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Abstract—Spatial asymmetry of actin edge ruffling contrib-
utes to the process of cell polarization and directional
migration, but mechanisms by which external cues control
actin polymerization near cell edges remain unclear. We
designed a quantitative image analysis strategy to measure
the spatiotemporal distribution of actin edge ruffling. Time-
lapse images of endothelial cells (ECs) expressing mRFP-
actin were segmented using an active contour method. In
intensity line profiles oriented normal to the cell edge, peak
detection identified the angular distribution of polymerized
actin within 1 lm of the cell edge, which was localized to
lamellipodia and edge ruffles. Edge features associated with
filopodia and peripheral stress fibers were removed. Circular
statistical analysis enabled detection of cell polarity, indi-
cated by a unimodal distribution of edge ruffles. To
demonstrate the approach, we detected a rapid, nondirec-
tional increase in edge ruffling in serum-stimulated ECs and a
change in constitutive ruffling orientation in quiescent,
nonpolarized ECs. Error analysis using simulated test
images demonstrate robustness of the method to variations
in image noise levels, edge ruffle arc length, and edge
intensity gradient. These quantitative measurements of edge
ruffling dynamics enable investigation at the cellular length
scale of the underlying molecular mechanisms regulating
actin assembly and cell polarization.

Keywords—Actin ruffles, Planar cell polarity, Mechanotrans-

duction, Endothelial cell.

INTRODUCTION

Directed cell migration plays an important role in
many physiological and pathological processes,
including angiogenesis, wound repair, and cancer
metastasis. Persistently migrating cells must first
acquire spatial asymmetry and directionality, an active

process dependent on polarized remodeling of the
cytoskeleton.16 During the initial stages of cell polari-
zation, cells actively probe the composition and rigid-
ity of the extracellular matrix by extending actin-rich
lamellipodia at cell edges in search for spatial cues.
These structures contain a meshwork of polymerized
actin filaments that may extend smoothly outward or
perform wavelike motions known as edge ruffling.2

Identifying the underlying mechanisms that guide
directional edge ruffling and the establishment of cell
polarity in response to external chemical and
mechanical stimuli remains a critical challenge in
developing strategies to engineer and control cell
migration.

Precise characterization of edge ruffling dynamics
remains difficult, since the degree and directions of
edge ruffling are highly variable in both individual cells
and across multiple cells. Histological labeling of
F-actin by immunofluorescence or fluorescent phal-
loidin reveals higher intensity staining near cell edges
with ruffles. In living cells expressing fluorescently-
labeled actin, brightly labeled cell edges representing
lamellipodia exhibit a characteristic convex shape
with a concentrated band of polymerized actin at the
rim. In phase-contrast time-lapse movies of living cells,
lamellipodia appear as dark waves moving centripe-
tally towards to the cell body. Investigators have relied
on these distinct morphological features to manually
identify sites of actin ruffling on the cell perime-
ter.17,18,20,21 Visual scoring methods, however, are
faced with several limitations. Manually defining the
start and end locations of the ruffling edge is not only
time consuming but also subject to investigator bias.
Moreover, while broad lamellipodia may be consis-
tently detected in polarized cells (e.g. cells migrating
towards a chemoattractant), visual scoring becomes
less accurate in cases where a preferred direction is not
obvious and ruffles are shorter in length (e.g. quiescent
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cells in a confluent monolayer). Results from manual
methods therefore only offer an overall picture of edge
extension activity; they do not provide quantitative
measures at adequate spatial resolution required to
reflect signaling mechanisms associated with cell
polarization.

To date, few quantitative measurements of edge
feature dynamics at the cellular length scale have been
performed. Recent image segmentation algorithms
return accurate edge contours, allowing computation
of membrane normal velocity and edge protrusion and
retraction rates6,19 in addition to more traditional
readouts such as cell centroid position, area, and
shape. However, techniques that track only the mor-
phological changes of cell boundaries offer limited
insight into structural dynamics inside the detected
perimeter. Kymographs provide quantitative 1-D
estimates of edge ruffle stability or velocity measure-
ments in living cells at high spatiotemporal resolu-
tion.12,14 Fluorescence intensity can be correlated with
displacement measurements to characterize protein
dynamics in specific regions of interest.22 Alternatively,
intensity line profiles and contour analysis have been
used to quantify the distribution of fluorescently-
labeled proteins in cells. For example, line profiles
normal to the leading edge of migrating cells reflected
the relative abundance of proteins such as tropomyo-
sin, Arp2/3, and ADF/cofilin, proteins that regulate
actin assembly in the region.5,11 Intracellular distribu-
tions of actin and myosin as a function of radial dis-
tance from the cell edge have been measured using
average or maximal intensities within a series of con-
tours.3,8 However, since kymographs focus on partic-
ular regions of interest on the cell perimeter (e.g. a
distinct leading edge), and since line profiles or inten-
sity values are averaged over large portions or the cell
contour, these techniques do not reveal the 2-D spatial
distribution of edge ruffling events that are relevant to
elucidating mechanisms of directional sensing and
adaptation.

