Malonylation/Decarbalkoxylation of Furan Derivatives as Key Steps for the Preparation of Nonactic Acid Derivatives. Part II [1]

Jean-Mary Simone, François Loiseau, David Carcache, Pavel Bobal, Julie Jeanneret-Gris, and Reinhard Neier*

Institute of Chemistry, University of Neuchâtel, Neuchâtel, Switzerland

Received July 17, 2006; accepted (revised) July 26, 2006; published online January 19, 2007 © Springer-Verlag 2007

Summary. A malonylation/dearbalkoxylation sequence from 2-substituted furans was investigated in view of developing a scalable synthesis of hydrophobic nonactic acid analogues.

Keywords. Heterocycles; Decarbalkoxylation; Nonactic acid; Natural-like.

Introduction

The ionophore nonactin is used in ion selective sensors because of its selectivity for ammonium and potassium cations [2]. The lifetime of these electrodes is limited due to the loss of nonactin through bleeding. In the course of our studies for the preparation of hydrophobic nonactin derivatives [3], we described a rapid synthesis of derivatives of nonactic acid from furan applying different radical couplings for the introduction of the first aliphatic side chain [4]. In Ref. [1], we described the introduction of the second aliphatic chain starting from malonyl derivatives as reagents. This transformation could be achieved in good yields and under total conversion of our starting materials. In this paper we present our results on the second decarbalkoxylation step (Scheme 1).

Results and Discussion

We first investigated the decarbalkoxylation of our dimethyl malonates 1–3. We studied the enzymatic mono-hydrolysis with pig liver esterase (PLE), followed by decarboxylation [5]. Applying PLE to this reaction is justified by the soft reaction conditions which are compatible with the heat-sensitivity of the furan derivatives. The selective enzymatic monomethyl ester hydrolysis for the two first products 1 and 2 occurred smoothly to give 4 and 5 in 63–64% yields (Scheme 2). To achieve complete hydrolysis of 2 proved to be more difficult; 24 h were required instead of the 4 h which were sufficient for the transformation of 1. The additional steric hindrance conferred to 2 by the introduction of the additional methyl group is probably responsible for the longer reaction times needed [6]. For 4 we measured the optical rotation, indicating that the enzyme is capable of distinguishing between the two enantiomeric ester groups. The enzyme was not able to hydrolyse the hydrophobic derivative 3. After heating 4 from 100 to 200°C at 0.019 Torr in the Kugelrohr in order to achieve the decarboxylation, only 43% of 6 were obtained. As the heat-sensitivity of furans is well documented this result did not come as a surprise (Scheme 2).

Since the enzymatic hydrolysis was not adequate for the transformation of the hydrophobic 3, we searched for alternative methods. Krapcho [7] and Van der Gen [8] use NaCl in wet DMSO. This reaction was successfully applied to 3 and gave 7 in 56% yield (Scheme 3). Total conversion of 3 was observed. The Rf values on TLC of both 3 and 7 were almost the same. Separation
by column chromatography under the conditions studied would not have been possible. The heat sensitivity of furan derivatives can tentatively explain the loss of product once more.

To improve the yields we checked the consequence of reducing the reaction time. Under the conditions reported by Rapoport NaCl is replaced by LiCl [9]. Good yields could be obtained under these conditions heating for only 2 h at 190°C (Table 1). The first attempts using our model compounds 8 and 9 gave low yields of 25 and 23% of 17 and 18. To obtain these products two or four decarbethoxylations have to occur in sequence. The overall yield of such a transformation composed of several steps are by necessity relatively low even if the yield of the individual reaction is good to acceptable. We did not optimise these two transformations and focused our efforts on our target molecules 21–26. Transforming the free alcohol 10 under these conditions the yield of 19 was only 19%. We could isolate traces of the dimer 20 as side product. The formation of 20 can be explained as a transesterification of the ethylester part of one molecule of 20 with the alcohol part of a second molecule of 19. We assumed that other heavier oligomers and/or polymers were formed by poly-transesterification of 19, which could explain the low yield of isolated 19.

