion follows. �

Example. We have, for example, dt > 0 and dt2 − 3 dt > 0, because t1/2 > 3t for t � 0
sufficiently small, and hence t1/2 − 3t > 0 ∀0t � 0. Examples of this kind suggest the idea that our
little-oh polynomials are always locally comparable with respect to the pointwise order relation, and
this is the first step to prove that the trichotomy law holds for our order relation. In the following
statement, we use the notation ∀0t > 0 : P(t), which naturally means that ∀0t � 0 : t �= 0 =⇒
P(t), where P(t) is a generic property depending on t.

Lemma 27. Let x, y ∈ •
R. In this case, the following assertions hold.

(1) ◦x < ◦y =⇒ ∀0t � 0 : xt < yt.
(2) If ◦x = ◦y, then

(
∀0t > 0 : xt < yt

)
or

(
∀0t > 0 : xt > yt

)
or (x = y in •

R).

Proof. Suppose that ◦x < ◦y. In this case, the continuous function t � 0 �→ yt − xt ∈ R takes
the value y0−x0 > 0. Hence, it is locally positive, i.e., ∀0t � 0 : xt < yt. Now suppose that ◦x = ◦y
and introduce a notation for the potential decompositions of x and y (see Definition 7). By the
definition of equality in •

R, we can always write

xt =
◦x+

N∑

i=1

αi · tai + zt and yt =
◦y +

M∑

j=1

βj · tbj + wt ∀t � 0,
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where x = ◦x+
∑N

i=1 αi · tai and y = ◦y +
∑M

j=1 βj · tbj are the potential decompositions of x and

y (hence 0 < αi < αi+1 � 1 and 0 < βj < βj+1 � 1), whereas w and z are little-oh polynomials
such that zt = o(t) and wt = o(t) as t → 0+.

Case a1 < b1. In this case, the least power in the two decompositions is α1 · ta1 , and hence, we
expect that the second possibility in the assertion holds if α1 > 0, otherwise, the first possibility
holds if α1 < 0 (recall that we always have αi �= 0 in the decomposition). Indeed, consider the
condition xt < yt for t > 0 and list some equivalent formulas:

N∑

i=1

αi · tai <

N∑

j=1

βj · tbj + wt − zt,

ta1 ·
[
α1 +

N∑

i=2

αi · tai−a1

]
< ta1 ·

[ N∑

j=1

βj · tbj−a1 + (wt − zt) · t−a1

]
,

α1 +

N∑

i=2

αi · tai−a1 <

N∑

j=1

βj · tbj−a1 + (wt − zt) · t−a1 .

Therefore, consider the function

f(t) :=
N∑

j=1

βj · tbj−a1 + (wt − zt) · t−a1 − α1 −
N∑

i=2

αi · tai−a1 ∀t � 0.

Write (wt − zt) · t−a1 = ((wt − zt)/t) · t1−a1 ; we have (wt − zt)/t → 0 as t → 0+, because wt = o(t)
and zt = o(t). Further, a1 � 1, and hence t1−a1 is bounded in a right neighborhood of t = 0.
Therefore, (wt−zt)·t−a1 → 0, and the function f is continuous at t = 0 as well, because a1 < ai and
a1 < b1 < bj . By continuity, the function f is locally strictly positive if and only if f(0) = −α1 > 0,
and thus

(
∀0t > 0 : xt < yt

)
⇐⇒ α1 < 0 and

(
∀0t > 0 : xt > yt

)
⇐⇒ α1 > 0.

Case a1 > b1. We can argue in a similar way using b1 and β1 instead of a1 and α1.
Case a1 = b1. We shall exploit the above idea. Let us study the condition xt < yt. The relations

ta1 ·
[
α1 +

N∑

i=2

αi · tai−a1

]
< ta1 ·

[
β1 +

N∑

j=2

βj · tbj−a1 + (wt − zt) · t−a1

]
,

α1 +

N∑

i=2

αi · tai−a1 < β1 +

N∑

j=2

βj · tbj−a1 + (wt − zt) · t−a1

are equivalent ways to express this condition. Hence, exactly as was proved above, we can claim
that α1 < β1 implies ∀0t > 0 : xt < yt and α1 > β1 implies ∀0t > 0 : xt > yt.

Otherwise α1 = β1, and we can restart the same reasoning by using a2, b2, α2, β2, etc. If N = M
(the number of summands in the decompositions), then, using this procedure, we can prove that
∀t � 0 : xt = yt + wt − zt, i.e., x = y in •

R.
It remains to consider the case, e.g., N < M . Under this assumption, using the above procedure,

we arrive at the following consequences of the condition xt < yt:

0 <
∑

j>N

βj · tbj + wt − zt,

0 < tbN+1 ·
[
βN+1+

∑

j>N+1

βj · tbj−bN+1 + (wt − zt) · t−bN+1

]
,

0 < βN+1+
∑

j>N+1

βj · tbj−bN+1 + (wt − zt) · t−bN+1 .

Hence βN+1 > 0 =⇒ ∀0t > 0 : xt < yt, and βN+1 < 0 =⇒ ∀0t > 0 : xt > yt.

This lemma can be used to find an equivalent formulation of the order relation.
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Theorem 28. Let x, y ∈ •
R, then

(1) x � y ⇐⇒
(
∀0t > 0 : xt < yt

)
or (x = y in •

R),

(2) x < y ⇐⇒
(
∀0t > 0 : xt < yt

)
and (x �= y in •

R).

Proof. ⇒ If ◦x < ◦y, then by Lemma 27, we can conclude that the first alternative is true. If
◦x = ◦y, then from Lemma 27, we have

(
∀0t > 0 : xt < yt

)
or (x = y in •

R) or
(
∀0t > 0 : xt > yt

)
. (27)

The assertion follows in the first two cases. In the third case, it follows from x � y that

∀0t � 0 : xt � yt + zt (28)

with zt = o(t). Hence, by the third possibility in (27), 0 < xt − yt � zt ∀0t > 0, and hence
limt→0+

xt−yt

t = 0, i.e., x = y in •
R.

⇐ This follows immediately from the reflexive property of � or from the Definition 25.
⇒ It follows from x < y that x � y and x �= y, and thus, the conclusion follows from the previous

part.
⇐ It follows from ∀0t > 0 : xt < yt and from assertion 1 that x � y and hence x < y by the

assumption x �= y. �

We can now prove that our order is total.

Corollary 29. Let x, y ∈ •
R,. Then in •

R we have

(1) x � y or y � x or x = y,
(2) x < y or y < x or x = y.

Proof. If ◦x < ◦y, then it follows from Lemma 27 that xt < yt for t � 0 sufficiently small.
Hence, x � y by Theorem 28. We can argue in the same way if ◦x > ◦y. The case ◦x = ◦y can be
handled in the same way by using assertion (1) of Lemma 27.

The other part is a general consequence of the previous one. �

From the proof of Lemma 27 and from Theorem 28, we can derive the following assertion.

Theorem 30. Let x, y ∈ •
R. If ◦x �= ◦y, then x < y ⇐⇒ ◦x < ◦y. Otherwise, if ◦x = ◦y, then

(1) if ω(x) > ω(y), then x > y if and only if ◦x1 > 0;
(2) if ω(x) = ω(y), then ◦x1 > ◦y1 =⇒ x > y and ◦x1 < ◦y1 =⇒ x < y.

Example. The above theorem gives an effective criterion to decide whether or not x < y.
Indeed, if the two standard parts are different, then the order relation can be decided on the basis
of these standard parts only; e.g., 2 + dt2 > 3 dt and 1 + dt2 < 3 + dt.

Otherwise, if the standard parts are equal, we first have to look at the order and at the first
standard parts, i.e., ◦x1 and ◦y1, which are the coefficients of the biggest infinitesimals in the
decompositions of x and y. For example, 3 dt2 > 5 dt and dt2 > adt for every a ∈ R, and
dt < dt2 < dt3 < · · · < dtk for every k > 3, where dtk > 0.