In this study, we implemented a technique to
quantitatively measure edge ruffling dynamics and
actin-mediated planar cell polarity in living cells. Time-
lapse images of individual cells expressing fluores-
cently-labeled actin were segmented using an active
contour (snake) algorithm implemented in ImageJ.1

Intensity line profiles oriented normal to the cell edge
were computed for each pixel on the cell perimeter.
Peak detection along the line profiles identified the
angular distribution of polymerized actin within 1 lm
of the cell edge and localized to lamellipodia and edge
ruffles. Increases in actin intensity associated with fil-
opodia and peripheral stress fibers were rejected.
Compared to manual methods, the image analysis
technique provides rapid, more objective, and more

consistent readouts at improved spatial resolution. We
demonstrate methods and applicability using time-
lapse images of quiescent and serum-stimulated vas-
cular endothelial cells.

METHODS

Cell Culture and Image Acquisition

Bovine aortic endothelial cells were maintained in
Dulbecco’s Modified Eagle Medium (DMEM, Gibco,
Gaithersburg, MD) supplemented with 10% heat-
inactivated newborn calf serum (HyClone, Logan,
UT), 2.92 mg/mL L-glutamine (Gibco), 50 IU/mL
penicillin and 50 lg/mL streptomycin (Gibco) as pre-
viously described.13 Cells were transiently transfected
with plasmid DNA encoding monomeric red fluores-
cent protein conjugated to b-actin (mRFP-actin, a kind
gift from E. Fuchs, HHMI) using a liposome-mediated
method according to manufacturer’s recommendations
(Lipofectin, Invitrogen, Carlsbad, CA). Serum-starved
cells were maintained in DMEM containing 0.5%
serum for 12 h and then were stimulated with 10%
serum in DMEM. Fluorescence images of individual
cells were acquired through a 609/1.4 NA objective
lens at an emission wavelength of 617 nm (red) using a
DeltaVision RT Restoration Microscope (Applied
Precision, Issaquah, WA). Image stacks with 4–5
optical sections were acquired for registration in the
z-axis and deconvolved in softWoRx software (Applied
Precision) using a constrained iterative algorithm and
an experimentally measured point spread function.15

After 3-D registration using fiducial markers on the
coverslip as previously described,13 single z-sections
near the coverslip with the cell edge in focus were
exported in TIFF format. Background subtraction and
temporal normalization of fluorescence intensity were
performed prior to image analysis.

Measurement of Edge Ruffling Dynamics in Living Cells

The image analysis strategy was designed to detect
and measure the spatial distribution of fluorescence
intensity peaks near cell edges indicative of actin
polymerization that were localized to lamellipodia and
edge ruffles but not filipodia and peripheral stress
fibers. An active contour (snake) algorithm imple-
mented as a plugin to ImageJ1 was used to detect cell
edges. Intensity line profiles directed normal to the cell
edge were computed for each edge coordinate on the
snake-defined contour. The orientation of the normal
vector was determined from a 6-neighbor window
along the contour. To attenuate noise, line profiles
were smoothed using a 12-neighbor Gaussian window.
A peak detection routine identified the locations of
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polymerized actin on individual line profiles interpo-
lated to 0.1-pixel precision. The rules for peak detec-
tion were as follows: (1) Local maximum had half-
maximum intensity greater than the two adjacent local
minima. (2) Local maximum had intensity Ithr (in
arbitrary units, A.U.) greater than the adjacent local
minima. This intensity change threshold ensured that
peak heights were sufficiently greater than fluctuations
due to noise and autofluorescence. Here, Ithr was set
equal to the standard deviation of background noise.
(3) Two adjacent local maxima in close proximity
(separated by 0.1 lm or 1 pixel) were considered a
single peak for the purpose of detection if the differ-
ence between peak heights was less than Ithr. (4) If the
snake-defined edge had intensity greater than or equal
to the half maximum of the local maximum closest to
the cell edge, then it was assumed that the snake had
underestimated the edge position. In this case, the
intensity profile was extrapolated, and the adjusted
edge intensity was set to one-half of the original edge
intensity. Intensity peaks were resolved if these four
conditions were met. Edge coordinates with resolved
intensity peaks located less than 1 lm from the edge
were grouped into components based on pixel con-
nectivity to generate a 2-D spatial map of actin edge
features.10 To reduce false positives in peak detection,
these connected components, hereafter referred to as
‘‘ruffling segments’’, were spatially filtered based on
contour length. Ruffling segments with one-pixel
length (i.e. island pixels) were removed; adjacent ruf-
fling segments were bridged if their combined length
was greater or equal to 8 (2 9 4) pixels and their
separation distance was within 4 pixels. Finally,
resultant ruffling segments with lengths 4 pixels or less
were removed. Since 4 pixels on the snake-defined
contour corresponded to ~1� on the circular interval,
these filtering operations attenuated noise while
retaining a minimum resolvable ruffling segment arc
length of 1�.