To avoid side reactions, we used the O-protected molecules 11–16. Under the same reaction conditions the O-benzylated molecules 11–15 gave 21–25 with satisfactory 63–91% yields. The O-acetyl protecting group of 16 was not resistant enough towards the reaction conditions. In this case, the yield in 26 was only 4%, and 14% of the deprotected product 19.

![Scheme 1](image1)

Scheme 1

![Scheme 2](image2)

Scheme 2

![Scheme 3](image3)

Scheme 3
were obtained. We then tried to reduce the reaction temperature to 160°C with an aim to prevent the O-acetyl cleavage, but the reaction was not complete. At 160°C, the yield in 26 was only 32%, and we isolated 17% of 27, where only one of the two ethoxy carbonyl groups of 16 was removed.

Conclusions

A set of nonactic acid derivatives precursors were successfully prepared. For the two target products 21 and 24, the best overall yields of the malonylation/decarbalkoxylation sequence were 74 and 71%. The hydrophobic precursor 12 afforded 45% of 22 over the two-step sequence. The reported yields were determined using chromatography for the purification of the products obtained after each step. The purification by chromatography is not obligatory. However, the overall yields for the two step sequence malonylation/decarbalkoxylation were slightly better if the intermediate was purified by chromatography.

This efficient and scalable strategy will be applied for the preparation of macrocyclic analogues of the natural product nonactin.
Experimental

All moisture-sensitive reactions were carried out under Ar and N2 using oven-dried glassware. All reagents were of commercial quality if not specifically mentioned. Solvents were freshly distilled prior to use. Flash chromatography (FC): Brunschwig silica gel 60, 0.032–0.063 mm, under positive pressure. TLC: Merck precoated silica gel thin-layer sheets 60 F 254, detection by UV and treatment with basic KMnO4 sol. Mp: Gallenkamp MFB-595. IR spectra: Perkin Elmer Spectrum One FT-IR, in cm⁻¹. NMR spectra: Bruker Avance-400 (400 MHz (1H) and 100 MHz (13C)), at rt, chemical shifts δ in ppm rel. to CDCl3 (1H: 7.264 ppm, 13C: 77.0 ppm) as internal reference, coupling constants J in Hz. ESI-MS: Finnigian LCQ. Elemental analyses or HR-ESI-MS of novel compounds agreed favourably with calculated values.

2-(5-(2-Hydroxyethyl)furan-2-yl)-3-methoxy-3-oxopropanoic acid (4, C10H12O3)
A mixture of diester 1 (440 mg, 1.72 mmol) and PLE (3 mg, 130 units/mg, 390 units) in 1 cm3 MeOH and 10 cm3 pH 8.0 phosphate buffer was stirred at room temperature for 4 h. During the hydrolysis, 0.1 M NaOH solution was periodically added to maintain the pH of the solution at 7–8 (total 17.2 cm3 0.1 M NaOH). The aqueous layer was basified to pH = 9.0 by the addition of more NaOH solution and washed with brine, the aqueous layer was then acidified to pH = 1 with 1 M HCl solution, and extracted 5 times with diethyl ether, dried (Na2SO4), and the solvent was evaporated in vacuo to afford 5 (165 mg, 0.68 mmol, 64%). Oil; Rf = 0.46 (Et2O/MeOH = 50/50); IR (film): ν = 3474, 2994, 2955, 2612, 1600, 1610, 1555, 1456, 1347, 1380, 1250, 1125, 1110, 1032 cm⁻¹; 1H NMR (400 MHz, CDCl3): δ = 6.30 (d, J = 3.2 Hz, H-4), 6.10 (d, J = 3.2 Hz, H-5), 5.97 (br, OH), 3.87 (t, J = 6.2 Hz, H-8), 3.81 (s, H-11), 2.89 (t, J = 6.2 Hz, H-7), 1.85 (s, H-21) ppm; 13C NMR (100 MHz, CDCl3): δ = 173.3 (C-O), 170.2 (C-O), 153.1 (C-3), 148.9 (C-6), 108.9 (C-4), 107.3 (C-5), 60.9 (C-8), 54.7 (C-2), 53.2 (C-11), 31.2 (C-7), -21.0 (C-21) ppm; EI-MS: m/z = 198 (34, [M – CO2]⁺), 181 (13), 180 (21), 179 (14), 168 (44), 167 (31), 166 (11), 140 (12), 139 (100), 135 (16), 121 (76), 111 (38), 109 (20), 108 (30), 107 (14), 81 (44), 80 (21), 79 (24), 77 (17), 65 (12), 45 (20); ESI-HR-MS: m/z [M + Na⁺] = calc 265.0683, found 265.0682.