If the orders are equal, we must compare the first standard parts, e.g., 3 dt5 > 2 dt5.
The other cases fall within the previous ones, because of the properties of the ordered ring •

R.
For example, dt5 − 2 dt3 + 3dt < dt5 − 2 dt3 + dt3/2 if and only if 3 dt < dt3/2, which is true

because ω( dt) = 1 < ω( dt3/2) =
3
2 . Finally dt5−2 dt3+3dt > dt5−2 dt3− dt because 3 dt > − dt.

12. ABSOLUTE VALUE, POWERS AND LOGARITHMS

Having a total order, we can define the absolute value in the usual way and, exactly as in R,
we can prove the standard properties of the absolute value. Moreover, the following cancellation
law can be proved.
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Theorem 31. Let h ∈ •
R \ {0} and r, s ∈ R, then |h| · r � |h| · s =⇒ r � s.

Proof. In fact, if |h| · r � |h| · s, then from Theorem 28, we obtain that either

∀0t > 0 : |ht| · r � |ht| · s (29)

or |h| · r = |h| · s. Since h �= 0, we have
(
∀0t > 0 : ht > 0

)
or

(
∀0t > 0 : ht < 0

)
, and hence, we can

always find a t̄ > 0 such that |ht̄| �= 0 to which (29) is applicable. Therefore, we must have r � s in
the first case. In the other one, we have |h| · r = |h| · s and h �= 0. Hence |h| �= 0, and the conclusion
follows from Theorem 17. �

Due to the presence of nilpotent elements in •
R, we cannot define powers xy and logarithms

logx y without any limitation. For example, we cannot define the square root having the usual
properties

x ∈ •
R =⇒

√
x ∈ •

R, (30)

x = y in •
R =⇒

√
x =

√
y in •

R, (31)

and
√
x2 = |x|, because these are incompatible with the existence of h ∈ D such that h2 = 0 and

h �= 0. Indeed, the general property stated in Section 4 permits one to obtain a property of the form
(30) (i.e., the closure of •

R with respect to a given operation) for smooth functions only. Moreover,
Definition 19 states that, to obtain a well-defined operation, we need a locally Lipschitzian function.
For these reasons, we limit xy to x > 0 and x invertible only, and logx y to x, y > 0 and to the case
in which both x and y are invertible.

Definition 32. Let x, y ∈ •
R, with x strictly positive and invertible. Then

(1) xy := [t � 0 �→ xyt

t ]= in •R;
(2) if y > 0 and y is invertible, then logx y := [t � 0 �→ logxt

yt]= in •R.

By Theorem 28, it follows from x > 0 that ∀0t > 0 : xt > 0, and thus, exactly as in Section 4 and
in Definition 19, the above operations are well defined on •

R, because ◦x �= 0 �= ◦y. The elementary
transfer theorem, Theorem 20, ensures the usual properties. To prove the ordinary monotonicity
properties, it suffices to use Theorem 28.

Finally, it can be useful to state here the elementary transfer theorem for inequalities whose
proof follows immediately from the definition of � and from Theorem 28.

Theorem 33. Let A be an open subset of Rn and τ, σ : A −→ R be smooth functions. In this
case, ∀x ∈ •A : •τ(x) � •σ(x) if and only if ∀r ∈ A : τ(r) � σ(r).

13. GEOMETRICAL REPRESENTATION OF FERMAT REALS

At the beginning of this article, we argued that one of the conducting idea in the construction of
Fermat reals is to always maintain a clear intuitive meaning. More precisely, we always tried, and
we shall always try, to keep a good dialectic between provable formal properties and their intuitive
meaning. In this direction, we can see the possibility of finding a geometrical representation of
Fermat reals.

The idea is that, to any Fermat real x ∈ •
R, we can associate the function

t ∈ R�0 �→ ◦x+
N∑

i=1

◦xi · t1/ωi(x) ∈ R, (32)

where N is, of course, the number of summands in the decomposition of x. Therefore, a geometric
representation of this function is also a geometric representation of the number x, because different
Fermat reals have different decompositions, see Theorem 5. Finally, we can guess that, because
the notion of equality in •

R depends only on the germ generated by each little-oh polynomial
(see Definition 4), we can represent each x ∈ •

R with only the first small part of the function (32).
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Fig. 1. The function representing the Fermat real dt2 ∈ D3

Definition 34. For x ∈ •
R and δ ∈ R>0, set

graphδ(x) :=
{(◦x+

N∑

i=1

◦xi · t1/ωi(x), t)
)
| 0 � t < δ

}
,

where N stands for the number of summands in the decomposition of x.

Note that the values of the function are placed in the abscissa position, and thus the correct rep-
resentation of graphδ(x) is given by Fig. 1. This inversion of abscissa and ordinate in the graphδ(x)
permits to represent this graph as a line tangent to the classical straight line R and hence, to have
a better graphical picture. Finally, note that if x ∈ R is a standard real, then N = 0 and the
graphδ(x) is a vertical line passing through ◦x = x.

The following theorem enables us to represent the Fermat reals geometrically.

Theorem 35. If δ ∈ R>0, then the function x ∈ •
R �→ graphδ(x) ⊂ R

2 is injective. Moreover
if x, y ∈ •

R, then we can find a δ ∈ R>0 (depending on x and y) such that x < y if and only if

∀p, q, t : (p, t) ∈ graphδ(x) , (q, t) ∈ graphδ(y) =⇒ p < q. (33)

Proof. The application ρ(x) := graphδ(x) for x ∈ •
R is well defined because it depends on the

terms ◦x, ◦xi, and ωi(x) of the decomposition of x (see Theorem 5 and Definition 8). Suppose now
that graphδ(x) = graphδ(y). Then

∀t ∈ [0, δ) : ◦x+

N∑

i=1

◦xi · t1/ωi(x) = ◦y +

M∑

j=1

◦yj · t1/ωj(y). (34)

Consider the Fermat reals generated by these functions, i.e.,

x′ :=
[
t � 0 �→ ◦x+

N∑

i=1

◦xi · t1/ωi(x)
]

= in •R
, y′ :=

[
t � 0 �→ ◦y +

M∑

j=1

◦yj · t1/ωj(y)
]

= in •R
.
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Fig. 2. Some first-order infinitesimals

Fig. 3. The product of two infinitesimals

Then the decompositions of x′ and y′ are exactly the decompositions of x and y,

x′ = ◦x+
N∑

i=1

◦xi dtωi(x) = x, (35)

y′ = ◦y +

M∑

j=1

◦yj dtωj(y) = y. (36)

It follows from (34) that x′ = y′ in •
R, and hence also x = y by (35) and (36).

Suppose now that x < y. Then, using the notation of the previous part of the proof, we have
x′ = x and y′ = y, and hence,

x′ = ◦x+
N∑

i=1

◦xi · t1/ωi(x) < ◦y +
M∑

j=1

◦yj · t1/ωj(y) = y′.

Applying Theorem 28 shows that x′
t < y′t locally, i.e.,

∃δ > 0 : ∀0t � 0 : ◦x+
N∑

i=1

◦xi · t1/ωi(x) < ◦y +
M∑

j=1

◦yj · t1/ωj(y).

This is equivalent to (33) and, by Theorem 28, this is equivalent to x′ = x < y′ = y. �
Example. In Fig. 2, we have a representation of some first-order infinitesimals.

The arrows are justified by the fact that the representing function (32) is defined on R�0, and
hence, has a clear first point and a direction. The smaller is α ∈ (0, 1), the nearer is the represen-
tation of the product α dt to the vertical line passing through zero, which is the representation of
the standard real x = 0. Finally, recall that dtk ∈ D if and only if 1 � k < 2.