In addition to broad lamellipodia and edge ruffles,
filopodia and peripheral stress fibers are two other
dynamic structures commonly found near cell edges.
Filopodia are spike-like actin-rich bundles that project
outward from the cell edge. Intensity profiles normal
to their narrow perimeters represented a source of
false positive results in lamellipodium detection. A
smoothness constraint was imposed to exclude these
features from the analysis. The cell perimeter was
resampled at every 3–5 pixels, and the 2-D point-line
distance d was evaluated for each pixel on the trun-
cated contour n(i) as

dðiÞ ¼ ðx2 � x1Þðy1 � y0Þ � ðx1 � x0Þðy2 � y1Þj j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx2 � x1Þ2 þ ðy2 � y1Þ2
q ;

where (x1, y1) = n(i), (x0, y0) = n(i + 1), and (x2,
y2) = n(i + 2). If d exceeded a distance threshold, the
current pixel (x0, y0) was labeled as part of a filopo-
dium projection and removed from n. The operation
continued until the entire filopodium perimeter was
captured. To reduce mislabeling of narrow intensity
valleys on the 2-D contour as protrusions, r0 was
required to be greater than either r1 or r2, where rn
represents the radial distance to the geometric center of
the contour. Coordinates on the original contour were
mapped to the closest coordinate on n based on sum of
squared differences (SSD) minimization. Peak detec-
tion results from pixels associated with filopodia were
removed from subsequent analysis.

Intensity profiles along peripheral actin stress fibers
parallel to the cell edge were the second major source
of false positive results in edge ruffle detection. Due to
their varying length and curvature, removal of these
structures required manual intervention. 2-D feature
maps generated from peak detection were overlaid
with corresponding fluorescence images, and con-
nected segments localized to peripheral stress fibers
were rejected. Since peripheral stress fibers appear as
long and wide arcs of high fluorescence intensity,
manual rejection of these structures is unlikely to cre-
ate subjective errors.

Angular distributions of intensity peaks localized to
edge ruffles but not filopodia and peripheral stress
fibers were accumulated for statistical analysis. To
enable analysis across multiple cells with varying
perimeter lengths, cell edge coordinates were grouped
based on the polar angle with respect to the centroid
position. The angular bin size was set as 1�. Perimeter
bins were scored positive for edge ruffles if ruffling
activity was detected in ‡50% of its constituent pixels.
Vectorial statistical analysis was performed on the
resulting grouped angular data. Image analysis
and computations were performed using ImageJ and
MATLAB (Mathworks, Natick, MA).

Test Images

Simulated test images were generated (Figs. 1a and
1b) to evaluate the performance of the snake algorithm
after initialization using different combinations of
adjustable parameters. Test images consisted of circu-
lar objects with radial intensity I(r) defined by the
logistic function I(r) = Iint/(1 + e�kr), where Iint
represented the intensity at the circle interior, and
k controlled the intensity gradient. Parameter values
were chosen to encompass estimates from live-cell
images. Fluorescence intensity at the circle interior was
set at 40 and 120 A.U. to simulate the edge region of
cells with varying brightness. The corresponding edge
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signal-to-noise ratios (SNR) were 1.2 and 4.0, respec-
tively. SNR was computed as I/r2, where I = mean
intensity, and r2 = noise variance computed over a
10-pixel wide edge region. The k parameter in the
logistic function was set at 0.2 and 1.0 to simulate
small and large intensity gradients at cell edges,
respectively. In the case where the intensity gradient
was small, a sharp, well-defined edge was absent, and
visual methods for feature identification became less
reliable. Experimentally acquired noise background
images were superimposed. The same hand-drawn
initialization contour was used for all test conditions.

A second series of test images were used to evaluate
the performance of the semi-automatic method on
known intensity distributions. Intensity at the circle
interior Iint was set to 40, 60, 90, or 120 A.U. to yield
approximate SNRs of 1.2, 2.0, 3.0, and 4.0, respec-
tively. The k parameter in the logistic function was set

at 1.0 or 0.2 to vary the edge gradient as previously
described. To simulate polymerized actin at cell edges,
intensity bands of varying segment arc lengths were
superimposed within 1 lm of the snake-detected edge.
These simulated edge features were 4 pixels wide in the
radial direction and were centered on eight positions
on the perimeter: 0�, 45�, 90�, 135�, 180�, 225�, 270�,
and 315� (Fig. 3a). Band intensity values were esti-
mated from cell images, and the corresponding normal
line profiles possessed detectable features under the
peak detection criteria (blue line a in Figs. 3b and 3c).
It was assumed that the snake algorithm had success-
fully captured the cell edge. To reproduce a range of
edge features ranging from small local bursts of actin
polymerization to coordinated lamellipodium exten-
sions, intensity band arc lengths were varied between
2�, 4�, 6�, 10�, and 24� on the circular interval, a range
encompassing 0.5–6.7% of the total perimeter.
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FIGURE 1. Comparison of edge boundary defined by the snake algorithm to the true edge. (a, b) Simulated test images with
(a) small and (b) large intensity gradients at the edge of the circle. Representative snake contours are superimposed (yellow).
(c, d) Circumferentially averaged intensity profiles from the snake-defined edge (red) and the true digitized circle edge (blue) for
(c) small and (d) large edge intensity gradient images. Red and blue dotted lines indicate the snake-defined and true edge
positions, respectively.
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RESULTS