Methyl 2-(5-(2-hydroxyethyl)furan-2-yl)acetate (6, C6H12O2)
Distillation of 4 (129 mg, 0.565 mmol) in a Kugelrohr apparatus from 100 to 200°C at 0.019 Torr afforded 6 (45 mg, 0.244 mmol, 43%). Oil; Rf = 0.26 (CH2Cl2/Et2O/O) = 8/2/1; IR (film): ν = 3136, 2956, 1742, 1615, 1566, 1439, 1406, 1337, 1277, 1228, 1198, 1158, 1015 cm⁻¹; 1H NMR (400 MHz, CDCl3): δ = 6.10 (d, J = 3.1 Hz, H-4), 6.02 (d, J = 3.1 Hz, H-5), 3.81 (t, J = 6.3 Hz, H-8), 3.69 (s, H-11), 3.62 (s, H-2), 2.82 (t, J = 6.3 Hz, H-7), 2.18 (br, OH) ppm; 13C NMR (100 MHz, CDCl3): δ = 170.1 (C-O), 152.5, 146.3 (C-3, C-6), 108.8 (C-4), 107.4 (C-5), 60.9 (C-8), 53.0 (C-11), 33.8 (C-2), 31.6 (C-7) ppm; EI-MS: m/z = 184 (26, [M⁺]⁺), 154 (26), 153 (22, [M – CH2O]⁺), 125 (32, [M – CH3OCO]⁺), 111 (73), 107 (33), 95 (55), 94 (100), 81 (41), 65 (47).

General Procedure for Decarboxylation
A solution of the triester or the malonate (1 eq), NaCl or LiCl (1–10 eq), and H2O (1–3 eq) in DMSO was heated at 160–190°C for several h. After cooling at rt, the product was extracted with diethyl ether or AcOEt. The extract was washed with brine and dried (Na2SO4). Evaporation of the solvent in vacuo afforded the product, which was purified by chromatography on a silica gel column if necessary.

Methyl 2-(5-(2-hydroxyethyl)furan-2-yl)decanoate (3, C13H22O3)
General procedure with 7 (1.29 g, 3.6 mmol), NaCl (0.21 g, 3.6 mmol), and H2O (0.13 g, 7.2 mmol) in 45 cm3 DMSO heated at 160°C for 3.5 h. Chromatography afforded 7 (0.60 g, 2.03 mmol, 56%). Oil; Rf = 0.29 (CH2Cl2/Et2O/O = 75/25); IR (film): ν = 3108, 2954, 2928, 2857, 1742, 1610, 1561, 1461, 1436, 1379, 1212, 1161, 1121, 1050 cm⁻¹; 1H NMR (400 MHz, CDCl3): δ = 6.08 (d, J = 3.1 Hz, H-4), 6.03 (d, J = 3.1 Hz, H-5), 3.84 (t, J = 6.2 Hz, H-8), 3.69 (s, H-11), 2.86 (t, J = 6.2 Hz, H-7), 1.98–1.85 (m, H-21), 1.77 (br, OH), 1.29–1.15 (m, H-22 to H-23), 0.87 (t, J = 6.7 Hz, H-24) ppm;
13C NMR (100 MHz, CDCl3): δ = 172.7 (C-O), 152.0 (C-3), 151.3 (C-6), 107.2 (C-4), 105.8 (C-5), 61.0 (C-8), 52.1 (C-11), 45.6 (C-2), 31.6 (C-7), 30.9 (C2), 31.8, 29.3, 29.2, 21.7, 23.7, 22.6 (C-22 to C-27), 14.0 (C-28 ppm); EI-MS: m/z = 296 (15, [M]+), 267 (11), 266 (46), 265 (14, [M - CH3O]+), 238 (13), 237 (75, [M - CH3COCl]+), 219 (21), 208 (21), 207 (100), 205 (11), 191 (10), 183 (13), 165 (15), 153 (42), 152 (11), 149 (11), 125 (52), 121 (40), 111 (25), 107 (47), 95 (30), 94 (14), 91 (11), 86 (15), 84 (24), 83 (20), 82 (16), 81 (69), 80 (30), 79 (23), 77 (20), 73 (39), 71 (17), 69 (19), 67 (13), 65 (11), 55 (18), 44 (12); ESI-HR-MS: m/z [M + Na]+ = calculated 319.1880, found 319.1885.