Multiplying two infinitesimals, we obtain a smaller number, and hence, one whose representation
is nearer to the vertical line passing through zero, as represented in Fig. 3.
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Fig. 4. Some higher-order infinitesimals

Fig. 5. Different cases in which xi < yi

In Fig. 4, we have a representation of some infinitesimals of order greater than 1. We can see
that the greater is the infinitesimal h ∈ Da (with respect to the order relation � defined in •

R),
the higher is the order of intersection of the corresponding line graphδ(h).

Finally, in Fig. 5, we represent the order relation on the basis of Theorem 35. Intuitively, the
method to see whether or not x < y is to look at a suitably small neighborhood (i.e., at a suitably
small δ > 0) at t = 0 of their representing lines graphδ(x) and graphδ(y): if the curve graphδ(x)
comes before the curve graphδ(y) with respect to the horizontal directed line, then x is less than y.

14. SOME ELEMENTARY EXAMPLES

The elementary examples presented in this section intend to show, in a few lines, the simplicity
of the algebraic calculus of nilpotent infinitesimals. Here “simplicity” means that the dialectic with
the corresponding informal calculations used, e.g., in engineering or in physics, is really faithful.
The importance of this dialectic can be glimpsed both as a proof of the flexibility of the new
language, but also for researches in artificial intelligence like automatic differentiation theories
(see, e.g., Griewank [18] and the references therein). Last but not least, it may also be important
for didactic or historical researches. Several examples are directly taken from those of Bell [3], and
the reader is strongly invited to compare the two theories in these cases. In particular, in our point
of view, it is not reasonable, like in some parts of Bell [3], to return back to a nonrigorous use of
infinitesimals. Mathematical theories of infinitesimals, like our ring of Fermat reals, NSA, or SIA, are
great opportunities to avoid several fallacies of the informal approach (our discussion in Section 10
is a clear example), and to advance further, with the new knowledge originating from the rigorous
theory, opening the possibility of using infinitesimal methods in more general and less intuitive
frameworks (like, e.g., infinite-dimensional spaces of mappings, see Giordano [16]). Once again, the
key point is the dialectic between formal and informal thought rather than a single part only.

14.1. Heat Equation

In this and the following section, we simply use the language of •R to reformulate the correspond-
ing considerations of Vladimirov [28]. Consider a body B ⊆ R

3 (identified with its localization) and
denote by IB := int(B) its interior. Smooth functions ρ : IB −→ R, c : IB −→ R, and k : IB −→ R

are given and can be interpreted as the mass density, the specific heat capacity, and the thermal
conductivity coefficient, respectively. Note that assuming these functions as defined on IB without
any favored direction corresponds physically to the isotropy condition for B. Moreover, let us con-
sider u : IB × [0,+∞) −→ R, a smooth function representing the temperature of the body B at
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each point x ∈ IB and time t ∈ [0,+∞). To derive the heat diffusion equation, choose an internal
point x ∈ IB and an infinitesimal volume V . More precisely, a subset of •

R
3 of the form

V = V (x, δx) =
{
y ∈ •

R
3 | − δxi � 2(y − x) · �ei � δxi ∀i = 1, 2, 3

}
(37)

is said to be an infinitesimal parallelepiped if δv := δx1 · δx2 · δx3 ∈ D∞, i.e., if the corresponding
volume is an infinitesimal of some order. Here (�e1, �e2, �e3) is the natural basis of R3, and symbols
of the form δy ∈ •

R stress that the infinitesimal increment is associated to the variable y; here
δ is not an operator, and we use it instead of the common dy to avoid confusion with our dy
introduced in Definition 5. Because x ∈ IB, the inclusion V ⊆ •B follows, and thus V can be
regarded as the subbody of B corresponding to the infinitesimal parallelepiped centered at x whose
sides are parallel to the coordinate axes. This subbody V interacts thermally with its complement
CV := •B \ V and with external sources of heat. During the infinitesimal time interval δt ∈ D∞,
the heat flowing perpendicularly to the surface of V (Fourier’s law) defines the exchange between
the subbody V and its complement CV,

QCV,V = δt ·
3∑

i=1

δsi ·
[
k(x+ δ�hi) ·

∂u

∂�ei
(x+ δ�hi, t)− k(x− δ�hi) ·

∂u

∂�ei
(x− δ�hi, t)

]
, (38)

where δ�hi :=
1
2δxi · �ei ∈ •

R
3 and δsi :=

∏
j 
=i δxj ∈ •

R. Choosing the infinitesimals in such a way

that δv · δt ∈ D, we obtain δt · δsi · (δxi)
2 = δt · δv · δxi = 0 by Theorem 12 (e.g., we can choose

δxi = dt6 and δt = dt2). Simple manipulations using the infinitesimal Taylor’s formula in (38) give

QCV,V = div [k · grad(u)] (x, t) · δv · δt. (39)

Of course, these calculations correspond to the infinitesimal version of the Gauss–Ostrogradskii
theorem. Interacting thermally with external sources, the subbody V exchanges the heat

Qext,V = F (x, t) · δv · δt, (40)

where F : IB×[0,+∞) −→ R is a smooth function representing the intensity of the thermal sources.
The total heat QCV,V +Qext,V corresponds to the increment u(x, t+δt)−u(x, t) of the temperature
of V, and hence, to an exchange of heat with the environment, Qenv,V ,

Qenv,V = [u(x, t+ δt)− u(x, t)] · c(x) · ρ(x) · δv = QCV,V +Qext,V . (41)

This, together with (39), (40), the infinitesimal Taylor’s formula, and the cancellation law, gives
the desired formula c(x) · ρ(x) · ∂u

∂t (x, t) = div [k · grad(u)] (x, t) + F (x, t). To stress that the above
proof is completely rigorous, we state the following theorem, without any reference to the physical
interpretation.

Theorem 36. Let B ⊆ R
d, and let IB := int(B) be the interior of B. Consider smooth functions

ρ : IB −→ R, c : IB −→ R, k : IB −→ R, u : IB × [0,+∞) −→ R, and F : IB × [0,+∞) −→ R. Take
a point (x, t) ∈ IB × [0,+∞) and define V, QCV,V , Qext,V , and Qenv,V as in (37), (38), (40), and
(41), where δv · δt ∈ D. In this case, Qenv,V = QCV,V +Qext,V if and only if

c(x) · ρ(x) · ∂u
∂t

(x, t) = div [k · grad(u)] (x, t) + F (x, t).

Unfortunately, this statement insufficiently stresses the difference between the physical content
of the definition of QCV,V (Fourier’s law) and that of the definition of Qext,V . In an axiomatic
framework for thermodynamics (see, e.g., Truesdell [27]), the notion of heat flux QAB going from a
body A to a body B can be taken as primitive; in that case, (38) becomes an important assumption,
whereas (40) is simply the definition of the intensity F (x, t) = Qext,V /(δv · δt).
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14.2. Electric Dipole

In elementary physics, an electric dipole is usually defined as “a pair of charges with opposite
sign placed at a distance d very less than the distance r from the observer.” Conditions like r � d
are frequently used in physics, and we often obtain a correct formalization assuming that d ∈ •

R is
infinitesimal and r ∈ R\{0}, i.e., r is finite. Thus, we can define an electric dipole as a pair (p1, p2)
of electric particles with charges of equal intensity and of opposite sign such that their mutual
distance at every time t is a first-order infinitesimal,

∀t : |p1(t)− p2(t)| =: |�dt| =: dt ∈ D. (42)

In this way, we can evaluate the potential at a point x using the properties of D and the assumption
that r is finite and nonzero. In fact, we have ϕ(x) = (q/(4πε0))· (1/r1 − 1/r2), �ri := x − pi, and,

if �r := �r2 − �d/2, then 1/r2 =
(
r2 + d2/4 + �r · �d

)−1/2
= r−1·

(
1 + �r · �d/r2

)−1/2
because d2 = 0

for (42). Under our assumptions on d and r, we have �r · �d/r2 ∈ D, and hence, by the derivation

formula,
(
1 + �r· �d/r2

)−1/2
= 1 − �r · �d/(2r2). We can proceed for 1/r1 in the same way; hence

ϕ(x) = (q/(4πε0))· (1/r)·
(
1 + �r · �d/(2r2) − 1 + �r · �d/(2r2)

)
= (q/(4πε0))·�r · �d/r3. The property

d2 = 0 is also used in the calculation of the electric field and for the moment of momentum.