Segmentation by an Adaptive Snake Contour

Test images constructed of circular objects (Figs. 1a
and 1b) were used to assess the accuracy of edge
detection using a parametric snake algorithm. Initial-
ization parameters including (1) the gradient threshold,
(2) the a parameter that controlled the gradient image
smoothness, and (3) the number of iterations were
varied to determine combinations that enabled optimal
edge detection in living cells with spatially heteroge-
neous edge intensity gradients. The regularization
parameter that controlled internal smoothness of the
snake contour was not investigated, since favorable
levels of regularization in biological images cannot be
determined using objects of generalized geometry as
presented here. Instead, the analysis focused on
parameters controlling the external forces that guide
the snake to the object boundary. Noise in the fluo-
rescence intensity image also appeared in the corre-
sponding gradient image. While decreasing the Canny-
Dériche operator a from its default value of 1.0
resulted in a smoother gradient image, the increased
robustness to noise came at the expense of sharp edge
features. When a moderate level of smoothing was
applied using an a of 0.5, the resultant noise magnitude
in the gradient image was estimated to be 2 ± 2 A.U.
(mean ± standard deviation). In this study a was
varied from 0.25 to 1 in order to test the snake
on gradient images of varying smoothness. It was
hypothesized that a corresponding gradient threshold
between 10 and 25 A.U. was sufficient for edge
detection.

The accuracy of the snake-defined line profile
dependedon the detected edge position and thedirection
of the normal vector used for intensity interpolation.
We first assessed the ability of the snake to capture the
true edge position. Test images were synthesized that
simulated background-subtracted fluorescence images
with low (Fig. 1a) and high (Fig. 1b) spatial intensity
gradients at the test object edges. The true edge was
defined to be the radial position with intensity greater
than 1 A.U., as indicated on circumferentially aver-
aged line intensity profiles (Figs. 1c and 1d, blue lines).
The snake-defined edge contour and the true edge of
the circle had the same sampling frequency and were
aligned at their geometric centers before circumferen-
tially averaging the radial intensity profiles. When the
edge intensity gradient was small, corresponding to a
blurred edge appearance (Fig. 1a), the snake algorithm
consistently underestimated the true edge position
(Fig. 1c, red line). When the edge intensity gradient
was larger (Fig. 1b), the average radial edge coordinate
detected by the snake algorithm (Fig. 1d, red line) was

within 1 pixel of the true edge. In order to assess the
accuracy of edge detection by the snake algorithm, the
radial position of each edge coordinate on the snake-
detected contour was compared to that of the nearest
corresponding coordinate on the true edge. Results
from individual pixels along the perimeter were com-
piled to compute the root mean squared error (RMSE)
of edge position as a function of gradient threshold
and Canny-Dériche a parameter values (Fig. 2a).
When the edge intensity gradient was small, a small
gradient threshold (10–15 A.U.) was required to obtain
the most accurate edge position with a corresponding
RMSE less than 5 pixels (Fig. 2a, left panels). The
snake was more successful when a sharp edge was
present, capturing the true edge with RMSE less than 1
pixel for most parameter combinations tested (Fig. 2a,
right panels). RMSE values from images with different
levels of maximum interior intensity (edge SNR) were
not directly compared, since (1) the ground truth edge
positions were different on the simulated fluorescence
image and (2) the slope of the gradient image was
different. In regions of small edge intensity gradient,
the true edge at SNR = 4.0 had radius 4 pixels greater
than the true edge at SNR = 1.2. The averaged snake-
detected radius compared favorably; it was 3 pixels
greater at SNR = 4.0 than at SNR = 1.2. In regions
of large intensity gradient, the true edge position was
identical (to the nearest pixel) at the two levels of SNR,
and the average snake-detected edges fell within one
pixel of each other. These results suggested that for the
range of parameters tested, detection of edge position
was relatively insensitive to noise.

Next, the accuracy of estimating the directions of
normal vectors originating at the snake-defined edge
was evaluated. Computation of the normal direction
was performed using a 6-neighbor window on the edge
map as described in ‘‘Methods’’ and was defined to be
most accurate when the snake-detected contour was
smooth. For each snake-detected edge coordinate, the
normal vector direction was compared to that of the
nearest corresponding coordinate on the true edge, and
the average orientation error was computed along the
perimeter as a function of gradient threshold and
Canny-Dériche a parameter values (Fig. 2b). When the
edge intensity gradient was small and edge SNR was
low (Fig. 2b, upper left panel), the snake contour was
less smooth with circularity (=4p 9 area/perimeter2)
less than 0.9 and average orientation error of
approximately 10�. Orientation error was minimized
by selecting a large gradient threshold (20–25 A.U.).
These results suggested that while a small gradient
threshold may provide the most accurate average edge
position, intensity line profiles originating from these
positions did not represent vectors normal to the true
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edge. Similarly, in images with high edge SNR (steeper
line profiles on the gradient image), accurate normal
vectors with average orientation error less than 6� were