Ethyl 2-(5-(1-ethoxycarbonyl-ethyl)-furan-2-yl)propanoate (17, C14H23O5)
General procedure with 8 (700 mg, 1.70 mmol), LiCl (0.44 g, 10.4 mmol), and H2O (60 mg, 3.3 mmol) in 3 cm3 DMSO heated at 190°C for 2 h. Chromatography afforded 113 mg, 4.2 mmol, 25%). Oil; Rf = 0.35 (n-hexane/ACOEt = 75/25 + 1% MeOH); IR (film): ν = 2985, 2942, 2908, 2883, 1738, 1643, 1607, 1457, 1377, 1320, 1252, 1204, 1105, 1072, 1025 cm-1; 1H NMR (400 MHz, CDCl3); δ = 6.060 and 6.057 (2s, H-4 and H-4 meso), 4.12 (q, J = 7.1 Hz, H-1′), 3.72 (q, J = 7.3 Hz, H-2), 1.45 (d, J = 7.3 Hz, H-2′), 1.20 (t, J = 7.1 Hz, H-3′); 13C NMR (100 MHz, CDCl3): δ = 172.42 and 172.46 (C=O rac and C=O meso), 152.46 and 152.41 (C-3 rac and C-3 meso), 106.4 (C-4 rac, C-4 meso), 60.8 (C-1 rac, C-1 meso), 39.4 (C-2 rac, C-2 meso), 15.57 and 15.61 (C-2′ rac and C-2′ meso), 14.0 (C-1′ rac, C-1′ meso) ppm; EI-MS: m/z = 269 (3, [M + H]+), 268 (14, [M]+), 196 (11, [M + H - CO2C2H5]+), 195 (100, [M - CO2C2H5]+), 139 (11), 122 (22), 121 (18), 111 (22), 107 (27); ESI-HR-MS: m/z [M + Na]+ = calculated 291.1203, found 291.1202.

Ethyl (5-ethoxycarbonyl-methyl-furan-2-yl)acetate (18, C13H20O4)
General procedure with 9 (4.27 g, 8.08 mmol), LiCl (2.05 g, 48.5 mmol), and H2O (315 mg, 17.5 mmol) in 20 cm3 DMSO heated at 190°C for 2 h. Chromatography afforded 442 mg, 1.84 mmol, 23%). Oil; Rf = 0.24 (n-hexane/ACOEt = 75/25 + 1% MeOH); IR (film): ν = 2984, 2939, 2908, 1742, 1649, 1617, 1566, 1466, 1447, 1396, 1370, 1338, 1302, 1266, 1224, 1181, 1097, 1032 cm-1; 1H NMR (400 MHz, CDCl3): δ = 6.18 (s, H-4), 4.19 (q, J = 7.1 Hz, H-1′), 3.66 (s, H-2), 1.29 (t, J = 7.1 Hz, H-2′) ppm; 13C NMR (100 MHz, CDCl3): δ = 169.8 (C=O), 147.7 (C-3), 109.3 (C-4), 61.5 (C-1′), 39.3 (C-2′), 14.6 (C-5′) ppm; EI-MS: m/z = 263 (17, [M + Na]+), 260 (20), 258 (100, [M + H2O]+), 243 (15), 241 (16), 241 (10).