14.3. Newtonian Limit in Relativity.

Another example in which we can formalize a condition of the form r � d by using the above
ideas is the Newtonian limit in relativity. Suppose that

(1) ∀t : vt ∈ D2 and c ∈ R,
(2) ∀x ∈ M4 : gij(x) = ηij + hij(x) with hij(x) ∈ D,

where (ηij)ij stands for the matrix of Minkowski’s metric. These conditions can be interpreted

as vt � c and hij(x) � 1 (low speed with respect to the speed of light and weak gravitational

field). In this way, we have, e.g., the relations 1/
√

1− v2/c2 = 1 + v2/(2c2) and
√

1− h44(x) =
1− (1/2)h44(x).

14.4. Linear Differential Equations

Let L(y) := A0 d
Ny/dtN + · · · + AN−1 dy/dt+AN · y = 0 be a linear differential equation with

constant coefficients. Once again, we want to discover independent solutions in the case in which the
characteristic polynomial has multiple roots, e.g., (r−r1)

2·(r−r3) · · · (r−rN) = 0. The idea is that, in
•
R, we have (r−r1)

2 = 0 if r = r1+h with h ∈ D. Thus, y(t) = e(r1+h)t is a solution as well. However,
e(r1+h)t = er1t + ht · er1t, and hence L

[
e(r1+h)t

]
= 0 = L [er1t + ht · er1t] = L [er1t] + h · L [t · er1t].

We obtain L [t · er1t] = 0, i.e., y1(t) = t · er1t must be a solution. Using infinitesimals of order k, we
can deal with other multiple roots in a similar way.

14.5. Circle of curvature

A simple application of the infinitesimal Taylor’s formula is the parametric equation for the
circle of curvature, i.e., the circle of osculating order two for a curve γ : [0, 1] −→ R

3. In fact, if
r ∈ (0, 1) and if γ̇r is a unit vector, then, by the second-order infinitesimal Taylor’s formula,

∀h ∈ D2 : γ(r + h) = γr + h γ̇r +
h2

2
γ̈r = γr + h�tr +

h2

2
cr �nr, (43)

where �n stands for the unit normal vector, �t for the tangent one, and cr for the curvature. Once

again, sin(ch) = ch and cos(ch) = 1− c2h2

2 by Taylor’s formula. It now suffices to substitute h and

h2/2 from these formulas into (43) to obtain the conclusion

∀h ∈ D2 : γ(r + h) =
(
γr + �nr/cr

)
+ (1/cr)· [sin(crh)�tr − cos(crh)�nr].

We can prove in a similar way that any f ∈ C∞(R,R) can be written for any h ∈ Dk in the form

f(h) =
∑k

n=0 an · cos(nh)+
∑k

n=0 bn · sin(nh), and the idea of Fourier series comes out in a natural
way.
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14.6. Commutation of Differentiation and Integration

This example originates from Kock [20] and Lavendhomme [22]. Suppose we want to discover

the derivative of the function g(x) :=
∫ β(x)

α(x)
f(x, t) dt for any x ∈ R, where α, β, and f are smooth

functions. We can regard g as a composition of smooth functions, and hence, we can apply the
derivation formula, i.e., Theorem 21, which gives

g(x+ h) =

∫ β(x+h)

α(x+h)

f(x+ h, t) dt =

∫ α(x)

α(x)+hα′(x)

f(x, t) dt+ h ·
∫ α(x)

α(x)+hα′(x)

∂f/∂x(x, t) dt

+

∫ β(x)

α(x)

f(x, t) dt+ h ·
∫ β(x)

α(x)

∂f/∂x(x, t) dt+

∫ β(x)+hβ′(x)

β(x)

f(x, t) dt+ h ·
∫ β(x)+hβ′(x)

β(x)

∂f/∂x(x, t) dt.

Now we use h2 = 0 to obtain, e.g. (see Corollary 23),

h ·
∫ α(x)

α(x)+hα′(x)

∂f/∂x(x, t) dt = −h2 · α′(x) · ∂f/∂x(α(x), t) = 0,

∫ α(x)

α(x)+hα′(x)

f(x, t) dt = −h · α′(x) · f(α(x), t).

Calculating similar terms in an analogous way, we finally obtain the well-known conclusion. Note
that the final formula comes out by itself, and thus we have “discovered” it rather than simply
proved it. From the point of view of artificial intelligence or from the didactic point of view, this
discovering is surely a nontrivial result.

14.7. Schwarz’ Theorem

Using nilpotent infinitesimals, we can obtain a simple and meaningful proof of Schwarz’ theorem.
This simple example aims to show how to manage some differences between our setting and SDG.
Let f : V −→ E be a C2 function between spaces of type V = R

m and E = R
n, and let a ∈ V .

We want to prove that d2f(a) : V × V −→ E is symmetric. Take k ∈ D2 and h, j ∈ D∞ such that
jkh ∈ D
=0 (e.g., we can take kt = dt2 and ht = jt = dt4 in such a way that jkh = dt; see also
Theorem 12). Using k ∈ D2, we obtain

j · f(x+ hu+ kv) = j ·
[
f(x+ hu) + k ∂vf(x+ hu) +

k2

2
∂2
vf(x+ hu)

]

= j · f(x+ hu) + jk · ∂vf(x+ hu),

(44)

where we have used the fact that k2 ∈ D and j infinitesimal imply jk2 = 0. Since jkh ∈ D, any
product of the type jkhi is zero for every i ∈ D∞, and thus

jk · ∂vf(x+ hu) = jk · ∂vf(x) + jkh · ∂u(∂vf)(x). (45)

However, k ∈ D2 and jk2 = 0. Hence j ·f(x+kv)− j ·f(x) = jk ·∂vf(x). Substituting this formula
into (45), and hence into (44), we obtain

j · [f(x+ hu+ kv)− f(x+ hu)− f(x+ kv) + f(x)] = jkh · ∂u(∂vf)(x). (46)

The left-hand side of this equality is symmetric with respect to u and v. Hence, transposing them,
we obtain jkh·∂u(∂vf)(x) = jkh·∂v(∂uf)(x), as was to be proved, because jkh �= 0 and ∂u(∂vf)(x),
∂v(∂uf)(x) ∈ E. The classical limit relation

lim
t→0+

(f(x+ htu+ ktv)− f(x+ htu)− f(x+ ktv)+f(x))/(htkt) = ∂u∂vf(x)

immediately follows from (46).
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14.8. Area of the Circle and Volumes of Revolution

A more or less meaningful proof of the familiar formula for the area of a circle depends on the
axioms assumed and on the generality of definitions. In this example, we show the possibility to
define suitable smooth functions using an infinitesimal property. Assume the axioms for the real
field R, use them to prove the existence of the smooth functions sin and cos, define π as a suitable
zero of these functions (see, e.g., Prodi [24] and Šilov (Shilov) [26]), and define the length of an arc
of circle of radius r, parametrized by x(θ) = r · cos(θ) and y(θ) = r · sin(θ), as a unique function s
for which

[s(θ + k)− s(θ)]
2
= [x(θ + k)− x(θ)]

2
+ [y(θ + k)− y(θ)]

2 ∀θ ∈ R ∀k ∈ D2, (47)

s(0) = 0. (48)