achieved using a large gradient threshold and a high
level of smoothing (a = 0.25) (Fig. 2b, lower left
panel). However, the detected edge positions were
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more than 12 pixels away from the true edge. Accurate
detection of edge features in regions of small intensity
gradient therefore required a compromise between
parameters that optimized edge position and normal
vector orientation. In contrast, the snake contour was
smooth in regions of large intensity gradient with cir-
cularity greater than 0.95 and average orientation error
less than 3� (Fig. 2b, right panels). Low errors in both
edge position and normal vector orientation in regions
of large intensity gradient suggested that parameter
optimization for line profile extraction should focus on
the small intensity gradient case. In this case, a low
level of smoothing (a = 0.5–0.75) and a small gradient
threshold (10–15 A.U.) produced the most accurate
average edge positions, whereas a high level of
smoothing (a = 0.25) and a large gradient threshold
(>20 A.U.) produced the most accurate normal vector
orientations. Under most test conditions, increasing
the number of iterations of the snake algorithm from
100 to 200 improved smoothness but resulted in fur-
ther underestimation of the cell radius regardless of
whether a sharp edge was present. Finally, the effect of
noise on normal vector orientation was determined
using images with different levels of edge SNR. The
average orientation errors for edge SNRs of 1.2 and
4.0 were within 0.1� in both regions of small and large
intensity gradient, further demonstrating that edge
detection using the snake algorithm was insensitive to
typical levels of image noise.

Effect of Image Parameters on Edge Feature Detection

The performance of the image analysis method in
detecting edge ruffles was evaluated using test images.
Edge features were generated in the region within
0–1 lm of the edges of circular test objects at known
angular intervals (Figs. 3a–3c) as described in ‘‘Meth-
ods’’. For example, an intensity line profile perpen-
dicular to the test object edge shows a large peak at the
location of an edge feature (blue line a, Figs. 3b and
3c), but an intensity profile not located near a feature is
smoothly increasing (red line b). Image segmentation
was performed using initialization parameters that
returned the most optimal trade-off between accurate
average edge position and average normal vector ori-
entation under all test conditions. Specifically, two
combinations were tested with the snake algorithm set
at 100 iterations: (1) a gradient threshold of 15 A.U.
coupled with a of 0.5 and (2) a gradient threshold of 20
A.U. coupled with a of 0.25. In regions of small
intensity gradient, the first set of parameters produced
a more accurate average edge position (RMSE of 3.5
vs. 5.7 pixels), whereas the second set of parameters
produced a smoother contour (orientation error of 7.9�
vs. 5.4�). Angular distributions of intensity peaks were

determined using the semi-automatic method and
compared to ground truth. Successful detection was
defined to occur when the algorithm correctly identi-
fied the positions of ‘‘positive’’ angular bins where
intensity bands were superimposed. False positives
were defined to be when angular bins with no super-
imposed intensity bands were detected. Detection rate
was computed at eight positions on the circle perimeter
as (number of successfully detected bins—number of
false positive bins)/total number of positive bins. A
mean detection rate above 90% averaged over the
perimeter was considered accurate.

Figures 3d and 3e shows feature detection rates
using the two sets of snake parameters at different
levels of SNR, segment arc lengths, and edge intensity
gradient. Edge features with arc length 6� or above
were consistently detected for all levels of SNR and
edge intensity gradient. Above this length, the mean
detection rate averaged for all test conditions was
97 ± 3% (mean ± standard deviation). Due to a lar-
ger effect of pixel-to-pixel noise, the mean detection
rate for segments with arc length below 6� decreased to
90 ± 11%, which was still considered accurate.

To test the effects of SNR, segment arc length, and
edge intensity gradient on edge ruffle detection, results
obtained using the two sets of snake parameters were
pooled, and a 3-way ANOVA was performed. Mean
detection rates at different levels of SNR were not
statistically different (Fig. 4a), demonstrating that edge
features of sufficient length were consistently detected
even at the low level of SNR (SNR = 1.2) used to
simulate a ‘‘worst case’’ scenario. However, the seg-
ment arc length and edge intensity gradient directly
impacted mean detection rates. A post hoc multiple
comparison test revealed a positive correlation
between detection rate and segment arc length
(Fig. 4b). For segments with arc length ‡4�, mean
detection rate was significantly greater than for seg-
ments of 2� (p< 0.05, multiple comparison test).
Comparing mean detection rates at different levels of
edge intensity gradient (Fig. 4c) demonstrated that
feature detection was more accurate in the absence of a
sharp edge (p< 0.05, multiple comparison test). With
the exception of 2� segments (89%), mean detection
rates at all levels of image parameters tested were
‡90%, indicating successful detection. The ANOVA
results suggested an interaction between segment arc
length and edge intensity gradient. To explore this
interaction, population marginal means were com-
puted for each combination of the two variables,
removing effects of SNR (Fig. 4d). For a combination
of 2� segments and a large edge intensity gradient, the
mean detection rate of 79% was significantly lower
than that of the other groups, which had marginal
means ‡90% (p< 0.05, multiple comparison test).
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Differences between other combinations of parameters
were not significant.

Overall, edge features in test images were success-
fully detected using the image analysis techniques. For
segment arc lengths above 2�, mean detection rates
were ‡90% at all levels of SNR and edge intensity
gradient. The data suggested that a minimum arc
length of 4� was required for accurate feature detection
under typical imaging conditions. Since an arc length
of 4� (~16 pixels) corresponded to ~1% of the cell

perimeter and represented small bursts of actin poly-
merization, the results indicated that larger lamellipo-
dium extensions and changes in cell directionality
would be easily detected.