Ethyl 2-(5-(2-hydroxyethyl)furan-2-yl)acetate (19, C10H16O4) and 2-(5-Ethoxycarbonylmethylfuran-2-yl)ethyl (5-(2-hydroxyethyl)furan-2-yl)-3-acetate (20, C13H22O7)
General procedure with 10 (1.44 g, 4.22 mmol), LiCl (0.55 g, 13.0 mmol), and H2O (80 mg, 4.4 mmol) in 11 cm3 DMSO heated at 190°C for 2 h. Chromatography afforded 160 mg, 0.808 mmol, 19%) and 18 (14.0 mmol, 0.535 mmol, 1%).
Ethyl 2-(5-(2-benzyloxyethyl)furan-2-yl)-3-phenylpropanoate (23, C23H24O4)

General procedure with 13 (2.40 g, 5.3 mmol), LiCl (730 mg, 17.2 mmol), and H2O (174 mg, 19.3 mmol) in 10 cm3 DMSO heated at 190°C for 2h. Chromatography afforded 23 (1.30 g, 3.4 mmol, 65%). Oil; Rf = 0.40 (n-hexane/AcOEt = 75/25 + 1% MeOH); IR (film): ν = 3030, 2980, 2928, 2861, 1595, 1880, 1809, 1736, 1605, 1496, 1455, 1367, 1333, 1275, 1211, 1150, 1101, 1080, 1029, 1016, 699, 404 cm−1; 1H NMR (400 MHz, CDCl3): δ = 7.39–7.16 (m, Ph), 4.56 (d, J = 6.9 Hz, H-8), 3.11 (dd, J = 13.7, 8.6 Hz, H-26a), 3.19 (dd, J = 13.7, 7.2 Hz, H-26b), 2.96 (t, J = 6.9 Hz, H-7), 1.17 (t, J = 7.1 Hz, H-12) ppm; 13C NMR (100 MHz, CDCl3): δ = 161.5 (C-6), 159.9 (C-5), 153.9 (C-4), 146.9 (C-3), 146.6 (C-2), 137.4, 129.1, 128.1, 113.9, 113.0, 112.8, 109.0, 107.4 (C-5), 83.4, 68.7 (Ph), 68.5, 74.2 (C-2), 29.3 (C-7), 14.6 (C-12) ppm; ESI-MS: m/z = 449 (15), 449 (11), 433 (32), 418 (16), 417 (61), 402 (26), 401 (100, [M + Na]+); ESI-HR-MS: m/z [M + Na]+ = calc 401.1729, found 401.1722.

Ethyl 2-(5-(2-benzyloxy)ethyl)furan-2-yl)acetate (24, C19H22O4)

General procedure with 14 (2.42 g, 5.6 mmol), LiCl (730 mg, 17.2 mmol), and H2O (100 mg, 1.6 mmol) in 10 cm3 DMSO heated at 190°C for 2h. Chromatography afforded 24 (1.08 g, 3.74 mmol, 67%). Oil; Rf = 0.33 (n-hexane/AcOEt = 75/25 + 1% MeOH); IR (film): ν = 3031, 2988, 2960, 2862, 1895, 1789, 1741, 1613, 1566, 1496, 1478, 1455, 1368, 1336, 1320, 1259, 1181, 1141, 1104, 1030, 1015, 788, 738, 699 cm−1; 1H NMR (400 MHz, CDCl3): δ = 7.40–7.28 (m, Ph), 6.15 (d, J = 3.1 Hz, H-4), 6.04 (d, J = 3.1 Hz, H-5), 4.56 (s, CH2–Ph), 4.20 (q, J = 7.1 Hz, H-1), 3.74 (t, J = 6.9 Hz, H-8), 3.65 (s, H-2), 2.96 (t, J = 6.9 Hz, H-7), 1.29 (t, J = 7.1 Hz, H-12) ppm; 13C NMR (100 MHz, CDCl3): δ = 170.0 (C-6), 153.0 (C-5), 146.6 (C-4), 138.7, 128.8, 128.1, 128.0 (SC, Ph), 109.0 (C-4), 107.4 (C-5), 73.4 (CH2–Ph), 68.7 (C-6), 61.5 (C-12), 34.7 (C-2), 29.3 (C-7), 14.6 (C-12) ppm; ESI-MS: m/z = 312 (10), 311 (59, [M + Na]+), 306 (51, [M + H2O]+), 290 (21), 289 (100, [M + H]+), 215 (12).