This definition can be justified in the usual way by using a (second-order!) infinitesimal right-
angled triangle. The uniqueness of s follows from (47) and (48) by the smoothness of x and y, the
second-order infinitesimal Taylor’s formula, and the cancellation law k2 · ṡ(θ) = ẋ(θ) · k2 + ẏ(θ) · k2
for any k ∈ D2 (Theorem 17). This, together with (48), yields the ordinary formula for s, which
gives s(θ) = r · θ in our particular case. We can now regard the area A(θ + h) − A(θ) of a first-
order infinitesimal sector of the circle as the area of the isosceles triangle with sides of length r
and with base s(θ + h) − s(θ). In fact, if P (θ) = (r sin θ, r cos θ) , then P (θ + h) = P (θ) + h ·
�t(θ), where �t is the tangent vector, and thus in [θ, θ + h], h ∈ D, the circle is made of linear
segments. Therefore, the area A(θ) can be defined as a unique function such that A(θ+h)−A(θ) =
(1/2) [s(θ + h)− s(θ)] · r cos (h/2) for any θ ∈ R and any h ∈ D for which A(0) = 0. This, together

with the derivation formula, gives h · A′(θ) = (1/2)hr· s′(θ) and A(θ) = (1/2)
∫ θ

0
r · s(u) du. In our

case, A(θ) = (1/2)r2 · θ, which proves the desired formula for θ = 2π.
Similarly, we can prove the familiar formula for the volumes of revolution of parametrized curves

of the form γ(u) = (x(u), y(u)) , u ∈ [a, b], around the x axis. Define the volume as a unique smooth
function V such that

V (u+ h)− V (u) = h · π · y(u)2 + 1

2

[
h · π · y(u+ h)2 − h · π · y(u)2

]
, (49)

V (0) = 0, (50)

for every u ∈ [a, b] and h ∈ D. This definition can be intuitively justified by saying that the
volume of the sector of revolution between u and u+h can be evaluated as the sum of the cylinder
of radius y(u) and height h plus the halved difference between the cylinder of radius y(u+h) and of
height h and that of radius y(u) and of the same height. Implicitly, we are using the straightness
of the curve γ in [u, u+h]. By (49) and by the property h2 = 0, we readily obtain V ′(u) = π ·y(u)2,
and hence, the ordinary formula, using (50).

14.9. Curvature

Let us consider an ordinary smooth parametrized curve γ(u) = (x(u), y(u)) for u ∈ [a, b]. Let
ϕ(u) ∈ [0, π] be the nonoriented angle (i.e., the one defined by the scalar product) between the

tangent vector �t = (ẋ, ẏ) and the unit vector�i of the x axis. Thus,
√

ẋ2 + ẏ2 ·cosϕ = ẋ. Multiplying
this equality by sinϕ gives

ẏ · cosϕ = ẋ · sinϕ. (51)

As is well known, the curvature of γ at the point u ∈ [a, b] can be evaluated as the rate of change
of the nonoriented angle ϕ(u) with respect to an infinitesimal variation in arc length s(u) defined
by analogues of (47) and (48). These “rates of changes” can be defined in •

R as a unique (if exists)
standard c(u) ∈ R defined by c(u) · [s(u+ h)− s(u)] = ϕ(u + h) − ϕ(u) for any h ∈ D. Indeed,
by the cancellation law, i.e., by Theorem 17, there exists at most one such c(u) ∈ R verifying this
property. By this uniqueness, we can also use the notation

c(u) =
ϕ(u+ h)− ϕ(u)

s(u+ h)− s(u)
. (52)
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These ratios generalize the standard ratios for reals (see Giordano [16] for details). It follows from
(52) and from the derivation formula that c(u) = (h · ϕ′(u))/(h · s′(u)) = ϕ′(u)/s′(u) whatever
h ∈ D
=0 we choose. This and relation (51) (using standard differential calculus rather than in-

finitesimals) implies the ordinary formula c = (ẋÿ − ẏẍ)/
((
ẋ2 + ẏ2

)3/2)
at each point u ∈ [a, b]

where ϕ(u) �= π/2 and γ̇(u) �= 0.

14.10. Stretching of a Spring (and of the Center of Pressure)

If f : [a, b] −→ R is a smooth function and if J(x) :=
∫ x

0
f(s) ds, then Corollary 23 and a trivial

calculation with the derivation formula give

J(x+ h)− J(x) = (1/2) [f(x+ h) + f(x)] ∀h ∈ D. (53)

The right-hand side of (14.17) can be interpreted as the average value of f on the infinitesimal
interval [x, x+h]. Analogous equalities can be obtained in the d-dimensional case by using suitable
generalizations of the above corollary; e.g., if d = 2, then we must use

∫ h

0

∫ k

0

f(x, y) dxdy = hk · f(0, 0) for any h, k ∈ D∞ such that h · k ∈ D.

These relations are used by Bell [3] to calculate the center of pressure of a plane area and the work
done when stretching a spring. The meaningfulness of such examples is, however, doubtful, because
they can be summarized as follows: assume that there is a smooth J satisfying (53); derive from
this fact and from the assumption J(0) = 0 that J ′(x) = f(x). There is no real use of infinitesimals
in this type of reasoning in any case for which the definition J(x) :=

∫ x

0
f(s) ds is customary, like in

the above examples.

14.11. Wave Equation

The derivation of the wave equation in the framework of Fermat reals is very interesting for
two main reasons. Firstly, in the classical deduction (see, e.g., Vladimirov [28]), there are some
approximations tied with Hooke’s law. Is it possible to make them rigorous by using •

R? Do we
gain something using this increased rigor? For example, how can we formalize the approximated
equations used in the classical derivation? In what sense the wave equation is an approximate
relation which holds for small oscillations only?

Secondly, at the end of our derivation, we shall stress the physical principles as important
mathematical assumptions of a suitable theorem. We are thus naturally taken to ask whether or
not these natural assumptions (some of which are formulated by using the infinitesimals of •

R)
really have a model. In this way, we shall see that no standard smooth function can satisfy these
assumptions; however, we are forced to consider a nonstandard function. For example, f(x) =
h · sin(x) for x ∈ •

R and h ∈ D∞ is an example of a nonstandard smooth function; note that it is
obtained from the standard smooth function g(y, x) := y · sin(x), x, y ∈ R, by an extension to •

R
2

and by fixing one of its variables to be a nonstandard parameter h ∈ D∞, namely, f(x) = •g(h, x)
for any x ∈ •

R. This motivates the further development of the theory of Fermat reals strongly, in
the direction of a more general theory including also these new smooth nonstandard functions.

Let us begin with considering a string making small transversal oscillations around its equilibrium
position located on the interval [a, b] of the x axis for a, b ∈ R, a < b. By assumption, the position
st ⊆ •

R
2 of the string is always represented by the graph of a curve γ : [a, b] × [0,+∞) −→ •

R
2

(where [a, b] = {x ∈ •
R | a � x � b} and [0,+∞) = {x ∈ •

R | 0 � x}; in the following, we always use
this notation for the above intervals to identify the corresponding subsets of •

R rather than those
of R, and we also use the notation γxt := γ(x, t)), st =

{
γxt ∈ •

R
2 | a � x � b

}
∀t ∈ [0,+∞).