Edge Ruffling Dynamics in Living Cells

The semi-automatic method was applied to measure
edge ruffling dynamics in time-lapse images of living
cells. Fluorescence images of subconfluent endothelial
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FIGURE 3. (a) Circular test object with simulated actin ruffles centered at 8 positions on the perimeter. Intensity bands were
superimposed within 1 lm of the snake-detected edge. Cyan edge segments mark positions of detected intensity peaks.
(b) Magnified view of an edge region of the test object with superimposed normal vectors at locations with (a; blue line) and without
(b; red line) simulated actin ruffles. (c) Corresponding intensity line profiles at locations with (blue) and without (red) simulated
detectable actin ruffles. (d–e) Edge feature detection rates using two sets of snake parameters at different levels of SNR, segment
arc lengths, and edge intensity gradient. (d) Snake was initialized with a gradient threshold of 15 A.U. at an a parameter of 0.5 for
100 iterations. (E) Snake was initialized with a gradient threshold of 20 A.U. at an a parameter of 0.25 for 100 iterations.
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cells transiently expressing mRFP-actin were acquired.
Edge coordinates were generated using the snake plu-
gin initialized with a gradient threshold of 15 A.U. and
a of 0.5 for 100 iterations. Figure 5 shows represen-
tative intensity profiles directed normal to the cell edge.
Intensity peaks detected inside (0–1 lm) and outside
(>1 lm) the edge region were labeled with red
and green asterisks (*), respectively. The algorithm
detected intensity peaks near the cell edge in profiles a
and b (Figs. 5a and 5b), demonstrating insensitivity to
absolute peak heights. In profiles c and d (Figs. 5c and
5d), cytoplasmic F-actin structure was detected, but
edge intensity peaks were absent. A peripheral stress
fiber appeared in profile e (Fig. 5e). Note that the same
stress fiber with similar peak intensity as that measured
in profile e was also detected approximately 5 lm away
from the cell edge in profile f (Fig. 5f). Profile F also
contained an edge ruffle, which was successfully
detected. Contour smoothing automatically removed
pixels with intensity profiles perpendicular to the tip of
a protruding filopodium that were falsely detected as
part of a ruffling edge (Fig. 6).

The following experiment demonstrates detection of
changes in the degree of edge ruffling. Figure 7 shows
time-lapse images of a serum-starved cell before
(Fig. 7a) and after (Fig. 7b) stimulation with 10%
serum. To quantify the degree of ruffling, the fraction
of perimeter engaged in ruffling was computed as the
ratio of the number of angular bins engaged in ruffling
to the total number of angular bins. Addition of serum

triggered a rapid burst of edge ruffling in cells, as
indicated by the cyan perimeter contour segments.
After 10 min, the fraction of the cell perimeter engaged
in ruffling increased from 25% (90�/360�) to 76%
(272�/360�).

Since the spatial asymmetry of actin polymerization
was hypothesized to reflect the establishment of planar
cell polarity, a nonparametric circular statistics
approach9 was used to assess spatial clustering of edge
ruffling segments. Angular directions of edge ruffling
segments were represented as unit vectors on the cir-
cular interval with vector angles hi (i = 1,…,N) and
were used to compute the mean resultant length R and
the mean orientation angle �h. The Rayleigh test was
used to determine whether the distribution of ruffling
segment directions could be fitted with a unimodal
circular distribution (null hypothesis: uniform distri-
bution on the circle). Figure 8 shows time-lapse
images of an endothelial cell in a subconfluent mono-
layer undergoing constitutive edge ruffling. Initially
(t = 0:00), prominent membrane extensions were
visually identified with orientations between 150 and
240� (Fig. 8, arrows). Statistical analysis on the angu-
lar distribution of edge ruffles revealed a mean resul-
tant vector length that was significantly different from
0 (p< 0.05, Rayleigh test) and a mean ruffling direc-
tion of 194�. After 10 min (0:10), edge ruffles observed
at t = 0:00 remained. In addition, new extensions
developed with orientations between 0 and 30� (Fig. 8,
arrows). Although over 55% of the ruffling bins
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FIGURE 5. Endothelial cell expressing mRFP-actin distributed to internal stress fibers and edge ruffles. (a–f) Representative
intensity line profiles normal to the cell edge. See text for explanation. Fluorescence intensity peaks detected inside a 1-lm-wide
edge region (red asterisks) were assigned to ruffles. Peaks outside this edge region (green asterisks) were associated with
cytoplasmic F-actin.
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remain localized to the left half of the circle, the mean
resultant length was not significantly different from 0,
and the null hypothesis that ruffling directions were
uniformly distributed could not be rejected (p> 0.05,
Rayleigh test). In this case, a mean ruffling direction
could not be defined, and the spatial asymmetry
exhibited at t = 0:00 was lost (compare Figs. 8a and
8b). At t = 0:30, edge extensions oriented near 210�
retracted, and edge ruffles formed at 270�, 330�,
and 30� (Fig. 8, arrows). A unimodal distribution
reemerged with edge ruffles clustered around a new
mean orientation of 325� (p< 0.05, Rayleigh test).
These data demonstrate accurate measurement of
changes in edge ruffling directions and actin-mediated
planar cell polarity.