Ethyl 2-(5-(2-benzyloxy)propyl)furan-2-yl)acetate (25, C25H26O4)

General procedure with 15 (2.419 g, 5.42 mmol), LiCl (706 mg, 16.65 mmol), and H2O (181 mg, 10 mmol) in 10 cm3 DMSO heated at 190°C for 2h. Chromatography afforded 25 (1.035 g, 3.42 mmol, 63%). Oil; Rf = 0.36 (n-hexane/AcOEt = 75/25 + 1% MeOH); IR (film): ν = 3031, 2977, 2930, 2871, 1741, 1454, 1374, 1338, 1216, 1180, 1133, 1097, 1029, 1014 cm−1; 1H NMR (400 MHz, CDCl3): δ = 7.40–7.27 (m, Ph), 6.16 (d, J = 3.0 Hz, H-4), 6.05 (d, J = 3.0 Hz, H-5), 4.57 (d, J = 11.8 Hz, CHH–Ph), 4.51 (d, J = 11.8 Hz, CHH–Ph), 4.20 (q, J = 7.1 Hz, H-1), 3.85 (sext, J=6.4 Hz, H-8), 3.66 (s, H-2), 2.96 (dd, J = 14.9, 6.3 Hz, H-7a), 2.75 (dd, J = 14.9, 6.5 Hz, H-7b), 1.28 (d, J = 7.1 Hz, H-13), 1.26 (d, J = 6.3 Hz, H-9) ppm; 13C NMR (100 MHz, CDCl3): δ = 170.0 (C-6), 153.0 (C-5), 146.6 (C-4), 139.2, 128.7, 128.0, 127.8 (6C, Ph), 109.1 (C-4), 108.3 (C-5), 74.3 (C-8), 71.1 (CH2–Ph), 61.5 (C-12), 35.8 (C-7), 34.7 (C-2), 20.2 (C-9), 14.6 (C-12) ppm; ESI-MS: m/z = 341 (13), 326 (23), 325 (100, [M + Na]+), 324 (25), 315 (15).

Ethyl 2-(5-(2-acetoxy-ethyl)-furan-2-yl)acetate (26, C21H18O5) and Diethyl 2-(5-(2-acetoxyethyl)furan-2-yl)malonate (27, C18H20O6)

General procedure with 16 (128 mg, 0.33 mmol), LiCl (43.6 mg, 0.13 mmol), and H2O (23.5 mg, 1.31 mmol) in 1.35 cm3 DMSO heated at 160°C for 2h. According to NMR, 26 (0.107 mmol, 32%) and 27 (0.056 mmol, 17%) were afforded. They were partially separated by chromatography for characterization.

Ethyl 2-(5-(2-acetoxyethyl)thiophene-2-yl)acetate (28, C19H18O5)

General procedure with 12 (2.85 g, 7.42 mmol), LiCl (960 mg, 22.6 mmol), and H2O (130 mg, 7.22 mmol) in 19 cm3 DMSO heated at 190°C for 2h. Chromatography afforded 28 (70.8 mg, 0.295 mmol, 4%) and 19 (204.3 mg, 1.032 mmol, 14%). Data for 26 were the same as above, data for 19 were the same as previously described by our group [4].

Acknowledgements

NMR Spectra (400 MHz) were measured by Heinz Bursian and Dr. Claude Saturnin, mass spectra by Dr. Nicolas Mottier and Dr. Bernard Jean-Denis, CHN and HR-MS analyses were made in the Ecole d’ingénieurs et d’architectes de Fribourg. We thank the University of Neuchâtel and the Swiss National Science Foundation for financial support.

References