Moreover, the curve γ is assumed to be injective with respect to the parameter x ∈ (a, b), γx1t �=
γx2t ∀t ∈ [0,+∞) ∀x1, x2 ∈ (a, b) : x1 �= x2, and thus, the order relation on (a, b) implies an
order relation on the support st. For every pair of points p = γxpt, q = γxqt ∈ st on the string
at time t, we can define the subbodies −→p := {γxt |xp � x � b} , ←−p := {γxt | a � x � xp} , and
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−→pq := {γxt |xp � x � xq} corresponding to the parts of the string after the point p ∈ st, before the
same point, and between the points p ∈ st and q ∈ st, respectively. It is usually tacitly clear that,
e.g., every subbody of the form −→p exerts a force on each subbody with which it is in contact, i.e.,
of the form −→pq or ←−p . Moreover, the force F(A,B) ∈ •

R
2 exerted by the subbody A on the subbody

B verifies the equalities (see, e.g., Truesdell [27])

F(−→pq,←−p ) = F(−→p ,←−p ), (54)

F(−→q ,−→pq) = F(−→q ,←−q ), (55)

F(←−p ,−→pq) = −F(−→pq,←−p ) (action-reaction principle), (56)

for every pair of points p, q ∈ st and every time t ∈ [0,+∞). Using this formalism, the tension at
the point γxt ∈ st at time t ∈ [0,+∞) can now be defined as follows:

T(x, t) := F(−→γxt,←−γxt). (57)

Now consider the infinitesimal subbody
−−−−−→
x, x+ δx := −−−−−−→γxtγx+δx,t ⊆ st located at time t between

the points γxt ∈ st and γx+δx,t ∈ st, where δx ∈ D is a generic first-order infinitesimal. Mass forces

of linear density G : [a, b]× [0,+∞) −→ •
R

2 act on this infinitesimal subbody, and thus Newton’s
law can be represented as

ρ · δx · ∂
2γ

∂t2
= F(←−γxt,

−−−−−→
x, x+ δx) + F(−−−−→γx+δx,t,

−−−−−→
x, x+ δx) +G · ρ · δx, (58)

where ρ : [a, b] × [0,+∞) −→ •
R stands for the linear mass density and where, unless otherwise

stated, all functions are evaluated at (x, t) ∈ (a, b)×[0,+∞). Of course, the contact forces appearing
in Newton’s law are due to the interaction of the infinitesimal subbody with other subbodies con-

tacting along the border ∂
[−−−−−→
x, x+ δx

]
= {γxt, γx+δx,t} ⊆ •

R
2. Using the action-reaction principle

(56) and relation (55) with q = γx+δx,t and p = γxt such that −→pq =
−−−−−→
x, x+ δx, we see by (58) that

ρ · δx · ∂2γ/∂t2 = −F(
−−−−−→
x, x+ δx,←−γxt) +F(−−−−→γx+δx,t,

←−−−−γx+δx,t) +G · ρ · δx. Using (54) and the definition
of tension in (67), we obtain

ρ ·δx · ∂
2γ

∂t2
= −F(−→γxt,←−γxt)+F(−−−−→γx+δx,t,

←−−−−γx+δx,t)+G ·ρ ·δx = −T(x, t)+T(x+δx, t)+G ·ρ ·δx. (59)

Up to this point of the proof, we have used neither the small oscillations hypothesis nor the transver-
sal oscillations hypothesis. The second one can readily be introduced with the hypotheses

G(x, t) · �e1 = 0 ∀x, t, (60)

where (�e1, �e2) are the axial unit vectors. Using the notation ϕ(x, t) for the nonoriented angle between
the tangent unit vector t(x, t) at the point γxt and the x axis (see (51)), the small oscillations
hypothesis can be formalized with the assumption

ϕ(x, t) ∈ D ∀x, t. (61)

This enables us to reproduce the classical derivation in the most faithful way (even if a weaker
assumption can be considered, see below). Moreover, in the classical derivation of the wave equation,
one considers only curves of the form γxt = (x, u(x, t)). In this way, by (51) and by the derivation

formula, we have ∂γ2/∂x · cosϕ = sinϕ and ∂γ2/∂x = ϕ ∈ D. Hence, (∂γ2/∂x)
2
= 0, and the total

length of the string becomes

L =

∫ b

a

√
1 + [∂γ2/∂x(x, t)]

2
dx = b− a ∀t ∈ [0,+∞). (62)
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By Hooke’s law, this proves that the tension can be assumed to have constant modulus, T, depending
on neither the position x nor the time t,

T(x, t) = T · t(x, t) ∀x ∈ (a, b) ∀t ∈ [0,+∞). (63)

A tension T parallel to the tangent vector is the second part of the hypothesis about nontransver-
sal oscillations of the string. Let us note explicitly that the only standard continuous function ver-
ifying the equality L = b − a is constant, and thus, the function u : [a, b] × [0,+∞) −→ •

R must
be treated as a nonstandard one. Below we make further remarks concerning this important point.
Projecting equation (59) to the y axis, we obtain

ρ· δx· ∂2u/∂t2 = −T · t(x, t) · �e2 + T · t(x+ δx, t) · �e2 +G · �e2 · ρ · δx
= −T sinϕ(x, t) + T · sinϕ(x+ δx, t) +G · ρ · δx.

However, sinϕ = ϕ = ∂u/∂x because ϕ ∈ D is a first-order infinitesimal, and hence

ρ · δx· ∂2u/∂t2 = T · [∂u/∂x(x+ δx, t)− ∂u/∂x(x, t)] +G· ρ · δx =
[
T · ∂2u/∂x2(x, t) +G · ρ

]
· δx.
(64)

We cannot use the cancellation law with δx ∈ D to obtain the final result, because, as was
mentioned above, the function u(x, t) ∈ •

R can take nonstandard values. We are to clarify some
points here. As mentioned above, there is no standard smooth function verifying the assumptions
or the physical principles we have used. Of course, everything depends on the formalization of the
classical informal derivation used in elementary physics; e.g., we have chosen to use the equality
symbol in (62) instead of an approximate equality. Anyway, we should note that, if we use the symbol
� in (62), then the problem becomes how to make this approximation more precise (physically,
numerically, or mathematically). Moreover, if we use an approximation symbol in (62), then we must
use the same symbol in (63), and therefore, in the final wave equation as well. Nevertheless, smooth
nonstandard functions can verify all assumptions and physical principles under consideration; e.g.,
the function u(x, t) := u0 sin(x + ω · t) is one of these nonstandard functions if the maximum
amplitude u0 is in D and if ρ is constant, G = 0, and T = ω2ρ.

Definition 37. If X ⊆ •
R

x and Y ⊆ •
R

y, then we say that f : X → Y is (nonstandard) smooth
if and only if f takes X to Y and, for every x0 ∈ X,

f(x) = •g〈p, x〉 ∀x ∈ •V ∩X (65)

for some V open in R
x such that x0 ∈ •V, p ∈ •U, where U is open in R

p, and g ∈ C∞(U×V,Ry),
where 〈−,−〉 : ([x]∼, [y]∼) ∈ •U× •V �−→ [(x, y)]∼ ∈ •(U×V ) (for the relation ∼, see Definition 4).

In other words, locally, a smooth function f : X −→ Y from X ⊆ •
R

x to Y ⊆ •
R

y is constructed
as follows.

(1) Begin with an ordinary standard function g ∈ C∞(U × V,Ry) with U open in R
p and V

open in R
x. The space R

p must be regarded as a space of parameters for the function g.
(2) Consider the Fermat extension of g giving •g : •(U × V ) −→ •

R
y.

(3) Consider the composition •g ◦ 〈−,−〉 : •U × •V −→ •
R

y, where 〈−,−〉 is the isomorphism
•U × •V � •(U × V ) defined by 〈[x]∼, [y]∼〉 = [(x, y)]∼; we always use the identification
•U × •V = •(U × V ), and thus, we simply write •g(p, x) instead of •g〈p, x〉.

(4) Choose a parameter p ∈ •U as a first variable of the previous composition, i.e., consider
•g〈p,−〉 : •V −→ •

R
y. Locally, the mapping f is of the form f = •g〈p,−〉 = •g(p,−).

Because p = ◦p + h, with h ∈ D∞, applying the infinitesimal Taylor’s formula to the variable p
for the function •g(p, x), we can readily prove the following theorem clarifying further the form of
these nonstandard smooth functions, because it claims that these functions can locally be regarded
as “infinitesimal polynomials with smooth coefficients.”
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Theorem 38. Let X ⊆ •
R

x, and let f : X −→ •
R

n be a mapping. In this case, the function
f : X −→ •

R
n is nonstandard smooth if and only if, for every x0 ∈ X,

f(x) =
∑

|q|�k

q∈N
d

aq(x) · pq ∀x ∈ •V ∩X, (66)

for the following suitable objects: (1) d, k ∈ N, (2) V is an open subset of Rx such that x0 ∈ •V,
(3) (aq)|q|�k

q∈N
d

is a family in C∞(V,Rn).