DISCUSSION

This study demonstrates a semi-automatic image
analysis method to detect changes in the spatiotemporal

distribution of edge dynamics in living cells. The
method assessed the distribution of fluorescence
intensity within 1 lm of the cell boundary using tech-
niques that minimized user error in scoring ruffle
locations. Intensity peaks that corresponded with sites
of actin polymerization and active ruffling were iden-
tified by peak detection.

Successful detection of edge features required a
robust method for image segmentation. To determine
the accuracy of line profile extraction using a para-
metric snake algorithm, the edge position and the
normal vector orientation on the snake-detected con-
tour were compared pixel-by-pixel with the true edge in
test images. Since the region of interest consisted of a
narrow 10-pixel wide window, minimizing errors in
edge position was critical. In regions of large edge
intensity gradient, the average snake-defined contour
was accurate with RMSE< 1 pixel. Although larger
errors of 3–5 pixels were observed in regions of
small edge intensity gradient, the snake-defined
edge coordinates had intensity values close to the
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FIGURE 6. (a) Binary representation of a cell shape including filopodia. (b) Intensity profile perpendicular to a filopodium edge as
indicated by the cyan line in (a). Polymerized actin in the filopodium was detected as a fluorescence peak (red asterisk). Pixel shot
noise in the background region was detected as false positive peaks (green asterisks). (c) Cell shape after contour smoothing.
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1-A.U. threshold that was used to define the true edge.
Analysis of test images demonstrated that the loss of
3–5 pixels in these regions where the intensity profile
was relatively flat did not affect edge feature detection.
In fact, the mean detection rate was greater in the
absence of a sharp edge. This observation was impor-
tant because mRFP-actin intensity profiles rarely
appeared as sharp edges in fluorescence images.

In addition to precise edge positions, accurate and
consistent normal vector orientations were required to
obtain the correct intensity line profiles for analysis.
The value of the gradient threshold at a given level of
smoothing determined the balance between contour
edge position accuracy and contour smoothness. In
regions of large edge intensity gradient, the smooth
contour provided more accurate vector orientations
that averaged within 3� of vectors normal to the true
edge. When the edge intensity gradient was small,
vector orientations were less accurate due to decreased
smoothness of the snake contour, and the resultant
average error was on the order of 10�. For the analysis
of experimental data, we focused on optimizing
detection in regions of low intensity gradient to find
the highest level of edge position accuracy and contour
smoothness. Although not tested here, the snake con-
tour could be further fitted to the shapes of individual
cells by adjusting the level of internal smoothness.

Regularization may be important in regions of large
intensity gradient, where small errors in edge position
could result in the misdetection of edge features.

Detection of edge features was dependent on image
parameters, including ruffling segment arc length and
edge intensity gradient. The method was less reliable
when the edge intensity gradient was large (k = 1 in
the logistic function) and when the ruffling segments of
interest were short in length (arc length of 2�). The
mean detection rate was improved at longer ruffling
segment lengths and/or a smoother cell edge (smaller
k). Using test images, the minimum ruffling segment
arc length required for accurate feature detection was
4� (~16 pixels). Above this threshold, the mean detec-
tion rate exceeded 90% at all levels of edge intensity
gradient and SNR tested. Ruffling segment arc length
was positively correlated with the segment pixel length.
Detection of edge features of longer pixel lengths was
enhanced in part due to reduced edge underestimation
by the snake algorithm at these positions. Segments
with fewer pixels were less favorable solutions for the
snake in the presence of noise. Additionally, since a
12-neighbor filtering window was used to smooth
intensity profiles with neighboring pixels prior to peak
detection, intensity peaks in shorter ruffling segments
were more likely to be lost. Detection accuracy was
improved by filtering operations built into critical stages
of the analysis routine. Noise in individual intensity line
profiles were smoothed through spatial filtering with
neighboring line profiles on the edge map prior to fea-
ture detection. 2-D ruffle maps were then filtered based
on their perimeter pixel lengths. First, adjacent ruffles of
sufficient lengths were bridged if their separation dis-
tance was small (£1�). A 4-pixel (1�) length threshold
was then imposed to prevent isolated pixels on the edge
map from being misidentified as connected ruffles.
Finally, in angular binning we required ‡50% of the
constituent pixels in a bin to be engaged in ruffling. This
operation served dual purposes: to further reject false
positive results and to retain legitimate ruffling seg-
ments that spanned multiple bins. Collectively, these
steps reduced susceptibility to noise both at the level of
intensity profiles and in 2-D space.