In other words, every smooth function f : X −→ •
R

n can be constructed locally, starting
from some “infinitesimal parameters” p1, . . . , pd ∈ Dk and from ordinary smooth functions aq ∈
C∞(V,Rn) and using polynomial operations only with p1, . . . , pd and with the coefficients aq(−).
Roughly speaking, we can say that they are “infinitesimal polynomials with smooth coefficients,
the variables of the polynomials act as parameters only.”

As is natural to expect, several notions of differential and integral calculus (including their
infinitesimal versions) can be extended to this type of new smooth functions (for more details, see
the preprint by Giordano [16]), and these results will be presented in subsequent works. In this
sense, this derivation of the wave equation strongly motivates the future development of the theory
of Fermat reals.

On the other hand, we must understand what type of cancellation law can be applied to (64).
To this end, we must define the notion of equality up to kth-order infinitesimals.

Definition 39. Let m = ◦m +
∑N

i=1
◦mi · dtωi(m) be the decomposition of m ∈ •

R and k ∈
R�0 ∪ {∞}, then

ιkm := ιk(m) := ◦m+

N∑

i=1
ωi(m)>k

◦mi · dtωi(m).

Finally, if x, y ∈ •
R, then, by definition, x =k y if and only if ιkx = ιky in •

R, and we read it as
x is equal to y up to kth order infinitesimals.

In other words, as is easy to prove, x =k y ⇐⇒ ◦x = ◦y and ω(x − y) � k. Therefore, if
we write Ik := {x ∈ D∞ |ω(x) � k} , for the set of infinitesimals of order less than or equal to k
(note that Ik ⊂ Dk), then the condition x =k y holds if and only if x− y ∈ Ik. Equality up to kth
order infinitesimals is of course an equivalence relation, and it preserves the ring operations of •

R.
Moreover, in general, these equalities are preserved by smooth functions f : •

R −→ •
R, i.e., x =k y

implies f(x) =k f(y). Using this notion, one can readily prove the following cancellation law up to
kth-order infinitesimals.

Theorem 40. Let m ∈ •
R, n ∈ N>0, j ∈ N

n \ {0}, and α ∈ R
n
>0. Moreover, consider k ∈ R

defined by

1

k
+

n∑

i=1

ji
αi + 1

= 1. (67)

In this case, the following assertions hold.

(1) ∀h ∈ Dα1
× · · · ×Dαn

: hj ·m = hj · ιkm.
(2) If hj ·m = 0 for every h ∈ Dα1

× · · · ×Dαn
, then m =k 0.

For example, if n = 1 and α1 = j1 = 1, then k = 2, and hence, ∀h ∈ D : h ·m = h · ι2m

(∀h ∈ D : h ·m = 0) ⇐⇒ m =2 0. (68)

Using (68) in (64), we obtain the final conclusion

ρ· ∂2u/∂t2 =2 T · ∂2u/∂x2 +G · ρ ∀x ∈ (a, b) ∀t ∈ (0,+∞). (69)
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It is also interesting to note that not only small oscillations of the string imply (69) but also the
converse is true, namely, equation (69) implies that we must necessarily have small oscillations of
the string, i.e., that ϕ(x, t) ∈ D∞. Moreover, using the equality =2 up to second-order infinitesimals,
the classical approximation tied with Hooke’s law now become clearer. Indeed, we have the following
assertion.

Theorem 41. Let a, b ∈ R, with a < b; let γ : [a, b]×[0,+∞) −→ •
R

2, ρ : [a, b]×[0,+∞) −→ •
R

and G,T : [a, b]×[0,+∞) −→ •
R

2 be nonstandard smooth functions, and let T ∈ •
R be an invertible

Fermat real. Suppose that the first component γ1 of the curve is of the form

γ1(x, t) = [1 + α(t)] · x+ β(t) ∀x, t, (70)

with α(t) ∈ I2. Then the unit tangent vector t(x, t) to the curve γ exists, and we can further suppose
that the relations

T(x, t) =2 T · t(x, t), (71)

ρ · δx· ∂2γxt/∂t
2 = T(x+ δx, t) −T(x, t) +G · ρ · δx, (72)

hold for every point (x, t) ∈ (a, b)× [0,+∞) and for every δx ∈ D. Finally, suppose that ∂ϕ/∂x(x, t)
is invertible. Then the following assertions are equivalent :

(1) ρ(x, t)· ∂2γ2/∂t
2(x, t) =2 T · ∂2γ2/∂x

2(x, t) +G2(x, t) · ρ(x, t),
(2) ϕ(x, t) ∈ I4.

Finally, if (2) holds for every (x, t) ∈ (a, b)× [0,+∞), then length(γ−,t) =2 b− a.

To simplify the proof of this result, we need two lemmas.

Lemma 42. Let a, b ∈ R with a < b, and let f, g : (a, b) −→ •
R be nonstandard smooth functions

such that f(x) =2 g(x) for any x ∈ (a, b). Then f(x+ h) − f(x) = g(x + h) − g(x) for any h ∈ D
and any x ∈ (a, b).

Lemma 43. Let m, h ∈ •
R. Suppose that m is invertible and 0 � h � π. Then the following

properties are equivalent :

(1) m · cos3 h =2 m,
(2) h ∈ I4.

Proof of Theorem 41. We first note that, if (70) holds, then the tangent vector t(x, t) exists
in •

R. In fact, since ∂γ1/∂x(x, t) = 1 + α(t), it follows that both the elements ∂γ1/∂x(x, t) and

[∂γ1/∂x(x, t)]
2
+ [∂γ2/∂x(x, t)]

2
are invertible; hence, we can take their square roots and then the

inverse to define the unit tangent vector. Let us now prove that (1) implies (2). Take a generic
δx ∈ D. Projecting (72) to �e2, we obtain

ρ · δx· ∂2γ2/∂t
2 = T(x+ δx, t) · �e2 −T(x, t) · �e2 +G2 · ρ · δx.

However, it follows from (71), because smooth operations preserve =2, that T · �e2 =2 T · t · �e2.
Therefore, by Lemma 42, we obtain

T(x+δx, t) · �e2−T(x, t) · �e2=T · t(x+δx, t) · �e2−T · t(x, t) · �e2=T · sinϕ(x+δx, t)−T · sinϕ(x, t),
ρ · δx· ∂2γ2/∂t

2 = T · sinϕ(x+ δx, t) − T · sinϕ(x, t) +G2 · ρ · δx. (73)

On the other hand, we can multiply (1) by δx (so that =2 becomes =, see Theorem 40) and obtain

ρ · δx· ∂2γ2/∂t
2 = T · [∂γ2/∂x(x+ δx, t)− ∂γ2/∂x(x, t)] +G2 · ρ · δx (74)

= T · tanϕ(x+ δx, t)· ∂γ1/∂x(x+ δx, t)− T tanϕ(x, t)· ∂γ1/∂x(x, t) +G2 · ρ · δx.
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Equating (73) and (74) and cancelling T, we see that

sinϕ(x+ δx, t)− sinϕ(x, t) = tanϕ(x+ δx, t)· ∂γ1/∂x(x+ δx, t)− tanϕ(x, t)· ∂γ1/∂x(x, t),
δx· cosϕ· ∂ϕ/∂x = δx· (1/cos2 ϕ)· ∂ϕ/∂x· ∂γ1/∂x(x, t) + tanϕ· ∂2γ1/∂x

2(x, t)

= δx· (1/cos2 ϕ)· ∂ϕ/∂x· [1 + α(t)] = δx· (1/cos2 ϕ)· ∂ϕ/∂x,
(75)

where every function is evaluated at (x, t), unless otherwise stated. Note that, in (75), we have
used the property δx ·α(t) = 0 which follows from δx ∈ D and α(t) ∈ I2; moreover, it follows from
(51) (for ϕ = π/2) that we would have ∂γ2/∂x · cosϕ = 0 = ∂γ1/∂x · sinϕ = 1 + α(t), which is
impossible because α(t) ∈ D∞. By setting m := ∂ϕ/∂x(x, t) ∈ •

R for simplicity, using (75), and
cancelling δx, we obtain

m · cos3 ϕ =2 m. (76)

By Lemma 43, this implies the desired conclusion.
Vice versa, if ϕ is an infinitesimal of order less than or equal to 4, then, by Lemma 43, we obtain

(76), and we can again go over the previous paragraphs in the opposite direction to prove part (1).