How cells respond to biochemical and mechanical
cues remains elusive. Analysis tools presented here
build upon a parameterized cell contour to report more
accurately and more rapidly edge structural dynam-
ics and planar cell polarity compared with traditional
investigator-based visual methods. The method is
applicable for cell types that form lamellipodium
extensions and edge ruffles and that can be transfected
to express fluorescently tagged markers of actin edge
features such as mRFP-actin. Ideally, at least 5 pixels
are required for peak detection using the full-width
half-maximum criterion. Since we defined the region of
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FIGURE 7. Snake contour-defined edge ruffles in a serum-
starved endothelial cell expressing mRFP-actin. Initially
(0:00), short segments of actin polymerization were detected
(cyan edge segments). After 10 min of serum stimulation
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histograms of edge ruffle distribution before (a) and after (b)
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interest to include £1 lm from the cell edge, the mag-
nification required for analysis at an acceptable level of
precision was ‡5 px/lm. In order to maintain this level
of precision using lower image magnifications, the
spatial region-of-interest size would need to be
increased. In this study, deconvolution was important
in improving image signal-to-noise ratio for peak
detection on intensity line profiles. For the optical
sections in Fig. 7, deconvolution improved the mean
intensity computed in a 10-pixel wide edge region by a
factor of 1.4 (84/60 A.U., Fig. 7, 0:00) to 1.7 (92/53
A.U., Fig. 7, 0:10). Analysis of raw images without
any additional image processing steps returned ruffling
perimeters of 6 and 31% for the two optical sections,
compared to 25 and 76% using deconvolved images.
Therefore, depending on the quality of the input
images, methods for improving signal-to-noise such as

deconvolution, CCD pixel binning, or filtering may be
required to obtain accurate results.

One requirement of the method is that the cell
interior intensity must drop below the half-maximum
intensity to allow peak detection, which may limit
applicability for early spreading cells. Another limita-
tion may arise in cases where ruffling segments are
immediately adjacent to stress fiber segments and are
recognized as one connected segment. In the latter
case, the end point of the stress fiber must be manually
defined to separate the two features. Finally, it is
desirable for the method to be effective in detecting
ruffling activity in cells within a confluent monolayer.
Since feature detection was accurate where the inten-
sity gradient near the cell edge was small, detection of
ruffling segments in cells in a confluent monolayer will
be successful as long as the cell of interest does not
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FIGURE 8. Snake contour-defined edge ruffles in a subconfluent endothelial cell undergoing constitutive edge ruffling. Arrows
indicate locations of prominent edge extensions. See text for explanation. (a–c) Rose plots show the spatial distribution of ruffles
(left panel) and the resultant mean ruffling orientation (right panel; red bars, p < 0.05, Rayleigh-test; blue bars, not significant).

Image Analysis of Live-Cell Edge Dynamics 217



have transfected neighbors expressing fluorescent
labels in the same wavelength that would otherwise
affect image segmentation.

Techniques such as fluorescence speckle microscopy
have been used to analyze cytoskeleton and adhesion
protein turnover at high subcellular spatial resolution.4

The approach presented here represents a comple-
mentary strategy at the cellular length scale that, when
accumulated across multiple cells in a monolayer or
thin tissue, will identify regions of interest for analysis
at higher spatiotemporal resolution. Previous contour
analysis techniques measuring fluorescence intensities
have successfully characterized the spatial distribution
(e.g. front vs. rear) of key proteins involved in the
establishment of cell polarity.3,7 However, since those
techniques involve averaging or filtering in the radial
direction, they require the fluorescently-labeled protein
to be highly compartmentalized (e.g. localized to the
edge or some known distance from the edge) and to
have low cytoplasmic background intensity. Structural
features or the spatial distribution of proteins in the
radial direction within the averaging window cannot be
readily resolved, making them less attractive for use in
tracking cytoskeletal or other structural proteins. The
semi-automatic detection of edge features provides
high spatial resolution both along the contour and in
the radial direction, allowing time-lapse tracking of
structural features in 2-D. In cases where a preferred
direction exists, the method provides quantitative
measurements useful for investigating mechanisms
regulating actin edge dynamics and how directional
ruffling may guide migration. For example, measuring
dispersion of actin ruffling orientations in a group of
cells may provide new information on the strength of
response in a scratch wound or chemotaxis assay and
suggest molecular interventions. Since edge features
are scored based on variations in individual intensity
line profiles and not raw intensity values, the routine is
more sensitive to subtle changes along the contour and
therefore may be equally applicable for use on cells
that do not exhibit distinct structural asymmetry or
rapid, extensive orientation responses (e.g. endothelial
monolayers). Since measuring actin edge dynamics
provides a tool that is predictive of shape alignment for
investigating molecular mechanisms, the method pre-
sented here complements existing image analysis tools
that quantify membrane morphodynamics by tracking
edge contours alone.

In summary, we describe a novel image analysis
method to quantitatively measure the magnitude and
direction distribution of actin edge ruffling. The
method is capable of capturing a rapid increase in edge
ruffling in endothelial cells stimulated with serum. In
addition, a statistical analysis enables detection of cell
polarity, indicated by ruffling and lamellipodium

extension in a preferred direction. The results improve
on existing measures of polarity, including membrane
dynamics at the leading edge obtained from kymo-
graphs, actin stress fiber alignment, and motility
readouts from bulk migration studies. The analysis is
robust to noise, different segment arc lengths, and
variations in edge intensity gradient, as demonstrated
using biological images. Moreover, its application is
automated with the exception of peripheral stress fiber
removal, which requires minimal user intervention.
The present work enables investigation of the molec-
ular mechanisms that regulate actin assembly and cell
polarization and will provide new insight into how
directional edge ruffling may control cell alignment at
longer time scales.
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