Suppose that ϕ(x, t) ∈ I4 for every (x, t) ∈ (a, b) × [0,+∞). Then

length(γ−,t) =

∫ b

a

√
[1 + α(t)]2 + [∂γ2/∂x(x, t)]

2 dx =

∫ b

a

√
1 + 2α(t) + [∂γ2/∂x(x, t)]

2 dx, (77)

because α(t) ∈ I2, and hence, α(t)2 = 0. However, [1 + α(t)] · sinϕ = ∂γ2/∂x(x, t) · cosϕ, and thus,
∂γ2/∂x(x, t) = [1 + α(t)] tanϕ = [1 + α(t)]

(
ϕ+ ϕ3/3

)
= ϕ+ϕ3/3+α(t) ·ϕ, because α(t) ∈ I2 and

ϕ ∈ I4, and hence, α(t) · ϕ3 = 0. Substituting this into (77) and using the derivation formula for
the function x �→

√
1 + x, we obtain

√
1 + 2α(t) + [∂γ2/∂x(x, t)]

2
= 1 + (1/2) ·

{
2α(t) + [∂γ2/∂x(x, t)]

2
}

= 1 + α(t) + (1/2)
[
ϕ+ ϕ3/3 + α(t) · ϕ

]2
= 1 + α(t) + ϕ2/2 + ϕ4/3 + α(t) · ϕ2.

Therefore

length(γ−,t) =

∫ b

a

[
1 + α(t) +

ϕ(x, t)2

2
+

ϕ(x, t)4

3
+ α(t) · ϕ(x, t)2

]
dx

= b− a+ α(t) · (b− a) +

∫ b

a

[
ϕ(x, t)2

2
+

ϕ(x, t)4

3
+ α(t) · ϕ(x, t)2

]
dx.

(78)

Using Theorem 38, we can readily prove that the last integral in (78) is an infinitesimal of order
less than or equal to 2, and thus the conclusion follows from the assumption α(t) ∈ I2. �

Proof of Lemma 42. First of all, it follows from the assumption f(x) =2 g(x) for every
x ∈ (a, b) that

◦f(x) = ◦g(x) ∀x ∈ (a, b). (79)

Choose a point x ∈ (a, b). By Theorem 38, we can write f(x1) = a0(x1) +
∑

i pi · ai(x1) and
g(x1) = b0(x1) +

∑
j qj · bj(x1) for every x1 ∈ (x − δ, x + δ) ⊆ (a, b), where pi,qj ∈ D∞ and ai,

bj are ordinary smooth functions defined on an open neighborhood V of ◦x ∈ (a, b) ∩ R. By (79),
a0(

◦x1) = b0(
◦x1) for every x1 ∈ •V, and thus a0 = b0 on V, and hence, also •a0 = •b0 on •V .

Therefore,

f(r)− g(r) =
∑

i

pi · ai(r)−
∑

j

qj · bj(r) ∀r ∈ (a, b) ∩ R. (80)
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The order of this difference must be less than or equal to 2 because f(r) =2 g(r), and thus,

we have ω
[∑

i pi · ai(r) −
∑

j qj · bj(r)
]
= maxi ω [pi · ai(r)] ∨ maxj ω [qj · bj(r)] � 2. Suppose,

for simplicity, that ω(p1 · a1(r)) is the term of maximum order. Since a1(r) ∈ R, we must have
ω(p1) � 2, and hence, also ω(pi) � ω(p1) � 2 and ω(qj) � ω(p1) � 2. Finally,

f(x+ h)− f(x) = h · f ′(x) = h · a′0(x) +
∑

i

h · pi · a′i(x),

where a′0(x) = b′0(x) because a0 = b0 and h · pi = 0 because ω(h) < 2 and ω(pi) � 2; thus,
f(x+ h)− f(x) = h · b′0(x) = h · b′0(x) +

∑
h · qj · b′j(x) = h · g′(x) = g(x+ h)− g(x). �

Proof of Lemma 43. If m · cos3 h =2 m, then the standard parts of both sides must be equal,
◦ (m · cos3 h

)
= ◦m and ◦m · cos3 (◦ϕ) = ◦m. By assumption, m is invertible, and hence, ◦m �= 0.

We obtain ◦h = 0 because 0 � h � π, i.e., h ∈ D∞. Moreover, since m · cos3 h =2 m, it follows from
the infinitesimal Taylor’s formula applied to cos h that

m ·
(
1−

∑

1�i<(ω(h)+1)/2

(−1)ic·h2i/(2i)!
)3

=2 m, m ·
(
1 + a · h2

)3
=2 m,

m ·
(
1 + a3h6 + 3ah2 + 3a2h2

)
=2 m, m ·

(
1 + α · h2

)
=2 m,

where a := −
∑

1�i<
ω(h)+1

2

(−1)i h
2i−2

(2i)! ∈ •
R and α := 3a2 + 3a + a3h4 are invertible Fermat reals.

This gives m · α · h2 =2 0, and hence, h2 =2 0, i.e., ω(h2) � 2, and therefore, ω(h) � 4.

Vice versa, if h is an infinitesimal of order less than or equal to 4 (and thus, ϕn = 0 for n � 5),

then cos3 h =
(
1− h2/2 + h4/4!

)3
= 1−3h2/2+3h4/4!. Hence m · cos3 h = m−3mh2 ·

(
1
2 − 3h2

4!

)
,

and thus, m·cos3 h−m = −3mh2 ·
(

1
2
− 3h2

4!

)
is an infinitesimal of order ω(h2) � 2, i.e., m cos3 h =2

m. �

The reader with a certain knowledge of SDG had surely noted that this derivation of the wave
equation cannot be reproduced in SDG because of the use of nonstandard smooth functions, of
equalities up to kth order infinitesimals, and of the frequent use of the useful statement in Theorem
12 to study products of powers of nilpotent infinitesimals.

15. CONCLUSIONS

The problem of transforming informal infinitesimal methods into a rigorous theory has been ad-
dressed by several authors. The most used theories, i.e., NSA and SDG, require a good knowledge
of mathematical logic and a strong formal control. Some others, like Weil functors (see, e.g., Kriegl
and Michor [21]) or the Levi-Civita field (see, e.g., Shamseddine [25]) are mainly based on for-
mal/algebraic methods and sometimes lack intuitive meaning. In this initial work, we have shown
that it is possible to bypass the inconsistency of SIA with classical logic by modifying the Kock–
Lawvere axiom (see, e.g., Lavendhomme [22]) while always keeping a very good intuitive meaning.
We have seen how to define the algebraic operations between this type of nilpotent infinitesimals,
infinitesimal Taylor formula, and order properties. In the final part, we have seen several elemen-
tary examples of the use of these infinitesimals, some of them taken from classical derivations in
elementary physics. In our opinion, these examples are able to show that some results that fre-
quently may appear as unnatural in the standard context, can be discovered by using Fermat reals,
even by suitably designed algorithms. Moreover, our generalization of the classical proof of the
wave equation shows that a rigorous theory of infinitesimals enables one to obtain results that are
inaccessible when using an intuitive approach only.
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